наблюдать интерференцию можно для световых волн

Интерференция световых волн

Интерференция – это одно из наиболее ярких проявлений волновой природы света. Мы можем наблюдать такое интересное и красивое явление, если наложить друг на друга 2 или более световых пучков. В месте перекрывания пучков интенсивность волны света обладает характером чередующихся светлых и темных полос, при этом в точках максимумов интенсивность больше, а в точках минимумов меньше суммы интенсивностей пучков.

При белом свете интерференционные полосы окрашиваются в разные цвета светового спектра. На практике интерференционные явления окружают нас повсюду. Это и цвета масляных пятен на асфальте, и окрашивание замерзающих оконных стекол, и чудесные цветные рисунки на крыльях отдельных бабочек и жуков.

Первый научный эксперимент проявления интерференции света

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

Интерференционный опыт Юнга

наблюдать интерференцию можно для световых волн

Путем простых тригонометрических вычислений можно прийти к следующему выражению для интенсивности результирующего колебания в точке P :

где Δ = r 2 – r 1 – это разность хода.

наблюдать интерференцию можно для световых волн

Подчеркнем, что в волновой оптике понятие “луч света” теряет физический смысл в отличие от геометрической оптики. Определение «луч» в волновой оптике употребляется для краткости обозначения направления распространения волны.

Далее данный термин будет упоминаться без кавычек.

По данной формуле рассчитывается длина световой волны λ при известном радиусе кривизны R линзы.

Проблема когерентности волн

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

Источник

Интерференция и дифракция

наблюдать интерференцию можно для световых волн

Интерференция – это сложение колебаний. В результате интерференции в каких-то точках пространства происходит рост амплитуды колебаний, а в других – их уменьшение. Неизменная картина интерференции наблюдается только тогда, когда разность складываемых колебаний постоянна (они когерентны). Очевидно, что когерентными могут быть колебания одинаковой частоты. Поэтому чаще всего изучают интерференцию монохроматических колебаний.

На фото изображена интерференция волн на поверхности воды.

Интерференцию световых волн можно наблюдать, если положить стеклянную линзу на стеклянную пластинку (см. рисунок справа) и посмотреть на них сверху. Луч света (красные стрелки) падает сверху на линзу, преломляется, отражается от её нижней искривлённой поверхности и выходит из линзы (луч 2). Однако часть луча, упавшего на нижнюю поверхность линзы, выходит из неё, падает на стеклянную пластинку, отражается от неё, проходит через линзу и выходит из неё (луч 1). Лучи 1 и 2 когерентны, т.к. они возникли из одного луча.

Если попав в глаз, фаза этих лучей будет отличаться на целое число периодов, то эти лучи будут усиливать друг друга и мы увидим яркое пятно. В тех случаях, когда их разность фаз составит нечётное число полупериодов (Т/2, 3Т/2, 5Т/2 и т.д.) лучи уничтожат друг друга, и мы увидим тёмное пятно.

Очевидно, что разность фаз между лучами 1 и 2 зависит от толщины зазора между линзой и пластинкой. Поэтому, смотря сверху мы увидим чередующиеся тёмные и светлые кольца – кольца Ньютона (см. рисунок).

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

На фото ниже показаны интерференционные полосы для синего света (левая), для красного света (средняя) и для белого света (правая).

наблюдать интерференцию можно для световых волн

Интерференционные полосы можно наблюдать в свете, отражённом от вертикально расположенной мыльной плёнки (см. рисунок ниже). Толщина плёнки увеличивается сверху вниз, что изменяет разность хода между лучами, отражёнными от обеих поверхностей плёнки. На рисунке а схематически показан верхний красный луч, падающий слева на фиолетовую плёнку (в разрезе). Этот луч сразу отражается и получает обозначение (луч 1). Другая часть того же луча преломляется в плёнке, отражается от другой её поверхности (луч 2) и продолжает двигаться рядом с лучом 1. Если при этом разница фаз между лучами 1 и 2 станет кратной периоду колебаний, то лучи будут усиливать друг друга, и мы увидим яркую полосу. Если же эта разница фаз составит нечётное число полупериодов (Т/2, 3Т/2, 5Т/2 и т.д.), то они уничтожат друг друга, а мы увидим тёмную полосу.

наблюдать интерференцию можно для световых волн

Следует отметить, что волны при отражении изменяют фазу на 180° (или p), если отражаются от более оптически плотной среды, например, при отражении света в воздухе от воды. Если отражение происходит от менее оптически плотной среды, то изменение фазы волны не происходит.

наблюдать интерференцию можно для световых волн

где l0 – длина волны света в вакууме.

наблюдать интерференцию можно для световых волн

Дифракцией называют явления, связанные со свойством волн огибать препятствия, т.е отклоняться от прямолинейного распространения.

На рисунке ниже показано, как меняют направление звуковые волны после прохождения через отверстие в стене. Согласно принципа Гюйгенса области 1-5 становятся вторичными источниками сферических звуковых волн. Видно, что вторичные источники в областях 1 и 5 приводят к огибанию волнами препятствий.

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

Ниже показано фото тени от монеты на экране при освещении её источником монохроматического света. Видно, что в центре тени есть яркое пятно, образованное интерференцией лучей, огибающих край монеты. Интерференция этих лучей приводит к появлению чередующихся тёмных и ярких колец, окружающих тёмный диск тени. Этот эксперимент тоже является иллюстрацией явления дифракции света.

наблюдать интерференцию можно для световых волн

Ниже показано увеличенное фото тени верхнего края непрозрачной стены на экране. Видно, что переход из тёмной части тени в освещённую происходит не резко, а через последовательность чередующихся тёмных и ярких полос. Эти полосы являются результатом дифракции лучей света на краю препятствия и последующей их интерференции.

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

Если расстояние L до экрана, на котором наблюдают дифракционную картину, гораздо больше ширины a щели (см. рисунок ниже), то угол, под которым виден первый дифракционный минимум номер n (см. yn на рисунке), можно вычислить из соотношения

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

Дифракция света наблюдается, если он проходит через круглое отверстие (см. левый рисунок). При этом дифракционная картина состоит из центрального яркого пятна, окружённого чередой тёмных и ярких колец. При этом угловой диаметр q1 центрального яркого пятна равен

наблюдать интерференцию можно для световых волн

Таким образом, чем больше будет диаметр входной линзы или зеркала телескопа, тем больше звёзд мы увидим на небе.

наблюдать интерференцию можно для световых волн

Дифракционная решётка – это прозрачная пластинка, на которую через одинаковое расстояние d (период решётки) нанесены параллельные штрихи. Плоский фронт световой волны падает слева на дифракционную решётку (см. рисунок) и претерпевает дифракцию на её штрихах. После интерференции прошедших через решётку лучей появляются направления, вдоль которых наблюдаются дифракционные максимумы и минимумы интенсивности света.

Угол qn, под которым виден первый дифракционный максимум номер n, легко вычислить, если считать, что расстояние до экрана Р гораздо больше периода решётки d:

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

На рисунке справа показано, как дифракционная решётка расщепляет голубой луч лазера.

наблюдать интерференцию можно для световых волн

Дифракционная решётка не только может отклонять лучи, как призма, но и разлагать их в спектр. Справа показано, что происходит с белым светом, после того, как он проходит через дифракционную решётку. Видно, что дифракционная картина в этом случае представляет собой наложение дифракционных картин для цветов, образующих белый свет

наблюдать интерференцию можно для световых волн

Явления дифракции и интерференции света помогают Природе раскрашивать всё живое, не прибегая к использованию красителей

Источник

Наблюдать интерференцию можно для световых волн

Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при наложении двух или нескольких световых пучков. Интенсивность света в области перекрывания пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра. С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

Первый эксперимент по наблюдению интерференции света в лабораторных условиях принадлежит И. Ньютону. Он наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны (рис. 3.7.1). Интерференционная картина имела вид концентрических колец, получивших название колец Ньютона (рис. 3.7.2).

Ньютон не смог с точки зрения корпускулярной теории объяснить, почему возникают кольца, однако он понимал, что это связано с какой-то периодичностью световых процессов (см. § 3.6).

где – амплитуда волны, – волновое число, – длина волны, – круговая частота. В оптических задачах под следует понимать модуль вектора напряженности электрического поля волны. При сложении двух волн в точке результирующее колебание также происходит на частоте и имеет некоторую амплитуду и фазу :

Формулы (*) и (**) являются универсальными. Они применимы к любой интерференционной схеме, в которой происходит сложение двух монохроматических волн одной и той же частоты.

Если в схеме Юнга через обозначить смещение точки наблюдения от плоскости симметрии, то для случая, когда и (в оптических экспериментах эти условия обычно выполняются), можно приближенно получить:

наблюдать интерференцию можно для световых волн

Следует подчеркнуть, что в волновой оптике, в отличие от геометрической оптики, понятие луча света утрачивает физический смысл. Термин «луч» употребляется здесь для краткости для обозначения направления распространения волны. В дальнейшем этот термин будет употребляться без кавычек.

При то есть в центре (точка соприкосновения) поэтому в центре колец Ньютона всегда наблюдается интерференционный минимум – темное пятно. Радиусы последующих темных колец определяются выражением

наблюдать интерференцию можно для световых волн

Проблема когерентности волн. Теория Юнга позволила объяснить интерференционные явления, возникающие при сложении двух монохроматических волн одной и той же частоты. Однако повседневный опыт учит, что интерференцию света в действительности наблюдать не просто. Если в комнате горят две одинаковые лампочки, то в любой точке складываются интенсивности света и никакой интерференции не наблюдается. Возникает вопрос, в каких случаях нужно складывать напряженности (с учетом фазовых соотношений), в каких – интенсивности волн, т. е. квадраты напряженностей полей? Теория интерференции монохроматических волн не может дать ответа на этот вопрос.

Источник

Физика. 11 класс

Конспект урока

Урок 16. Интерференция света

Перечень вопросов, рассматриваемых на уроке:

1) возникновение явления интерференции.

2) рассмотрение теории интерференции волн и её частного случая – интерференция света.

3) интерференция в различных видах тонких пленок в отражённом и проходящем свете, результаты опытов.

4) интерференция в жизни

Монохроматическое излучение – это излучение волн одной частоты;

Основная и дополнительная литература по теме урока:

Основное содержание урока

Томас Юнг первым высказал возможность объяснения цветов тонких пленок сложением волн. Одна волна отражается от наружной поверхности плёнки, а другая – от внутренней. При этом возникает интерференция световых волн.

Усиление света произойдёт в том случае, если преломлённая волна отстанет от отражённой волны на целое число длин волн.

Если вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

Разность хода волн равна целому числу длин волн (иначе четному числу длин полуволн)

Разность хода волн равна нечетному числу длин полуволн.

Δd=(2k+1) наблюдать интерференцию можно для световых волн; k=0,±1,±2,±3.

Когерентность волн, отражённых от наружной и внутренней поверхностей плёнки, происходит из-за того, что они являются частями одного и того же светового пучка.

Юнг пришел к выводу, что различие в цвете связано с различием в длине волны

Если плёнка имеет неодинаковую толщину, то при освещении её белым светом появляются различные цвета.

Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и лежащей на неё плоско-выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны, получила название колец Ньютона.

Исаак Ньютон исследовал их не только в белом свете, но и при освещении линзы одноцветным (монохроматическим) пучком

Оказалось, что радиусы колец одного и того же порядкового номера увеличиваются при переходе от фиолетового конца спектра к красному; красные кольца имеют максимальный радиус. Расстояние между соседними кольцами уменьшаются с увеличением их радиусов. Однако, почему возникают кольца, Ньютон объяснить не смог.

Сделал это Юнг. Проведенный им опыт показал, что волна определённой длины волны падает почти перпендикулярно на плосковыпуклую линзу. Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе сред стекло – воздух, а волна 2 – в результате отражения от пластины на границе сред воздуха – стекло.

наблюдать интерференцию можно для световых волн

Если вторая волна отстаёт от первой на целое число длин волн, то складываясь, волны усиливают друг друга.

Напротив, если вторая волна отстаёт от первой на нечётное число полуволн, то колебания будут происходить в противоположных фазах, и волны погасят друг друга.

В результате проделанного опыта Юнг получил картину, которая состоит из чередующихся световых и темных полос, параллельных друг другу, названную им интерференционной картиной. Интерференция света – это явление сложения двух и более когерентных волн, приводящее к образованию в пространстве устойчивой картины чередующегося максимумом и минимумом интенсивности.

Измерив радиусы колец, можно вычислить длины волн.

Первым длину волны измерил Т. Юнг.

Разбор тренировочных заданий

1. Два когерентных источника, расстояние между которыми d = 0,24 мм удалены от экрана на l = м. На длине экрана L = 5 см располагается N = 10,5 полос. Чему равна длина волны монохроматического света, падающего на экран.

2. Заполните пропуски в тексте. Для этого наберите пропущенные слова на клавиатуре компьютера.

Известно, что кольца Ньютона можно рассматривать как в отражённом свете, так и в проходящих лучах. Если интерференционную картину наблюдать в отражённом свете, то в центре будет наблюдаться ________ ________. Если интерференционную картину наблюдать в проходящих лучах, то в центре будет наблюдаться ________ ________.

Источник

Интерференция света

Урок 31. Физика 11 класс ФГОС

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

Конспект урока «Интерференция света»

На одном из прошлых уроков мы с вами знакомились с историей развития представления о свете. Напомним, что одни учёные полагали, что свет — это поток частиц (корпускул) идущих от источника по всем направлениям. Другие же, напротив, считали, что свет представляет собой упругую волну, распространяющуюся в мировом (светоносном) эфире, заполняющем всё пространство как внутри материальных тел, так и между ними. Но тогда возникает закономерный вопрос: если свет — это поток волн, то должно наблюдаться явление интерференции света.

Давайте с вами вспомним, что интерференцией называется сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний частиц среды.

Наблюдать интерференционную картину с механическими волнами было легко на поверхности воды, например от двух брошенных в воду камней.

наблюдать интерференцию можно для световых волн

При этом мы видели, что если гребень одной волны встречался с гребнем другой волны, то возмущение поверхности воды усиливалось. Если же, напротив, гребень одной волны встречался с впадиной другой, то поверхность воды оставалась невозмущённой.

Однако со светом дела обстоят несколько иначе. Рассмотрим простой опыт с двумя независимыми источниками света, например, электрическими лампочками. Поставим недалеко от светящейся лампочки экран. Что произойдёт, если мы включим вблизи экрана вторую лампочку.

наблюдать интерференцию можно для световых волн

Правильно, это приведёт к увеличению освещённости поверхности экрана, но не создаст на нём чередование максимумов и минимумов освещённости.

Почему так происходит? Давайте вспомним, что при изучении интерференции механических волн мы говорили о том, что волны, идущие от двух источников, должны быть когерентными, то есть при одинаковой длине они должны выходить из центров колебания в одинаковых фазах.

Точного равенства длин волн от двух источников добиться нетрудно. Для этого, например, можно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Но вот осуществить постоянство разности фаз от двух независимых источников невозможно. Дело в том, что атомы источников излучают свет независимо друг от друга и в течение очень короткого промежутка времени (около 10 нс). За такое время атом успевает испустить лишь ограниченный цуг волн (обрывок синусоиды некоторой длины). И вот такие цуги волн от обоих источников налагаются друг на друга. Но так как моменты излучения атомов согласовать невозможно, то и амплитуда колебаний в любой точке пространства хаотично меняется со временем в зависимости от того, как в данный момент времени цуги волн от различных источников сдвинуты относительно друг друга по фазе. Поэтому волны от различных источников света некогерентны (их разность фаз не остаётся постоянной, за исключением квантовых источников света).

Один из первых опытов по обнаружению интерференции света был проведён в середине XVII века итальянским учёным Франческо Мария Гримальди. Закрывшись в тёмной комнате, он проделал в ставнях два небольших отверстия, тем самым получив два конуса световых лучей.

наблюдать интерференцию можно для световых волн

Поместив экран в том месте, где пересекались конусы света, он неожиданно обнаружил, что в некоторых местах освещённость экрана меньше, чем если бы его освещал только один конус света. Тогда Гримальди заключил, что «прибавление света к свету не всегда увеличивает освещённость».

Однако есть и более простые способы наблюдения интерференции света, с которыми знаком практически каждый из вас. Посмотрим на мыльный пузырь — на свету он играет радужными красками. Или вот, тонкая плёнка бензина на поверхности воды — она также переливается всеми цветами радуги. При этом, как было обнаружено ещё Робертом Гуком, изменение толщины мыльной плёнки приводит к изменению её цвета. По мнению учёного это объяснялось тем, что свет является неким колебательным движением (по-простому, волной), распространяющимся в светоносном (или мировом) эфире. Следовательно, световая волна, попадая на мыльную плёнку, отражается от её верхней и нижней поверхностей и, попадая в глаза, производит ощущение различных цветов (это вскоре и было доказано Томасом Юнгом). Однако, из-за того, что Гук не связывал цвет с частотой света или с длиной волны, он не смог разработать точную теорию наблюдаемого явления.

Интерференцию света наблюдал и знаменитый сэр Исаак Ньютон в 1675 году. На плоскую стеклянную пластину учёный поместил плоско-выпуклую линзу от объектива телескопа, выпуклой стороной вниз.

наблюдать интерференцию можно для световых волн

При этом, между нижней — плоской и верхней — выпуклой поверхностями образуется очень тонкий клин воздуха. Если на такую систему в направлении, перпендикулярном плоской поверхности, падает пучок белого света, то световые волны, отражённые от каждой из упомянутых поверхностей, интерферируют между собой. Сформированная таким образом интерференционная картина представляла собой систему радужных колец с тёмным центральным пятном. Если же установку освещать монохроматическим светом, то в центре картины обнаруживалось тёмное пятно, окружённое чередующимися светлыми и тёмными концентрическими кольцами. При этом радиусы колец одного и того же порядкового номера зависели от цвета светового луча.

Напомним, что Ньютон был сторонником корпускулярной теории света, поэтому появление колец он пытался объяснить именно с позиции представления света как о потоке частиц, что, скажем честно, ему совсем не удалось. Оно и понятно, ведь явление интерференции можно объяснить только на основе волновых свойств света, что и показал в 1802 году Томас Юнг. Кстати, именно Юнг и ввёл в обиход термин «интерференция» в 1803 году.

Итак, согласно теории Юнга, кольца Ньютона возникают в отражённом свете в результате того, что лучи света, отражённые от верхней и нижней поверхности воздушной прослойки, интерферируют друг с другом. При этом когерентность волн обеспечена тем, что отражённые от двух поверхностей лучи являются частями одного и того же светового пучка. Юнг понял также, что различие в цвете связано с различием в длине волны (или частоте световых волн).

В настоящее время для получения интерференционной картины пользуются классической интерференционной схемой — схемой Юнга, где пучок света от небольшого отверстия в ширме разделяется на два когерентных пучка с помощью двух небольших отверстий в следующей ширме. Поскольку эти пучки созданы одним и тем же источником, они являются когерентными. Поэтому на экране в области перекрытия пучков наблюдается интерференционная картина чередования максимумов и минимумов интенсивности световой волны.

наблюдать интерференцию можно для световых волн

Объясняется это следующим. При наложении двух когерентных световых волн в пространстве происходит перераспределение энергии по волновому фронту:

наблюдать интерференцию можно для световых волн

наблюдать интерференцию можно для световых волн

Однако среднее значение энергии во всех точках равно сумме энергий, приносимых обеими волнами:

наблюдать интерференцию можно для световых волн

Как видно из формулы, амплитуда результирующего колебания световой волны зависит от разности фаз, которая, в свою очередь, зависит от геометрической разности хода:

наблюдать интерференцию можно для световых волн

Так вот, если эта разность хода будет равна целому числу длин волн, то колебания, возбуждаемые в некоторой точке обеими волнами, будут находиться в одинаковых фазах и, как следствие, усиливать друг друга:

наблюдать интерференцию можно для световых волн

Если же разность хода равна будет равна нечётному числу длин полуволн, то колебания, возбуждаемые в некоторой точке обеими волнами, будут находиться в противофазе и, как следствие, друг друга ослаблять:

наблюдать интерференцию можно для световых волн

Теперь, для закрепления нового материала, решим задачу. Два когерентных источника монохроматического света с длиной волны 0,5 мкм находятся на расстоянии 2 мм друг от друга. Параллельно линии, соединяющей источники, расположен экран на расстоянии 2 м от них. Максимум или минимум освещённости будет наблюдаться в точке А экрана?

наблюдать интерференцию можно для световых волн

В заключение отметим, что открытие явления интерференции света не только показало, что свету присущи волновые свойства, но и позволило определить длины волн светового излучения, что и проделал Томас Юнг. Оказалось, что самая большая длина волны у красного света (760 нм), а самая маленькая — у фиолетового (480 нм).

Отсюда вытекает один интересный факт: оказывается в природе нет никаких красок. Есть лишь электромагнитные волны разных длин волн, которые по-разному отражаются и поглощаются различными телами. Однако об этом мы с вами поговорим в ближайшее время.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *