какое распределение называется нормальным

Нормальное распределение (Гаусса) в Excel

В статье подробно показано, что такое нормальный закон распределения случайной величины и как им пользоваться при решении практически задач.

Нормальное распределение в статистике

История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию биномиального распределения еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.

Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.

Кривая нормального распределения Гаусса имеет следующий вид.

какое распределение называется нормальным

График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая. У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.

какое распределение называется нормальным

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Формула нормального распределения (плотности) следующая.

какое распределение называется нормальным

Формула состоит из двух математических констант:

е – основание натурального логарифма 2,718;

двух изменяемых параметров, которые задают форму конкретной кривой:

m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);

ну и сама переменная x, для которой высчитывается плотность вероятности.

Конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии ( σ 2 ). Кратко обозначается N(m, σ 2 ) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.

какое распределение называется нормальным

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.

какое распределение называется нормальным

Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.

Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:

какое распределение называется нормальным
Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие вероятности, так как

P(a ≤ X 0 =1 и остается рассчитать только соотношение 1 на корень из 2 пи.

Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже. Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения. Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные. Последнее свойство широко известно под названием правило трех сигм для нормального распределения.

Функция стандартного нормального распределения позволяет рассчитывать вероятности.

какое распределение называется нормальным

Понятное дело, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1, т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы.

какое распределение называется нормальным

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец 0, т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен).

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z), т.е. плотность для 1 тождественна плотности для -1, что отчетливо видно на рисунке.

какое распределение называется нормальным

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z.

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения.

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:

какое распределение называется нормальным

Это факт показан на картинке:

какое распределение называется нормальным

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z). Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z), то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:

какое распределение называется нормальным

Для наглядности можно взглянуть на рисунок.

какое распределение называется нормальным

На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z.

какое распределение называется нормальным

Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

какое распределение называется нормальным

какое распределение называется нормальным

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

какое распределение называется нормальным

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу.

Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:

какое распределение называется нормальным

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z: 1,64, 1,96 и 3.

какое распределение называется нормальным

Как понять смысл этих чисел? Начнем с z=1,64, для которого табличное значение составляет 0,4495. Проще всего пояснить смысл на рисунке.

какое распределение называется нормальным

То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от 0 до 1,64, равна 0,4495. При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

какое распределение называется нормальным

Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64, т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для проверки статистических гипотез и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).

какое распределение называется нормальным

Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

какое распределение называется нормальным

Еще одно интересное и часто используемое табличное значение соответствует z=3, оно равно по нашей таблице 0,4986. Умножим на 2 и получим 0,997. Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

какое распределение называется нормальным

Так выглядит правило 3 сигм для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

Нормальное распределение в Excel

В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.

какое распределение называется нормальным

Функция НОРМ.СТ.РАСП

Функция НОРМ.СТ.РАСП предназначена для расчета плотности ϕ( z ) или вероятности Φ(z) по нормированным данным (z).

z – значение стандартизованной переменной

интегральная – если 0, то рассчитывается плотность ϕ( z ) , если 1 – значение функции Ф(z), т.е. вероятность P(Z

Источник

Нормальный закон распределения вероятностей

Без преувеличения его можно назвать философским законом. Наблюдая за различными объектами и процессами окружающего мира, мы часто сталкиваемся с тем, что чего-то бывает мало, и что бывает норма:
какое распределение называется нормальным
Перед вами принципиальный вид функции плотности нормального распределения вероятностей, и я приветствую вас на этом интереснейшем уроке.

Какие можно привести примеры? Их просто тьма. Это, например, рост, вес людей (и не только), их физическая сила, умственные способности и т.д. Существует «основная масса» (по тому или иному признаку) и существуют отклонения в обе стороны.

Это различные характеристики неодушевленных объектов (те же размеры, вес). Это случайная продолжительность процессов, например, время забега стометровки или превращения смолы в янтарь. Из физики вспомнились молекулы воздуха: среди них есть медленные, есть быстрые, но большинство двигаются со «стандартными» скоростями.

Более того, даже дискретные распределения бывают близкИ к нормальному, и в конце урока мы раскроем важный секрет «нормальности». Но прежде, математика, математика, математика, которая в древности не зря считалась философией!

Непрерывная случайная величина какое распределение называется нормальным, распределённая по нормальному закону, имеет функцию плотности какое распределение называется нормальным(не пугаемся) и однозначно определяется параметрами какое распределение называется нормальными какое распределение называется нормальным.

Данная функция получила фамилию некоронованного короля математики, и я не могу удержаться, чтобы не запостить:
какое распределение называется нормальным
Одну из таких купюр мне довелось лично держать в руках, и ещё будучи школьником я внимательно изучил функцию Гаусса. Педантичные немцы отобразили все её особенности (на картинке видно плохо), и мы с толком, с расстановкой приступаем к их немцев изучению.

Начнём с того, что для функции какое распределение называется нормальнымвыполнены свойства плотности вероятностей , а именно какое распределение называется нормальным(почему?) и какое распределение называется нормальным, откуда следует, что нормально распределённая случайная величина достоверно примет одно из действительных значений. Теоретически – какое угодно, практически – узнаем позже.

Любопытно отметить, что сам по себе неопределённый интеграл какое распределение называется нормальнымявляется неберущимся, однако указанный выше несобственный интеграл сходится и равен какое распределение называется нормальным. Вычисления для простейшего случая какое распределение называется нормальнымможно найти здесь, все же остальные варианты сводятся к нему с помощью линейной замены какое распределение называется нормальным.

Следующие замечательные факты я тоже приведу без доказательства:

какое распределение называется нормальным– то есть, математическое ожидание нормально распределённой случайной величины в точности равно «а», а среднее квадратическое отклонение в точности равно «сигме»: какое распределение называется нормальным.

Эти значения выводятся с помощью общих формул математического ожидания и дисперсии, и желающие / нуждающиеся могут ознакомиться с подробными выкладками в учебной литературе, и совсем здОрово, если вам удастся провести их самостоятельно.

Ну а мы переходим к насущным практическим вопросам. Практики сегодня будет много, и она будет интересна не только «чайникам», но и более подготовленным читателям:

Нормально распределённая случайная величина задана параметрами какое распределение называется нормальным. Записать её функцию плотности и построить график.

Несмотря на кажущуюся простоту задания, в нём существует немало тонкостей.

Первый момент касается обозначений. Они стандартные, и никаких вольностей: математическое ожидание обозначают буквой какое распределение называется нормальным(реже какое распределение называется нормальнымили какое распределение называется нормальным(«мю»)), а стандартное отклонение – буквой какое распределение называется нормальным. Кстати, обратите внимание на формулировку: в условии ничего не сказано о сущности параметров «а» и «сигма», и несведущий человек может только догадываться, что это такое.

Решение начнём шаблонной фразой: функция плотности нормально распределённой случайной величины имеет вид какое распределение называется нормальным. В данном случае какое распределение называется нормальными:
какое распределение называется нормальным

Первая, более лёгкая часть задачи выполнена. Теперь график. Вот на нём-то, на моей памяти, студентов «заворачивали» десятки раз, причём, многих неоднократно. По той причине, что график какое распределение называется нормальнымобладает несколькими принципиальными особенностями, которые нужно обязательно отобразить на чертеже.

Сначала полная картина, затем комментарии:
какое распределение называется нормальным

Строим декартову систему координат. При выполнении чертежа от руки во многих случаях оптимален следующий масштаб:

по оси абсцисс: 2 тетрадные клетки = 1 ед.;

по оси ординат: 2 тетрадные клетки = 0,1 ед., при этом саму ось следует расположить из тех соображений, что в точке какое распределение называется нормальнымфункция достигает максимума, и вертикальная прямая какое распределение называется нормальным(на чертеже отсутствует) является линией симметрии графика.

И логично, что в первую очередь удобно найти максимум функции. В данном примере он находится в точке какое распределение называется нормальным:
какое распределение называется нормальным
Отмечаем вершину графика (красная точка).

Далее вычислим значения функции при какое распределение называется нормальным, а точнее только одно из них – в силу симметрии графика они равны:
какое распределение называется нормальным
Отмечаем синим цветом.

Внимание! какое распределение называется нормальным– это точки перегиба нормальной кривой. На интервале какое распределение называется нормальнымграфик является выпуклым, а на крайних интервалах – вогнутым.

Далее отклоняемся от центра ещё на одно стандартное отклонение какое распределение называется нормальными рассчитываем высоту:
какое распределение называется нормальным

Отмечаем точки на чертеже (зелёный цвет) и видим, что этого вполне достаточно.

На завершающем этапе аккуратно чертим график, и особо аккуратно отражаем его выпуклость / вогнутость! Ну и, наверное, вы давно поняли, что ось абсцисс – это горизонтальная асимптота, и «залезать» за неё категорически нельзя!

При электронном оформлении решения график легко построить в Экселе, и неожиданно для самого себя я даже записал короткий видеоролик на эту тему. Но сначала поговорим о том, как меняется форма нормальной кривой в зависимости от значений какое распределение называется нормальными какое распределение называется нормальным.

При увеличении или уменьшении «а» (при неизменном «сигма») график сохраняет свою форму и перемещается вправо / влево соответственно. Так, например, при какое распределение называется нормальнымфункция принимает вид какое распределение называется нормальными наш график «переезжает» на 3 единицы влево – ровнехонько в начало координат:
какое распределение называется нормальным
Нормально распределённая величина с нулевым математическим ожиданием получила вполне естественное название – центрированная; её функция плотности какое распределение называется нормальнымчётная, и график симметричен относительно оси ординат.

В случае изменения «сигмы» (при постоянном «а»), график «остаётся на месте», но меняет форму. При увеличении какое распределение называется нормальнымон становится более низким и вытянутым, словно осьминог, растягивающий щупальца. И, наоборот, при уменьшении какое распределение называется нормальнымграфик становится более узким и высоким – получается «удивлённый осьминог». Так, при уменьшении «сигмы» в два раза: какое распределение называется нормальнымпредыдущий график сужается и вытягивается вверх в два раза:
какое распределение называется нормальным
Всё в полном соответствии с геометрическими преобразованиями графиков.

Нормальное распределёние с единичным значением «сигма» называется нормированным, а если оно ещё и центрировано (наш случай), то такое распределение называют стандартным. Оно имеет ещё более простую функцию плотности, которая уже встречалась в локальной теореме Лапласа: какое распределение называется нормальным. Стандартное распределение нашло широкое применение на практике, и очень скоро мы окончательно поймём его предназначение.

Ну а теперь смотрим кино:

Да, совершенно верно – как-то незаслуженно у нас осталась в тени функция распределения вероятностей. Вспоминаем её определение:
какое распределение называется нормальным– вероятность того, что случайная величина какое распределение называется нормальнымпримет значение, МЕНЬШЕЕ, чем переменная какое распределение называется нормальным, которая «пробегает» все действительные значения до «плюс» бесконечности.

Внутри интеграла обычно используют другую букву, чтобы не возникало «накладок» с обозначениями, ибо здесь каждому значению какое распределение называется нормальнымставится в соответствие несобственный интеграл какое распределение называется нормальным, который равен некоторому числу из интервала какое распределение называется нормальным.

Почти все значения какое распределение называется нормальнымне поддаются точному расчету, но как мы только что видели, с современными вычислительными мощностями с этим нет никаких трудностей. Так, для функции какое распределение называется нормальнымстандартного распределения какое распределение называется нормальнымсоответствующая экселевская функция вообще содержит один аргумент:

Раз, два – и готово:
какое распределение называется нормальным
На чертеже хорошо видно выполнение всех свойств функции распределения, и из технических нюансов здесь следует обратить внимание на горизонтальные асимптоты и точку перегиба какое распределение называется нормальным.

Теперь вспомним одну из ключевых задач темы, а именно выясним, как найти какое распределение называется нормальным– вероятность того, что нормальная случайная величина какое распределение называется нормальнымпримет значение из интервала какое распределение называется нормальным. Геометрически эта вероятность равна площади между нормальной кривой и осью абсцисс на соответствующем участке:
какое распределение называется нормальным
но каждый раз вымучивать приближенное значение какое распределение называется нормальнымнеразумно, и поэтому здесь рациональнее использовать «лёгкую» формулу:
какое распределение называется нормальным.

! Вспоминаем также, что какое распределение называется нормальным

Тут можно снова задействовать Эксель, но есть пара весомых «но»: во-первых, он не всегда под рукой, а во-вторых, «готовые» значения какое распределение называется нормальным, скорее всего, вызовут вопросы у преподавателя. Почему?

Об этом я неоднократно рассказывал ранее: в своё время (и ещё не очень давно) роскошью был обычный калькулятор, и в учебной литературе до сих пор сохранился «ручной» способ решения рассматриваемой задачи. Его суть состоит в том, чтобы стандартизировать значения «альфа» и «бета», то есть свести решение к стандартному распределению:
какое распределение называется нормальным

Примечание: функцию какое распределение называется нормальнымлегко получить из общего случая какое распределение называется нормальным с помощью линейной замены какое распределение называется нормальным. Тогда какое распределение называется нормальными:
какое распределение называется нормальным
и из проведённой замены как раз следует формула какое распределение называется нормальнымперехода от значений какое распределение называется нормальнымпроизвольного распределения – к соответствующим значениям какое распределение называется нормальнымстандартного распределения.

Зачем это нужно? Дело в том, что значения какое распределение называется нормальнымскрупулезно подсчитаны нашими предками и сведены в специальную таблицу, которая есть во многих книгах по терверу. Но ещё чаще встречается таблица значений какое распределение называется нормальным, с которой мы уже имели дело в интегральной теореме Лапласа:
какое распределение называется нормальным

В силу очевидной нечётности функции Лапласа (какое распределение называется нормальным), в таблице представлены её значения только для положительных «икс», и по причине симметрии нормального распределения этого оказывается достаточно. Итак, вероятность того, что нормальная случайная величина какое распределение называется нормальнымс параметрами какое распределение называется нормальными какое распределение называется нормальным примет значение из интервала какое распределение называется нормальным, можно вычислить по формуле:

какое распределение называется нормальным, где какое распределение называется нормальным– функция Лапласа.

Таким образом, наша задача становится чуть ли не устной! Порой, здесь хмыкают и говорят, что метод устарел. Может быть…, но парадокс состоит в том, что «устаревший метод» очень быстро приводит к результату! И ещё в этом заключена большая мудрость – если вдруг пропадёт электричество или восстанут машины, то у человечества останется возможность заглянуть в бумажные таблицы и спасти мир =)

Из пункта какое распределение называется нормальнымведётся стрельба из орудия вдоль прямой какое распределение называется нормальным. Предполагается, что дальность полёта распределена нормально с математическим ожиданием 1000 м и средним квадратическим отклонением 5 м. Определить (в процентах) сколько снарядов упадёт с перелётом от 5 до 70м.

Решение: в задаче рассматривается нормально распределённая случайная величина какое распределение называется нормальным– дальность полёта снаряда, и по условию какое распределение называется нормальным.

Если в нашем распоряжении есть таблица значений функции какое распределение называется нормальным, то используем формулу какое распределение называется нормальным:
какое распределение называется нормальным
Для самопроверки можно задействовать экселевскую функцию =НОРМСТРАСП(z) или напрямую «забить» какое распределение называется нормальными затем какое распределение называется нормальнымв Пункт 9 расчётного макета.

Если же в нашем распоряжении есть таблица значений функции Лапласа какое распределение называется нормальным, то решаем через неё:
какое распределение называется нормальным
Дробные значения традиционно округляем до 4 знаков после запятой, как это сделано в типовой таблице. И для контроля есть Пункт 5 макета.

Напоминаю, что какое распределение называется нормальным, и во избежание путаницы всегда контролируйте, таблица КАКОЙ функции перед вашими глазами.

Ответ требуется дать в процентах, поэтому рассчитанную вероятность нужно умножить на 100 и снабдить результат содержательным комментарием:

– с перелётом от 5 до 70 м упадёт примерно 15,87% снарядов

Диаметр подшипников, изготовленных на заводе, представляет собой случайную величину, распределенную нормально с математическим ожиданием 1,5 см и средним квадратическим отклонением 0,04 см. Найти вероятность того, что размер наугад взятого подшипника колеблется от 1,4 до 1,6 см.

В образце решения и далее я буду использовать функцию Лапласа, как самый распространённый вариант. Кстати, обратите внимание, что согласно формулировке, здесь можно включить концы интервала в рассмотрение. Впрочем, это не критично.

И уже в этом примере нам встретился особый случай – когда интервал какое распределение называется нормальнымсимметричен относительно математического ожидания. В такой ситуации его можно записать в виде какое распределение называется нормальными, пользуясь нечётностью функции Лапласа, упростить рабочую формулу:

какое распределение называется нормальным
Параметр «дельта» называют отклонением от математического ожидания, и двойное неравенство можно «упаковывать» с помощью модуля:

какое распределение называется нормальным– вероятность того, что значение случайной величины какое распределение называется нормальнымотклонится от математического ожидания менее чем на какое распределение называется нормальным.

Хорошо то решение, которое умещается в одну строчку:)
какое распределение называется нормальным– вероятность того, что диаметр наугад взятого подшипника отличается от 1,5 см не более чем на 0,1 см.

Результат этой задачи получился близким к единице, но хотелось бы ещё бОльшей надежности – а именно, узнать границы, в которых находится диаметр почти всех подшипников. Существует ли какой-нибудь критерий на этот счёт? Существует! На поставленный вопрос отвечает так называемое

правило «трех сигм»

Его суть состоит в том, что практически достоверным является тот факт, что нормально распределённая случайная величина какое распределение называется нормальнымпримет значение из промежутка какое распределение называется нормальным.

И в самом деле, вероятность отклонения от матожидания менее чем на какое распределение называется нормальнымсоставляет:
какое распределение называется нормальнымили 99,73%

В «пересчёте на подшипники» – это 9973 штуки с диаметром от 1,38 до 1,62 см и всего лишь 27 «некондиционных» экземпляров.

В практических исследованиях правило «трёх сигм» обычно применяют в обратном направлении: если статистически установлено, что почти все значения исследуемой случайной величины укладываются в интервал длиной 6 стандартных отклонений, то появляются веские основания полагать, что эта величина распределена по нормальному закону. Проверка осуществляется с помощью теории статистических гипотез.

Продолжаем решать суровые советские задачи:

Случайная величина какое распределение называется нормальнымошибки взвешивания распределена по нормальному закону с нулевым математическим ожиданием и стандартным отклонением 3 грамма. Найти вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей по модулю 5 грамм.

Решение очень простое. По условию, какое распределение называется нормальными сразу заметим, что при очередном взвешивании (чего-то или кого-то) мы почти 100% получим результат с точностью до 9 грамм. Но в задаче фигурирует более узкое отклонение какое распределение называется нормальными по формуле какое распределение называется нормальным:

какое распределение называется нормальным– вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей 5 грамм.

Ответ: какое распределение называется нормальным

Прорешанная задача принципиально отличается от вроде бы похожего Примера 3 урока о равномерном распределении. Там была погрешность округления результатов измерений, здесь же речь идёт о случайной погрешности самих измерений. Такие погрешности возникают в связи с техническими характеристиками самого прибора (диапазон допустимых ошибок, как правило, указывают в его паспорте), а также по вине экспериментатора – когда мы, например, «на глазок» снимаем показания со стрелки тех же весов.

Помимо прочих, существуют ещё так называемые систематические ошибки измерения. Это уже неслучайные ошибки, которые возникают по причине некорректной настройки или эксплуатации прибора. Так, например, неотрегулированные напольные весы могут стабильно «прибавлять» килограмм, а продавец систематически обвешивать покупателей. Или не систематически ведь можно обсчитать. Однако, в любом случае, случайной такая ошибка не будет, и её матожидание отлично от нуля.

…срочно разрабатываю курс по подготовке продавцов =)

Самостоятельно решаем обратную задачу:

Диаметр валика – случайная нормально распределенная случайная величина, среднее квадратическое отклонение ее равно какое распределение называется нормальныммм. Найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью какое распределение называется нормальнымпопадет длина диаметра валика.

Пункт 5* расчётного макета в помощь. Обратите внимание, что здесь не известно математическое ожидание, но это нисколько не мешает решить поставленную задачу.

И экзаменационное задание, которое я настоятельно рекомендую для закрепления материала:

Нормально распределенная случайная величина какое распределение называется нормальнымзадана своими параметрами какое распределение называется нормальным(математическое ожидание) и какое распределение называется нормальным(среднее квадратическое отклонение). Требуется:

а) записать плотность вероятности и схематически изобразить ее график;
б) найти вероятность того, что какое распределение называется нормальнымпримет значение из интервала какое распределение называется нормальным;
в) найти вероятность того, что какое распределение называется нормальнымотклонится по модулю от какое распределение называется нормальнымне более чем на какое распределение называется нормальным;
г) применяя правило «трех сигм», найти значения случайной величины какое распределение называется нормальным.

Такие задачи предлагаются повсеместно, и за годы практики мне их довелось решить сотни и сотни штук. Обязательно попрактикуйтесь в ручном построении чертежа и использовании бумажных таблиц 😉

Ну а я разберу пример повышенной сложности:

Плотность распределения вероятностей случайной величины какое распределение называется нормальнымимеет вид какое распределение называется нормальным. Найти какое распределение называется нормальным, математическое ожидание какое распределение называется нормальным, дисперсию какое распределение называется нормальным, функцию распределения какое распределение называется нормальным, построить графики плотности и функции распределения, найти какое распределение называется нормальным.

Решение: прежде всего, обратим внимание, что в условии ничего не сказано о характере случайной величины. Само по себе присутствие экспоненты ещё ничего не значит: это может оказаться, например, показательное или вообще произвольное непрерывное распределение. И поэтому «нормальность» распределения ещё нужно обосновать:

Так как функция какое распределение называется нормальнымопределена при любом действительном значении какое распределение называется нормальным, и её можно привести к виду какое распределение называется нормальным, то случайная величина какое распределение называется нормальнымраспределена по нормальному закону.

Приводим. Для этого выделяем полный квадрат и организуем трёхэтажную дробь:
какое распределение называется нормальным
Обязательно выполняем проверку, возвращая показатель в исходный вид:
какое распределение называется нормальным
какое распределение называется нормальным, что мы и хотели увидеть.

Таким образом:
какое распределение называется нормальным– по правилу действий со степенями «отщипываем» какое распределение называется нормальным. И здесь можно сразу записать очевидные числовые характеристики:
какое распределение называется нормальным

Теперь найдём значение параметра какое распределение называется нормальным. Поскольку множитель нормального распределения имеет вид какое распределение называется нормальными какое распределение называется нормальным, то:
какое распределение называется нормальным, откуда выражаем какое распределение называется нормальными подставляем в нашу функцию:
какое распределение называется нормальным, после чего ещё раз пробежимся по записи глазами и убедимся, что полученная функция имеет вид какое распределение называется нормальным.

Построим график плотности:
какое распределение называется нормальным
и график функции распределения какое распределение называется нормальным:
какое распределение называется нормальным
Если под рукой нет Экселя и даже обычного калькулятора, то последний график легко строится вручную! В точке какое распределение называется нормальнымфункция распределения принимает значение какое распределение называется нормальными здесь находится перегиб графика (малиновая точка) Кроме того, для более или менее приличного чертежа желательно найти ещё хотя бы пару точек. Берём традиционное значение какое распределение называется нормальными стандартизируем его по формуле какое распределение называется нормальным. Далее с помощью таблицы значений функции Лапласа находим: какое распределение называется нормальным– жёлтая точка на чертеже. С симметричной оранжевой точкой никаких проблем: какое распределение называется нормальными:
какое распределение называется нормальным.

После чего аккуратно проводим интегральную кривую, не забывая о перегибе и двух горизонтальных асимптотах.

Да, и ещё нужно вычислить:
какое распределение называется нормальным– вероятность того, что случайная величина какое распределение называется нормальнымпримет значение из данного отрезка.

Ответ: какое распределение называется нормальным

Но этим, конечно, всё дело не ограничивается! Дополнительные примеры, причём довольно творческие, можно найти в тематической pdf-книжке.

И в заключение урока обещанный секрет:

понятие о центральной предельной теореме

которую также называют теоремой Ляпунова. Её суть состоит в том, что если случайная величина какое распределение называется нормальнымявляется суммой очень большого числа взаимно независимых случайных величин какое распределение называется нормальным, влияние каждой из которых на всю сумму ничтожно мало, то какое распределение называется нормальнымимеет распределение, близкое к нормальному.

В окружающем мире условие теоремы Ляпунова выполняется очень часто, и поэтому нормальное распределение (близкое к нему) и встречается буквально на каждом шагу.

Так, например, молекул воздуха очень и очень много, и каждая из них своим движением оказывает ничтожно малое влияние на всю совокупность. Поэтому скорость молекул воздуха распределена нормально.

Большая популяция некоторых особей. Каждая из них (или подавляющее большинство) оказывает несущественное влияние на жизнь всей популяции, следовательно, длина их лапок тоже распределена по нормальному закону.

Теперь вернёмся к знакомой задаче, где проводится какое распределение называется нормальнымнезависимых испытаний, в каждом из которых некое событие какое распределение называется нормальнымможет появиться с постоянной вероятностью какое распределение называется нормальным. Эти испытания можно считать попарно независимым случайными величинами какое распределение называется нормальным, и при достаточно большом значении «эн» биномиальное распределение случайной величины какое распределение называется нормальнымчисла появлений события какое распределение называется нормальнымв какое распределение называется нормальнымиспытаниях – очень близко к нормальному.

Уже при какое распределение называется нормальными какое распределение называется нормальнымв многоугольнике биномиального распределения хорошо просматривается нормальная кривая:
какое распределение называется нормальным
И чем больше какое распределение называется нормальным, тем ближе будет сходство. Вероятность какое распределение называется нормальнымможет быть и другой, но не слишком малой.

Именно этот факт мы и использовали в теоремах Лапласа – когда приближали биномиальные вероятности соответствующими значениями функций нормального распределения.

Вот такие вот пироги.

Необычайно интересной, и я бы даже сказал «сочной» получилась эта статья, что бывает далеко не всегда, но всегда вдохновляет на новое творчество! Надеюсь, вам тоже понравилось, и вы освоили весь материал «на одном дыхании».

Пример 3. Решение: т.к. случайная величина какое распределение называется нормальным(диаметр подшипника) распределена нормально, то используем формулу какое распределение называется нормальным, где какое распределение называется нормальным– функция Лапласа. В данном случае:
какое распределение называется нормальным
какое распределение называется нормальным– вероятность того, что диаметр наугад взятого подшипника будет находиться в пределах от 1,4 до 1,6 см.

Ответ: какое распределение называется нормальным

Пример 5. Решение: используем формулу: какое распределение называется нормальным.
В данной задаче какое распределение называется нормальным, таким образом:
какое распределение называется нормальным
какое распределение называется нормальным
откуда находим:
какое распределение называется нормальным
Длина искомого интервала составляет какое распределение называется нормальным

Ответ: 20 мм

Пример 6. Решение: функция плотности нормально распределённой случайной величины имеет вид какое распределение называется нормальным, где какое распределение называется нормальным– математическое ожидание, какое распределение называется нормальным– стандартное отклонение. В данном случае какое распределение называется нормальным, следовательно:
какое распределение называется нормальным
Выполним чертёж:
какое распределение называется нормальным
! Примечание: несмотря на то, что условие допускает схематическое построение графика, на чертеже обязательно отображаем все его принципиальные особенности, в частности, на забываем о перегибах в точках какое распределение называется нормальным.

б) Используем формулу какое распределение называется нормальным, где какое распределение называется нормальным– функция Лапласа.
В данной задаче какое распределение называется нормальным:
какое распределение называется нормальным
какое распределение называется нормальным– вероятность того, что случайная величина какое распределение называется нормальнымпримет значение из данного интервала.

в) Используем формулу какое распределение называется нормальнымдля какое распределение называется нормальным:
какое распределение называется нормальным– вероятность того, что значение случайной величины какое распределение называется нормальнымотклонится от её математического ожидания не более чем на 2.

г) Согласно правилу «трех сигм», практически все значения (99,73%) нормально распределенной случайной величины входят в интервал какое распределение называется нормальным. В данном случае:
какое распределение называется нормальным
какое распределение называется нормальным– искомый интервал.

Ответ: а) какое распределение называется нормальным, б) какое распределение называется нормальным, в) какое распределение называется нормальным, г) какое распределение называется нормальным

Автор: Емелин Александр

(Переход на главную страницу)

какое распределение называется нормальным «Всё сдал!» — онлайн-сервис помощи студентам

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *