Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠžΠΊΡ€ΡƒΠ³Π»Π΅Π½ΠΈΠ΅:

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ/ΡΠΊΡ€Ρ‹Ρ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Ρ‚ΠΎΡ‡Π΅ΠΊ

xf(x)
-100.1
-9.50.11
-90.11
-8.50.12
-80.13
-7.50.13
-70.14
-6.50.15
-60.17
-5.50.18
-50.2
-4.50.22
-40.25
-3.50.29
-30.33
-2.50.4
-20.5
-1.50.67
-11
-0.52
0отсутствуСт: Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π° 0
02
0.5-2
1-1
1.5-0.67
2-0.5
2.5-0.4
3-0.33
3.5-0.29
4-0.25
4.5-0.22
5-0.2
5.5-0.18
6-0.17
6.5-0.15
7-0.14
7.5-0.13
8-0.13
8.5-0.12
9-0.11
9.5-0.11
10-0.1

Π“Ρ€Π°Ρ„ΠΈΠΊ построСн ΠΏΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ, Π½ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°Π±Π»ΠΈΡ†ΠΎΠΉ Ρ‚ΠΎΡ‡Π΅ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ, Π½Π°ΠΆΠΌΠΈΡ‚Π΅ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡƒ β€˜Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ график’ ΠΏΠΎΠ΄ Π½ΠΈΠΌ.

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ выраТСния

Для написания матСматичСских Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ доступно ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Ρ‹

^ β€” Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ

x^(1/n) β€” ΠΊΠΎΡ€Π΅Π½ΡŒ n-ΠΎΠΉ стСпСни ΠΎΡ‚ числа x. Π’ΠΎ Π΅ΡΡ‚ΡŒ 8^(1/3) = 3 √8 = 2

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = 1/x (1 Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° x) ΠΎΠ½Π»Π°ΠΉΠ½. Π’Π°Π±Π»ΠΈΡ†Π° Ρ‚ΠΎΡ‡Π΅ΠΊ.

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = 1/x (1 Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° x)

ΠžΠΊΡ€ΡƒΠ³Π»Π΅Π½ΠΈΠ΅:

Π’Π°Π±Π»ΠΈΡ†Π° Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) = 1/x

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ/ΡΠΊΡ€Ρ‹Ρ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Ρ‚ΠΎΡ‡Π΅ΠΊ

xf(x)
-10-0.1
-9.5-0.11
-9-0.11
-8.5-0.12
-8-0.13
-7.5-0.13
-7-0.14
-6.5-0.15
-6-0.17
-5.5-0.18
-5-0.2
-4.5-0.22
-4-0.25
-3.5-0.29
-3-0.33
-2.5-0.4
-2-0.5
-1.5-0.67
-1-1
-0.5-2
0отсутствуСт: Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π° 0
0-2
0.52
11
1.50.67
20.5
2.50.4
30.33
3.50.29
40.25
4.50.22
50.2
5.50.18
60.17
6.50.15
70.14
7.50.13
80.13
8.50.12
90.11
9.50.11
100.1

Π“Ρ€Π°Ρ„ΠΈΠΊ построСн ΠΏΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ, Π½ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°Π±Π»ΠΈΡ†ΠΎΠΉ Ρ‚ΠΎΡ‡Π΅ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ, Π½Π°ΠΆΠΌΠΈΡ‚Π΅ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡƒ β€˜Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ график’ ΠΏΠΎΠ΄ Π½ΠΈΠΌ.

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ выраТСния

Для написания матСматичСских Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ доступно ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Ρ‹

^ β€” Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ

x^(1/n) β€” ΠΊΠΎΡ€Π΅Π½ΡŒ n-ΠΎΠΉ стСпСни ΠΎΡ‚ числа x. Π’ΠΎ Π΅ΡΡ‚ΡŒ 8^(1/3) = 3 √8 = 2

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… Π·Π½Π°Π½ΠΈΠΉ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… Π² ΡƒΡ‡Π΅Π±Π΅, Π½Π°Ρ€Π°Π²Π½Π΅ с Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ умноТСния. Они ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚ΠΎΠΌ, Π½Π° Π½ΠΈΡ… всС основано, ΠΈΠ· Π½ΠΈΡ… всС строится ΠΈ ΠΊ Π½ΠΈΠΌ всС сводится.

Π’Π°Π±Π»ΠΈΡ†Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

ЛинСйная (ΠΏΡ€ΡΠΌΠΎΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ) функция.

ОсновноС свойство Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. Π’.Π΅. функция оказываСтся ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ΠΌ прямой ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Ѐункция БСссСля ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π°.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ свойств ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ связаны с Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ дискриминанта.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘Π°ΠΌΡ‹ΠΉ простой случай для Π΄Ρ€ΠΎΠ±Π½ΠΎΠΉ стСпСни (x 1/2 = √x).

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для a > 0 ΠΈ a β‰  1. Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сущСствСнно зависят ΠΎΡ‚ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° a. Π—Π΄Π΅ΡΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для y = 2 x (a = 2 > 1).

1″ longdesc=»Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π°>1″ src=»https://www.calc.ru/imgs/articles3/16/87/964599587e5e40d85067.63997678.jpg» style=»height:154px; width:200px» title=»Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π°>1″ />

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π°>1

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для a > 0 ΠΈ a β‰  1. Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сущСствСнно зависят ΠΎΡ‚ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° a. Π—Π΄Π΅ΡΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для y = 0,5 x (a = 1/2 x

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ 0

ЛогарифмичСская функция.

Π“Ρ€Π°Ρ„ΠΈΠΊ любой логарифмичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ (1;0).

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ЛогарифмичСская функция.

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ для a > 0 ΠΈ a β‰  1. Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сильно связаны со Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° a. Π—Π΄Π΅ΡΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для y = log2x (a = 2 > 1).

1″ src=»https://www.calc.ru/imgs/articles3/10/83/105346587e608e0e0759.16931934.jpg» style=»height:244px; width:188px» />

Бинус.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠšΠΎΡΠΈΠ½ΡƒΡ.

ВригономСтричСская функция косинус. Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρƒ = sinx ΠΈ Ρƒ = cosx сдвинуты ΠΏΠΎ оси Ρ… Π½Π° Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ВангСнс.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘Ρ‚Π°Ρ‚ΡŒΡ находится Π½Π° ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ΅ Ρƒ мСтодистов Skysmart.
Если Π²Ρ‹ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ ΠΎΡˆΠΈΠ±ΠΊΡƒ, сообщитС ΠΎΠ± этом Π² ΠΎΠ½Π»Π°ΠΉΠ½-Ρ‡Π°Ρ‚
(Π² ΠΏΡ€Π°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡƒΠ³Π»Ρƒ экрана).

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ѐункция β€” это Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ y ΠΎΡ‚ x, Π³Π΄Π΅ x являСтся ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° y β€” зависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π—Π°Π΄Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π² соотвСтствии с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΠΎ значСниям нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π΅Π΅ значСния. Π’ΠΎΡ‚, ΠΊΠ°ΠΊΠΈΠΌΠΈ способами Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ:

ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния β€” мноТСство Ρ…, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ выраТСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ записано Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅.

НапримСр, для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 xΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния выглядит Ρ‚Π°ΠΊ

ΠžΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ β€” мноТСство Ρƒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ это значСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ функция.

НапримСр, СстСствСнная ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = xΒ² β€” это всС числа большС Π»ΠΈΠ±ΠΎ Ρ€Π°Π²Π½Ρ‹Π΅ Π½ΡƒΠ»ΡŽ. МоТно Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π²ΠΎΡ‚ Ρ‚Π°ΠΊ: Π• (Ρƒ): Ρƒ β‰₯ 0.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) называСтся мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ (x; y), ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… связаны ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ y = f(x). Π‘Π°ΠΌΠΎ равСнство y = f(x) называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°.

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ (x; y), Π³Π΄Π΅ x β€” это Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚, Π° y β€” Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ соотвСтствуСт Π΄Π°Π½Π½ΠΎΠΌΡƒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ.

ΠŸΡ€ΠΎΡ‰Π΅ говоря, Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ мноТСство всСх Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ, просто подставив Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π»ΡŽΠ±Ρ‹Π΅ числа вмСсто x.

Для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Π²ΠΎΠ·ΡŒΠΌΡ‘ΠΌ ΡΠ°ΠΌΡƒΡŽ ΠΏΡ€ΠΎΡΡ‚ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ Ρ€Π°Π²Π΅Π½ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ y = x.

Π’ этом случаС Π½Π°ΠΌ Π½Π΅ придётся Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ Ρ€Π°Π²Π½Ρ‹, поэтому Ρƒ всСх Ρ‚ΠΎΡ‡Π΅ΠΊ нашСго Π³Ρ€Π°Ρ„ΠΈΠΊΠ° абсцисса Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Если ΠΌΡ‹ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‚ наимСньшСго значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΊ Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΌΡƒ соСдиним ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Ρ‚ΠΎ Ρƒ нас получится прямая линия. Π—Π½Π°Ρ‡ΠΈΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x являСтся прямая. На Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ это выглядит Ρ‚Π°ΠΊ:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Надпись Π½Π° Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ y = x β€” это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. Π‘Ρ‚Π°Π²ΠΈΡ‚ΡŒ надпись с ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π° Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ ΡƒΠ΄ΠΎΠ±Π½ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ Π·Π°ΠΏΡƒΡ‚Π°Ρ‚ΡŒΡΡ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡.

Π’Π°ΠΆΠ½ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ прямая линия бСсконСчна Π² ΠΎΠ±Π΅ стороны. Π₯ΠΎΡ‚ΡŒ ΠΌΡ‹ ΠΈ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌ Ρ‡Π°ΡΡ‚ΡŒ прямой Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π° самом Π΄Π΅Π»Π΅ Π½Π° Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π° Ρ‚ΠΎΠ»ΡŒΠΊΠΎ малая Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°.

ИсслСдованиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π°ΠΆΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x):

Π‘Ρ‚Π°Ρ†ΠΈΠΎΠ½Π°Ρ€Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ β€” Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… производная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

ΠšΡ€ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ β€” Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… производная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ Π»ΠΈΠ±ΠΎ Π½Π΅ сущСствуСт. Π‘Ρ‚Π°Ρ†ΠΈΠΎΠ½Π°Ρ€Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ подмноТСством мноТСства критичСских Ρ‚ΠΎΡ‡Π΅ΠΊ.

ЭкстрСмум Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ β€” максимальноС ΠΈΠ»ΠΈ минимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ мноТСствС. Π’ΠΎΡ‡ΠΊΠ°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ достигаСтся экстрСмум, называСтся Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ экстрСмума. БоотвСтствСнно, Ссли достигаСтся ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ β€” Ρ‚ΠΎΡ‡ΠΊΠ° экстрСмума называСтся Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°, Π° Ссли максимум β€” Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ максимума.

Нули Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

Асимптота β€” прямая, которая ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Ρ‚Π°ΠΊΠΈΠΌ свойством, Ρ‡Ρ‚ΠΎ расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΄ΠΎ этой прямой стрСмится ΠΊ Π½ΡƒΠ»ΡŽ ΠΏΡ€ΠΈ Π½Π΅ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΌ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. По способам ΠΈΡ… отыскания Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Ρ‚Ρ€ΠΈ Π²ΠΈΠ΄Π° асимптот: Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅, Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅, Π½Π°ΠΊΠ»ΠΎΠ½Π½Ρ‹Π΅.

Ѐункция Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ k, Ссли ΠΏΡ€Π΅Π΄Π΅Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ€Π°Π²Π΅Π½ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅: Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Если функция f(x) Π½Π΅ являСтся Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x = a, Ρ‚ΠΎ говорят, Ρ‡Ρ‚ΠΎ f(x) ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π°Π·Ρ€Ρ‹Π² Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Если Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Π½Π΅Π·Π½Π°ΠΊΠΎΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π·Π°Ρ€Π°Π½Π΅Π΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π²ΠΈΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ схСму исслСдования свойств Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Она ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ прСдставлСниС ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΈ ΠΏΡ€ΠΈΡΡ‚ΡƒΠΏΠΈΡ‚ΡŒ ΠΊ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.

Π‘Ρ…Π΅ΠΌΠ° построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π£ нас Π΅ΡΡ‚ΡŒ ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹Π΅ курсы ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ для ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² с 1 ΠΏΠΎ 11 классы!

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΊΠ°ΠΊ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, потрСнируСмся Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ….

Π—Π°Π΄Π°Ρ‡Π° 1. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Упростим Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π—Π°Π΄Π°Ρ‡Π° 2. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π’Ρ‹Π΄Π΅Π»ΠΈΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ†Π΅Π»ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π°, сдвинутая Π½Π° 3 Π²ΠΏΡ€Π°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅Ρ€Ρ… ΠΏΠΎ y ΠΈ растянутая Π² 10 Ρ€Π°Π· ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ†Π΅Π»ΠΎΠΉ части β€” ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠ΅ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ примСняСтся Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ нСравСнств, построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ Ρ†Π΅Π»Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½.

Π—Π°Π΄Π°Ρ‡Π° 3. По Π²ΠΈΠ΄Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π·Π½Π°ΠΊΠΈ коэффициСнтов ΠΎΠ±Ρ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = ax2 + bx + c.

Вспомним, ΠΊΠ°ΠΊ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ a, b ΠΈ c ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

Π’Π΅Ρ‚Π²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, a 0.

Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния с осью Oy β€” c = 0.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x, Ρ‚.ΠΊ. нСизвСстноС число ΠΏΡ€ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚, Ρ‚ΠΎ это число ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, b > 0.

Π’Π΅Ρ‚Π²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, a 0.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x, Ρ‚.ΠΊ. нСизвСстноС число ΠΏΡ€ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ‚ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, Ρ‚ΠΎ это число ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, b

НазваниС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ€ΠΎΡ€ΠΌΡƒΠ»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ“Ρ€Π°Ρ„ΠΈΠΊ функцииНазваниС Π³Ρ€Π°Ρ„ΠΈΠΊΠ°
xy
0-1
12

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

xy
02
11

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

xy
00
12

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

k = 2 > 0 β€” ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ оси Ox острый, B = 0 β€” Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π—Π°Π΄Π°Ρ‡Π° 5. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π­Ρ‚ΠΎ Π΄Ρ€ΠΎΠ±Π½ΠΎ-Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ функция. ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ D(y): x β‰  4; x β‰  0.

Нули Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: 3, 2, 6.

ΠŸΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ знакопостоянства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ².

Π’Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ асимптоты: x = 0, x = 4.

Если x стрСмится ΠΊ бСсконСчности, Ρ‚ΠΎ Ρƒ стрСмится ΠΊ 1. Π—Π½Π°Ρ‡ΠΈΡ‚, y = 1 β€” Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ асимптота.

Π’ΠΎΡ‚ Ρ‚Π°ΠΊ выглядит Π³Ρ€Π°Ρ„ΠΈΠΊ:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π—Π°Π΄Π°Ρ‡Π° 6. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Π±) Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π³) Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π΄) Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Когда слоТная функция ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° ΠΈΠ· ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠ΅ΠΉ Ρ‡Π΅Ρ€Π΅Π· нСсколько ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, Ρ‚ΠΎ прСобразования Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Π² порядкС арифмСтичСских дСйствий с Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ.

Π°) Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ дСйствиС Ρ‚ΠΈΠΏΠ° f(x) + a.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²Π²Π΅Ρ€Ρ… Π½Π° 1:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π±)Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° 1:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° 1:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²Π²Π΅Ρ€Ρ… Π½Π° 2:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π³) Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ дСйствиС Ρ‚ΠΈΠΏΠ° Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

РастягиваСм Π³Ρ€Π°Ρ„ΠΈΠΊ Π² 2 Ρ€Π°Π·Π° ΠΎΡ‚ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ вдоль оси абсцисс:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π΄) Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ прСобразования, посмотрим Π½Π° порядок дСйствий: сначала ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ, Π·Π°Ρ‚Π΅ΠΌ складываСм, Π° ΡƒΠΆΠ΅ ΠΏΠΎΡ‚ΠΎΠΌ мСняСм Π·Π½Π°ΠΊ. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎ всСму Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ модуля Π² Ρ†Π΅Π»ΠΎΠΌ, вынСсСм Π΄Π²ΠΎΠΉΠΊΡƒ Π·Π° скобки Π² ΠΌΠΎΠ΄ΡƒΠ»Π΅.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x
Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x
Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π² Π΄Π²Π° Ρ€Π°Π·Π° вдоль оси абсцисс:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x
Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²Π»Π΅Π²ΠΎ Π½Π° 1/2 вдоль оси абсцисс:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x
Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠžΡ‚Ρ€Π°ΠΆΠ°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ симмСтрично ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси абсцисс:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Ѐункция Β« y = kx Β» ΠΈ Π΅Ρ‘ Π³Ρ€Π°Ρ„ΠΈΠΊ

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = kx Β» Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚Π΅ ΡƒΡ€ΠΎΠΊ
Β«Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ функция Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅Β» ΠΈ «Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽΒ».

Ѐункция Β« y = kx Β» β€” это ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Ρ‚ΠΈΠΏ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ изучаСтся Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

На мСстС Β« k Β» ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚ΠΎΡΡ‚ΡŒ любоС число (ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ Π΄Ρ€ΠΎΠ±ΡŒ).

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Β« y = kx Β» β€” это сСмСйство всСвозмоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π³Π΄Π΅ вмСсто Β« k Β» стоит число.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²ΠΈΠ΄Π° Β« y = kx Β».

Π€ΡƒΠ½ΠΊΡ†ΠΈΡΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ Β« k Β»
y = 4xk = 4
y = βˆ’1,5xk = βˆ’1,5
y =

1
2

x

k =

1
2

Как ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = kx Β»

Из Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ вспомним аксиому (ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°), Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ€Π΅Π· Π»ΡŽΠ±Ρ‹Π΅ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ провСсти ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ ΠΏΡ€ΠΈΡ‚ΠΎΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· этой аксиомы, Ρ‡Ρ‚ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° Β« Ρƒ = kx Β» Π½Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ достаточно Π½Π°ΠΉΡ‚ΠΈ всСго Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° построим Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’4x Β».

НайдСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y Β» для Π΄Π²ΡƒΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Β« x Β». ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, вмСсто Β« x Β» числа Β« 0 Β» ΠΈ Β« 1 Β».

Выбирая ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ числовыС значСния вмСсто Β« x Β», Π»ΡƒΡ‡ΡˆΠ΅ Π±Ρ€Π°Ρ‚ΡŒ числа Β« 0 Β» ΠΈ Β« 1 Β». Π‘ этими числами Π»Π΅Π³ΠΊΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ расчСты.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ значСния Β« x Β» ΠΈ Β« y Β» β€” это ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°
Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’4x Β».

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Β« y = βˆ’4x Β» Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ.

Π’ΠΎΡ‡ΠΊΠ°ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси Β« Оx Β» (абсцисса)ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси Β« Оy Β» (ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°)
(Β·)A00
(Β·)B1βˆ’4

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ Ρ‡Π΅Ρ€Π΅Π· ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π­Ρ‚Π° прямая ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’4x Β».

ПослС построСния Π½Π΅ Π·Π°Π±ΡƒΠ΄ΡŒΡ‚Π΅ ΠΏΠΎΠ΄ΠΏΠΈΡΠ°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Β« y = kx Β»

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x Β». Найти ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ:

Π’Π½Π°Ρ‡Π°Π»Π΅ построим Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x Β».

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»Π°, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΌΡ‹ строили Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‹ΡˆΠ΅. Для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x Β» достаточно Π½Π°ΠΉΡ‚ΠΈ всСго Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ Π΄Π²Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… числовых значСния для Β« x Β». Для удобства расчСтов Π²Ρ‹Π±Π΅Ρ€Π΅ΠΌ числа Β« 0 Β» ΠΈ Β« 1 Β».

Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ расчСты ΠΈ запишСм ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ.

Π’ΠΎΡ‡ΠΊΠ°ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси Β« Оx Β»ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси Β« Оy Β»
(Β·)A0y(0) = βˆ’1,5 Β· 0 = 0
(Β·)B1y(1) = βˆ’1,5 Β· 1 = βˆ’1,5

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ прямой. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Π°Ρ прямая Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x Β».

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Ρ€Π°Π±ΠΎΡ‚Π°Π΅ΠΌ с построСнным Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x Β».

Π’Π΅ΠΌΡƒ «Как ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ» с Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΡ‹ ΡƒΠΆΠ΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассматривали Π² ΡƒΡ€ΠΎΠΊΠ΅ «Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽΒ».

Π’ этому ΡƒΡ€ΠΎΠΊΠ΅ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ Π²Ρ‹ΡˆΠ΅ вспомним Ρ‚ΠΎΠ»ΡŒΠΊΠΎ основныС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« y Β» ΠΏΠΎ извСстному Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Β« x Β» Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ:

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ.

Π—Π°Π΄Π°Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« x Β»ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ с Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« y Β»
00
1βˆ’1,5
2βˆ’3
3βˆ’4,5

Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ Ρ‚Π΅ ΠΆΠ΅ дСйствия, Ρ‡Ρ‚ΠΎ ΠΈ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ задания. Π Π°Π·Π½ΠΈΡ†Π° Π±ΡƒΠ΄Π΅Ρ‚ лишь Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ пСрпСндикуляры
ΠΎΡ‚ оси Β« Oy Β».

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ.

Π—Π°Π΄Π°Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« y Β»ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ с Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« x Β»
βˆ’32
4,5βˆ’3
6βˆ’4

ΠŸΠ΅Ρ€Π΅ΠΉΠ΄Π΅ΠΌ ΠΊ послСднСму заданию. Нас просят Π½Π°ΠΉΡ‚ΠΈ нСсколько Ρ†Π΅Π»Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Β« x Β», ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… значСния Β« y Β» ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ (ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹).

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ этой Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ
Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x Β».

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π½Π° оси Β« Oy Β», Π³Π΄Π΅ значСния Β« y Β» для Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x Β» ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠŸΠΎΠΌΠ½ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΏΠΎ заданию, нас просят Π½Π°ΠΉΡ‚ΠΈ нСсколько Β«Ρ†Π΅Π»Ρ‹Ρ…Β» Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Β« x Β». ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ пСрпСндикуляры ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ оси Β« Ox Β» Π² Ρ†Π΅Π»Ρ‹Π΅ числовыС значСния.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… Β« x Β», значСния Β« y Β» ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π½Π° оси Β« Oy Β», Π³Π΄Π΅ значСния Β« y Β» Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹.

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ пСрпСндикуляры ΠΈΠ· ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π½ΠΎΠΉ области ΠΊ оси Β« Ox Β» Π² Ρ†Π΅Π»Ρ‹Π΅ числовыС значСния Β« x Β».

Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ являСтся Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y 1 x

Рассмотрим Π΄Ρ€ΡƒΠ³ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ.

ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΉ Ρ€Π°Π·Π±ΠΎΡ€ Π·Π°Π΄Π°Ρ‡ΠΈ «Как ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ» ΠΌΡ‹ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΡƒΡ€ΠΎΠΊΠ΅ «Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽΒ».

Π’ этом ΡƒΡ€ΠΎΠΊΠ΅ ΠΌΡ‹ вспомним Ρ‚ΠΎΠ»ΡŒΠΊΠΎ основныС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅Ρ‚ нСобходимости ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Достаточно ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ ΠΏΠΎ оси Β« Ox Β» вмСсто Β« x Β», Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ ΠΏΠΎ оси Β« Oy Β» вмСсто Β« y Β») ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ арифмСтичСскиС расчСты.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *