Угол падения и угол отражения что такое
Закон отражения света: определение, формула, применение
Определение.
Закон отражения света имеет следующее определение: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости. Более подробно о физическом смысле закона и о том на базе чего он был сформулирован читайте далее в этой статье.
Небольшое вступление.
Если вы не знаете, что находится по ту сторону зеркала, спросите физика! Он скажет вам, что вы найдете там не перевернутую копию нашего мира, а другой, столь же загадочный мир физики. Он произнесет множество благозвучных физических названий, таких как видимый образ, закон отражения и луч света.
Хотя сегодня мы не можем представить себе жизнь без зеркал, или плоских стеклянных зеркал, их история не особенно длинна. Однако само явление отражения, благодаря которому зеркала могут существовать и работать, известно уже много веков и не менее увлекательно, чем они сами.
Явление отражения света
Проведите наблюдение, которое позволит вам понять механизм формирования изображения при отражении световых лучей, как вы это наблюдаете на поверхности зеркала или поверхности воды.
Что вам понадобится?
Инструкция.
Подведём итог эксперимента.
Для того чтобы избежать двусмысленности в описании наблюдаемого нами явления, следует сначала выучить определения нескольких терминов.
В физике все гладкие поверхности, отражающие свет, называются зеркалами. Линия, перпендикулярная поверхности зеркала, называется нормалью. Свет фонаря падал в точку, где перпендикуляр (нормаль) пересекался с поверхностью зеркала. Угол между падающим лучом и перпендикуляром называется углом падения. Падающий луч отражается от поверхности зеркала, и получается отраженный луч. Угол между отраженным лучом и перпендикуляром называется углом отражения.
Наблюдения показали, что изменение угла, под которым свет фонаря падает на зеркало после прохождения через расчёску, влечет за собой изменение угла, под которым отражается падающий свет. Когда угол падения увеличивается, угол его отражения также увеличивается; когда он уменьшается, угол отражения также уменьшается.
Закона отражения света
Изменяя угол падения, мы одновременно изменяем угол отражения. Угол падения и угол отражения вместе с перпендикуляром лежат в одной плоскости и равны друг другу.
Иллюстрация закона отражения света
Формулировка закона и его формула.
Закон отражения света гласит так: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости.
В виде формулы закон отражения света записывается следующим образом: ∠ α = ∠ β.
Применение
Закон отражения используется во многих оптических системах. Повседневное значение имеют применения, описанные ниже.
Закон отражения используется для всех типов зеркал (плоские зеркала, вогнутые зеркала, выпуклые зеркала, параболические зеркала) и их применения (например, фары, фонари, косметические зеркала).
Он также используется для светоотражателей, которые должны быть установлены, например, на велосипедах. Они имеют гладкие стеклянные или пластиковые поверхности снаружи и множество маленьких призм внутри, на которых свет отражается таким образом, что выходит в том же направлении, откуда вошел. Поэтому велосипеды, находящиеся точно по направлению движения автомобиля, могут быть распознаны в темноте гораздо раньше, чем это было бы возможно без дополнительного оснащения светоотражателями.
Также закон отражения должен соблюдаться и в других местах. Гладкая поверхность воды отражает свет. И в тоже время, отражение тел видно на поверхности воды.
В помещениях, освещаемых сфокусированными прожекторами — например, на сцене театра — установка больших стеклопакетов может быть запрещена строительными нормами. Это связано с тем, что стекла воспринимаются только в том случае, если глаз смотрит на отраженный луч света. Для всех остальных людей существует опасность столкнуться со стеклом. В музеях, где много стеклянных витрин с точечным освещением, можно неоднократно наблюдать, как гости ударяются головой о стеклянную обшивку, потому что не заметили само стекло. Поэтому комнаты с большим количеством стеклянных витрин должны иметь рассеянное освещение.
Обратимость световых лучей
Световые пути обычно обратимы. Что это значит, показано на двух рисунках на рис. 2 на простом примере.
В левом изображении на рис. 2 свет исходит слева и отражается от зеркала. Читая угловую шкалу, можно увидеть, что закон отражения выполняется.
В правом изображении на рис. 2 луч света падает на зеркало точно с того направления, в котором луч света был отражен ранее. Вы видите, что теперь отраженный луч света проходит точно там же, где раньше проходил луч падающего света: поэтому путь света является обратимым.
Обратимость светового пути является важным основным принципом геометрической оптики, а также применима к гораздо более сложным явлениям, например, к преломлению света на воде.
Законы отражения света
На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.
Рис. 1.3. Отражение и преломление света.
Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.
Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.
Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.
Законы отражения света
1 | Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. |
2 | Угол отражения γ равен углу падения α : |
Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.
На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.
Рис. 1.4. Построение Гюйгенса.
А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).
Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.
Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.
Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.
Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.
Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.
Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.
Рис. 1.5. Диффузное отражение света.
Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.
Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.
Рис. 1.6. Зеркальное отражение света.
Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.
Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.
Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.
Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.
Луч SO1 падает на зеркало под углом α и отражается под углом γ ( α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.
Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.
Рис. 1.8. Отражение от плоского зеркала.
Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.
Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.
Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.
Рис. 1.9. Изображение предмета в плоском зеркале.
В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.
Закон отражения света
Отраженный и падающий лучи лежат в плоскости, содержащей перпендикуляр к отражающей поверхности в точке падения, и угол падения равен углу отражения.
Представьте, что вы направили тонкий луч света на отражающую поверхность, — например, посветили лазерной указкой на зеркало или полированную металлическую поверхность. Луч отразится от такой поверхности и будет распространяться дальше в определенном направлении. Угол между перпендикуляром к поверхности (нормалью) и исходным лучом называется углом падения, а угол между нормалью и отраженным лучом — углом отражения. Закон отражения гласит, что угол падения равен углу отражения. Это полностью соответствует тому, что нам подсказывает интуиция. Луч, падающий почти параллельно поверхности, лишь слегка коснется ее и, отразившись под тупым углом, продолжит свой путь по низкой траектории, расположенной близко к поверхности. Луч, падающий почти отвесно, с другой стороны, отразится под острым углом, и направление отраженного луча будет близким к направлению падающего луча, как того и требует закон.
Закон отражения, как любой закон природы, был получен на основании наблюдений и опытов. Можно его вывести и теоретически — формально он является следствием принципа Ферма (но это не отменяет значимости его экспериментального обоснования).
Ключевым моментом в этом законе является то, что углы отсчитываются от перпендикуляра к поверхности в точке падения луча. Для плоской поверхности, например, плоского зеркала, это не столь важно, поскольку перпендикуляр к ней направлен одинаково во всех точках. Параллельно сфокусированный световой сигнал — например, свет автомобильной фары или прожектора, — можно рассматривать как плотный пучок параллельных лучей света. Если такой пучок отразится от плоской поверхности, все отраженные лучи в пучке отразятся под одним углом и останутся параллельными. Вот почему прямое зеркало не искажает ваш визуальный образ.
Однако имеются и кривые зеркала. Различные геометрические конфигурации поверхностей зеркал по-разному изменяют отраженный образ и позволяют добиваться различных полезных эффектов. Главное вогнутое зеркало телескопа-рефлектора позволяет сфокусировать в окуляре свет от далеких космических объектов. Выгнутое зеркало заднего вида автомобиля позволяет расширить угол обзора. А кривые зеркала в комнате смеха позволяют от души повеселиться, разглядывая причудливо искаженные отражения самих себя.
Закону отражения подчиняется не только свет. Любые электромагнитные волны — радио, СВЧ, рентгеновские лучи и т. п. — ведут себя в точности так же. Вот почему, например, и огромные принимающие антенны радиотелескопов, и тарелки спутникового телевидения имеют форму вогнутого зеркала — в них используется всё тот же принцип фокусировки поступающих параллельных лучей в точку.
Законы отражения света и история их открытия
Закон отражения света был открыт путем наблюдений и опытов. Конечно, его можно вывести и теоретически, но все принципы, которые используются сейчас, были определены и обоснованы практическим путем. Знание основных особенностей этого явления помогает при планировании освещения и выборе оборудования. Этот принцип работает и в других сферах – радиоволны, рентгеновское излучение и т.д. ведут себя точно так же при отражении.
Что такое отражение света и его разновидности, механизм
Закон формулируется так: падающий и отраженный лучи лежат в одной плоскости, имеющей перпендикуляр относительно отражающей поверхности, который выходит из точки падения. Угол падения равен углу отражения.
По сути, отражение это физический процесс, при котором луч, частицы или излучение взаимодействуют с плоскостью. Направление волн изменяется на границе двух сред, так как они имеют разные свойства. Отраженный свет всегда возвращается в ту среду, из которой пришел. Чаще всего при отражении наблюдается и явление преломления волн.
Зеркальное отражение
В этом случае наблюдается четкая взаимосвязь между отраженными и падающими лучами, это является главной особенностью данной разновидности. Есть несколько основных моментов, характерных для зеркального отражения:
При этом показатели преломления зависят от свойств плоскости и особенностей света. Это отражение можно встретить везде, где есть гладкие поверхности. Но для разных сред условия и принципы могут меняться.
Полное внутреннее отражение
Характерно для звуковых и электромагнитных волн. Возникает в месте, где встречаются две среды. При этом волны должны падать из среды, в которой скорость распространения ниже. Применительно к свету можно сказать, что показатели преломления в этом случае сильно возрастают.
Угол падения луча света влияет на угол преломления. С увеличением его значения интенсивность отраженных лучей увеличивается, а преломленных снижается. При достижении определенного критического значения показатели преломления уменьшаются до нулевой отметки, что приводит к полному отражению лучей.
Критический угол вычисляется индивидуально для разных сред.
Диффузное отражение света
Этот вариант характеризуется тем, что при попадании на неровную поверхность лучи отражаются в разных направлениях. Отраженный свет просто рассеивается и именно из-за этого нельзя увидеть свое отражение на неровной или матовой плоскости. Явление диффузии лучей наблюдается, когда неровности равны длине волны или превышают ее.
При этом одна и так же плоскость может быть диффузно отражающей для света или ультрафиолета, но при этом хорошо отражать инфракрасный спектр. Все зависит от особенностей волн и свойств поверхности.
Обратное отражение
Это явления наблюдается, когда лучи, волны или другие частицы отражаются обратно, то есть в сторону источника. Такое свойство может быть использовано в астрономии, естествознании, медицине, фотографии и других сферах. За счет системы выпуклых линз в телескопах есть возможность увидеть свет звезд, которые не видны невооруженным глазом.
Важно создать определенные условия, чтобы свет возвращался к источнику, это достигается чаще всего за счет оптики и пучкового направления лучей. Например, этот принцип применяется в УЗИ-исследованиях, благодаря отраженным ультразвуковым волнам на монитор выводится изображение исследуемого органа.
История открытия законов отражения
Это явление было известно давно. Впервые об отражении света упоминалось в труде «Катоптрика», который датируется 200 г. до н.э. и написан древнегреческим ученым Евклидом. Первые эксперименты были простыми, поэтому никакой теоретической базы в тот период не появилось, но данное явление открыл именно он. При этом использовался принцип Ферма для зеркальных поверхностей.
Формулы Френеля
Огюст Френель был французским физиком, который вывел ряд формул, они широко используются по сей день. Их применяют при вычислении интенсивности и амплитуды отраженных и преломленных электромагнитных волн. При этом они должны проходить через четкую границу между двумя средами с различающимися значениями преломления.
Все явления, которые подходят под формулы французского физика называют френелевским отражением. Но нужно помнить о том, что все выведенные закономерности справедливы только тогда, когда среды изотропны, а граница между ними четкая. В этом случае угол падения всегда равняется углу отражения, а значение преломления определяется по закону Снеллиуса.
Важно, что при падении света на плоскую поверхность может быть два вида поляризации:
Формулы для ситуаций с разной поляризацией различаются. Это связано с тем, что поляризация влияет на характеристики луча и он отражается по-разному. При падении света под определенным углом отраженный луч может быть полностью поляризованным. Этот угол называют углом Брюстера, он зависит от характеристик преломления сред на границе раздела.
Кстати! Отраженный луч всегда поляризован, даже если падающий свет был неполяризованным.
Принцип Гюйгенса
Гюйгенс – голландский физик, которому удалось вывести принципы, позволяющие описать волны любой природы. Именно с его помощью чаще всего доказывают как закон отражения, так и закон преломления света.
В этом случае свет подразумевается как волна плоской формы, то есть все волновые поверхности плоские. При этом волновая поверхность – совокупность точек с колебанием в одной и той же фазе.
Формулировка звучит так: любая точка, к которой пришло возмущение впоследствии становится источником сферических волн.
В видео очень простыми словами с помощью графики и анимации объясняется закон из физики 8 класса.
Сдвиг Федорова
Его также называют эффектом Федорова-Эмбера. В этом случае наблюдается смещение луча света при полном внутреннем отражении. При этом сдвиг незначительный, он всегда меньше, чем длина волны. Из-за этого смещения отраженный луч не лежит в одной плоскости с падающим, что идет вразрез с законом отражения света.
Диплом на научное открытие был вручен Ф.И. Федорову в 1980 году.
Боковое смещение лучей было теоретически доказано советским ученым в 1955 году благодаря математическим вычислениям. Что касается экспериментального подтверждения этого эффекта, то немного позже это сделал французский физик Эмбер.
Использование закона на практике
Рассматриваемый закон встречается намного чаще, чем кажется. Этот принцип широко используется в самых разных сферах:
Кстати! Благодаря отражению света мы видим луну и звезды.
Закон отражения света объясняет многие природные явления, а знание его особенностей позволило создать оборудование, которое широко используется в наше время.