какое выражение называется рациональным
Алгебра. 8 класс
Целые выражения – это такие выражения, которые состоят из чисел и переменных с помощью действий сложения, вычитания, умножения и деления на число, отличное от нуля.
Дробные выражения – это выражения, которые помимо действий сложения, вычитания, умножения и деления на число, отличное от нуля, содержат деление на выражение с переменными.
Целые и дробные выражения вместе называют рациональными выражениями.
Дробь – это выражение вида .
Целое выражение имеет смысл при любых значениях входящих в него переменных, потому что действия для нахождения значения целого выражения, всегда возможны.
Дробное выражение при некоторых значениях переменной может не иметь смысла.
- • не имеет смысла при x = 0.
• не имеет смысла при x = y.
Дробные выражения имеют смысл при любых значениях входящих в них переменных, кроме тех, что обращают знаменатель в нуль.
Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями.
Рациональная дробь – это дробь, числитель и знаменатель которой многочлены.
Примеры
В рациональной дроби допустимыми являются те значения переменных, при которых не обращается в нуль знаменатель дроби.
Чтобы найти допустимые значения переменных в дроби, необходимо:
- • Приравнять знаменатель, содержащий переменные, к нулю.
• Решить полученное уравнение. Корни этого уравнения будут являться теми значениями переменных, которые обращают знаменатель в нуль.
• Исключить эти значения из всех действительных чисел.
Пример 1.
Найти допустимые значения переменной в дроби .
1) x(x + 1) = 0
2) x = 0 или x + 1 = 0
x = 0 или x = –1.
Корни уравнения 0 и – 1.
3) Допустимыми значениями x являются все числа, кроме 0 и –1.
Пример 2.
Найти значения x, при которых дробь равна нулю.
, когда x 2 – 1 = 0 и x + 1 ≠ 0.
1) x 2 – 1 = 0
2) (x – 1)(x + 1) = 0
x = ±1
3) x + 1 ≠ 0
x ≠ –1.
при x = 1.
Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.
Рациональные выражения
Урок 1. Алгебра 8 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Рациональные выражения»
На этом уроке мы вспомним, какие выражения называют целыми и дробными. Познакомимся с рациональными выражениями. Узнаем, какие значения называют допустимыми. А также научимся находить допустимые значения выражения.
Вы уже знакомы с целыми и дробными выражениями. Давайте вспомним их определения.
Целые выражения – это выражения, составленные из чисел и переменных, содержащие действия сложения, вычитания и умножения, а также деления на число, отличное от нуля.
В отличие от целых выражений, дробные выражения помимо действий сложения, вычитания и умножения, содержат деление на выражение с переменными.
Целые и дробные выражения называют рациональными выражениями.
Рациональными выражениями называют выражения, составленные из чисел, переменных, их степеней и знаков арифметических действий.
Напомним, что целые выражения имеют смысл при любых значениях переменных. Чтобы найти значение целого выражения, нужно подставить указанное значение переменной и выполнить все действия.
Дробное выражение при некоторых значениях переменных может не иметь смысла.
Чтобы найти значение рационального выражения, надо:
1) подставить числовое значение переменной в данное выражение;
2) выполнить все действия.
Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями переменных.
Множество всех допустимых значений переменных называется областью допустимых значений (коротко ОДЗ) или областью определения выражения.
Как вы уже знаете, выражение вида называется дробью.
Дробь, числитель и знаменатель которой многочлены, называют рациональной дробью.
Найдите значение дроби.
Найдите допустимые значения переменной в выражениях:
Целые выражения – это выражения, составленные из чисел и переменных, содержащие действия сложения, вычитания и умножения, а также деления на число, отличное от нуля.
В отличие от целых выражений, дробные выражения помимо действий сложения, вычитания и умножения, содержат деление на выражение с переменными.
Рациональными выражениями называют выражения, составленные из чисел, переменных, их степеней и знаков арифметических действий.
Чтобы найти значение рационального выражения, надо:
1) Подставить числовое значение переменной в данное выражение;
2) Выполнить все действия.
Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями переменных.
Множество всех допустимых значений переменных называется областью допустимых значений или областью определения выражения.
Рациональные выражения. Общая теория.
Ищем педагогов в команду «Инфоурок»
! Целые выражения – это выражения, составленные из чисел и переменных, содержащие действия сложения, вычитания и умножения, а также деления на число, отличное от нуля.
В отличие от целых выражений, дробные выражения помимо действий сложения, вычитания и умножения, содержат деление на выражение с переменными.
Целые и дробные выражения называют рациональными выражениями.
! Рациональными выражениями называют выражения, составленные из чисел, переменных, их степеней и знаков арифметических действий.
Напомним, что целые выражения имеют смысл при любых значениях переменных.
Чтобы найти значение рационального выражения, надо :
1) подставить числовое значение переменной в данное выражение ;
Целые выражения – это выражения, составленные из чисел и переменных, содержащие действия сложения, вычитания и умножения, а также деления на число, отличное от нуля.
В отличие от целых выражений, дробные выражения помимо действий сложения, вычитания и умножения, содержат деление на выражение с переменными.
Рациональными выражениями называют выражения, составленные из чисел, переменных, их степеней и знаков арифметических действий.
Чтобы найти значение рационального выражения, надо:
1) Подставить числовое значение переменной в данное выражение;
2) Выполнить все действия.
Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями переменных.
Множество всех допустимых значений переменных называется областью допустимых значений или областью определения выражения.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Данный материал используется мной в качестве дополнительного материала к учебнику «Алгебра 8кл», Мерзляк А.Г., для формирования четких умений по теме «Рациональные выражения. Рациональные дроби». Многим учащимся не совсем понятен теоретический материал, представленный в учебнике. Я прикрепляю к домашнему заданию иную версию, выстроенную логически.
Номер материала: ДБ-734614
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Минпросвещения намерено включить проверку иллюстраций в критерии экспертизы учебников
Время чтения: 1 минута
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
Минпросвещения объявило конкурс «Учитель-международник»
Время чтения: 1 минута
Школьников не планируют переводить на удаленку после каникул
Время чтения: 1 минута
Минобрнауки утвердило перечень олимпиад для школьников на 2021-2022 учебный год
Время чтения: 1 минута
В Хабаровске утвердили дополнительные школьные каникулы
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Алгебра
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Понятие рационального выражения
В 5 и 6 классе мы уже изучали дроби и действия над ними. В 7 классе рассматривались рациональные числа, которые, по сути, и являются дробями. Однако до этого мы изучали только так называемые числовые дроби, у которых в числителе и знаменателе стоят какие-то числа либо выражения с числами, но не переменные величины.
Следующие дроби являются числовыми:
Однако нередко в алгебре приходится иметь дело и с дробями, которые содержат переменные. В качестве примера подобных выражений можно привести:
Так как деление на ноль является недопустимой операцией в алгебре, то некоторые дроби могут не иметь смысла. Так, дробь
бессмысленна, так как ее знаменатель 21 – 3•7 равен нулю.
Если дробь содержит переменные величины, то ее значение зависит от этих переменных. Так, дробь
при у = 4 принимает значение, равное 9. Если же у = 3, то эта дробь окажется бессмысленной.
Значения переменных величин, при которых дробь сохраняет свой смысл, называют допустимыми значениями переменных.
Пример. Укажите множество допустимых значений величин х и у для дроби
Решение. Недопустим только случай, при котором в знаменателе находится ноль, то есть когда выполняется равенство
или равносильное ему равенство
Следовательно, допустимыми значениями являются все такие пары (х; у), что х ≠ у.
Пример. Каковы допустимые значения величин а и b в дроби
Решение. В данной записи есть три дробных черты, а значит, и три знаменателя:
Ни один из знаменателей не должен равняться нулю, поэтому
Перенесем в последнем неравенстве 2-ое слагаемое вправо, изменив знак (правила преобразований выражений со знаком ≠ точно такие же, как и у равенств):
По свойству пропорции имеем:
Итак, допустимыми являются все значения a и b, при которых а ≠ 0, b≠ 0, a≠b.
Пример. Найдите множество допустимых значений х для дроби
Ясно, что знаменатель должен отличаться от нуля:
Чтобы найти, при каких значениях неизвестной величины знаменатель обращается в ноль, надо решить уравнение
Представим полином в левой части как произведение, применив формулу квадрата разности:
Получаем, что исходная дробь сохраняет смысл при любых х, отличных от – 5 и 5.
Порою дроби, содержащие переменные, могут встречаться в тождествах.
Пример. Докажите тождество
Решение. У дроби в левой части знаменатель всегда положителен, поэтому все допустимыми являются все значения c. Согласно свойству операции деления, делимое равно произведению делителя и частного, поэтому для доказательства тождества надо лишь показать справедливость равенства
(с 3 – 2с 2 + с – 2) = (с – 2)(с 2 + 1)
Раскроем скобки в правой части:
(с – 2)(с 2 + 1) = с 3 – 2с 2 + с – 2
Получили одинаковое выражение и для левой, и для правой части тождества, следовательно, оно верное.
Теперь сформулируем понятие рационального выражения.
Среди рациональных выражений выделяют целые и дробные выражения.
Приведем примеры целых рациональных выражений:
А вот несколько примеров дробных рациональных выражений:
Стоит заметить, что дробь и дробное выражение – это два разных понятия. Для иллюстрации приведем два примера:
Отдельно отметим, что дробь равна нулю тогда, когда ее числитель равен нулю, а знаменатель нет. Если же и знаменатель равен нулю, то получается недопустимое действие – деление на ноль, поэтому дробь не будет иметь смысла.
Пример. Найдите все корни уравнения
Решение. На первый взгляд уравнение кажется сложным, особенно из-за знаменателя. Однако он здесь почти не играет роли. В левой части находится дробь, значит, нулю равен ее знаменатель:
х – 1 = 0 или х + 2 = 0
Получили два корня. Осталось убедиться, что при этих значениях х дробь не становится бессмысленной, то есть ее знаменатель не обращается в ноль. При х = 1 имеем знаменатель
2•1 4 – 3•1 3 + 5•1 – 4 = 2 – 3 + 5 – 4 = 0
поэтому число 1 НЕ является корнем уравнения. Теперь проверим знаменатель при х = – 2:
2•(– 2) 4 – 3•( – 2) 3 + 5•( – 2) – 4 =
Получается, что единственное корень уравнения – это ( – 2).
Сокращение рациональных выражений
Узнав, какие выражения являются рациональными, мы приступим к изучению их преобразований. Напомним главное свойство дроби:
Оно означает, что числитель и знаменатель можно умножить на произвольное число (кроме нуля), то значение дроби останется прежним:
Это правило остается верным и в том случае, когда вместо чисел используются переменные величины.
Например, возможны такие преобразования рациональных выражений:
Например, пусть надо привести дробь
6а 2 b 2 = 2а 2 b•3b
Поэтому выражения над и под дробной чертой надо умножить на 3b:
Использованный нами множитель 3b называют дополнительным множителем.
Обратная операция, при которой из знаменателя и числителя убирают совпадающие множители, называется сокращением дроби:
Это тождество означает, что дроби можно сокращать, убирая общий множитель, например:
Аналогичные действия можно совершать не только с числовыми дробями, но и с дробными выражениями:
В последнем примере мы вынесли общие множители за скобки (2х и 7у), чтобы над и под чертой появилась одинаковая сумма х + 3у, которую можно сократить.
Однако при сокращении дробей важно учитывать область ее допустимых значений, ведь из-за изменения знаменателя она может измениться. Например, пусть требуется построить график функции
В числителе стоит разность квадратов, которую можно разложить на множители:
Казалось бы, мы получили линейную функцию
чей график нам известен – это прямая. Но она определена при всех возможных х, в то время как исходная дробь бессмысленна при х = 2, ведь тогда знаменатель становится равен нулю. Поэтому график функции будет выглядеть как прямая, однако одна из ее точек, с координатами (2; 4), будет «выколотой» точкой, и исключенной:
Данный рисунок означает, что графиком функции – прямая линия, кроме точки (2; 4)
Выколотая точка на графике изображается маленьким незакрашенным кружочком.
Следующее важное свойство дроби связано со знаком минус. Знак, стоящий перед дробью, можно перенести либо в знаменатель, либо в числитель:
Также напомним, что можно поменять местами уменьшаемое и вычитаемое в скобках, если изменить перед ней знак:
Применение этих правил позволяет упрощать некоторые дроби, например:
Более сложный пример:
Рассмотрим такое понятие, как однородный многочлен. Так называют тот полином, у которого все одночлены имеют одинаковую степень.
Подробнее о степени одночлена можно узнать в этом уроке. Если коротко, то степень одночлена – эта сумма степеней у всех переменных, входящих в его буквенную часть. Например, у следующих мономов степень равна 4:
В отношении однородных полиномов, состоящих из двух переменных, можно применять особый прием. Достаточно поделить его на одну из переменных в степени полинома, и получится выражение, зависящее только от одной дроби. Поясним это на примере. Пусть надо вычислить значение отношения
если известно другое отношение:
В исходной дроби представляет собой отношение двух однородных полиномов третьей степени. Поэтому поделим их на y 3 (можно было делить и на х 3 ). При этом значение дроби не изменится, ведь мы делим числитель и знаменатель на одинаковый моном:
Получили выражение, которое зависит только от отношения
Попытаемся найти эту величину из условия
Отсюда следует, что
Теперь подставим найденное отношение в формулу(1):
До этого мы рассматривали примеры дробных выражений, состоящие из полиномов с целыми коэффициентами. Если же используются дробные числа, то от них всегда можно избавиться, домножив дробь на какое-нибудь число.
Например, дана дробь
Коэффициенты при у и у 2 дробные. Избавимся от них. Для этого используем дополнительный множитель 12:
Далее рассмотрим сложение и вычитание дробных выражений. Проще всего эту операцию проводить в том случае, когда у дробей совпадают знаменатели. В такой ситуации используются уже нам известные правила:
Сложим две величины:
В их знаменателе стоит одинаковый полином, а потому операция будет выглядеть так:
Здесь мы в числителе использовали формулу квадрата разности.
Теперь вычтем из выражения
У них совпадают знаменатели, поэтому проблем с вычитанием не возникает:
Заметим, что обычно у дробных выражения стараются сокращать до тех пор, пока не получится несократимая дробь.
Если у дробей различные знаменатели, то приводят к общему знаменателю, домножая их на какой-нибудь дополнительный множитель.
Рассмотрим следующий пример:
Есть и более простой способ найти общий знаменатель, для этого достаточно просто перемножить знаменатели дробей-слагаемых. Однако дальнейшие преобразования будут более долгими. Решим таким путем тот же пример:
В числителе возможно вынесение общего множителя 2ху за скобки:
Видно, что конечный результат операции не изменился.
Если в знаменателях складываемых дробей стоят многочлены, то стоит попробовать разложить их на множители. За счет этого порою удается найти более простой общий знаменатель.
Пусть надо сложить выражения
Вынесем в знаменателях за скобки множители х и у:
В знаменателях есть похожие множители, (3х – у) и (у – 3х). Чтобы они оказались одинаковыми, надо поменять местами вычитаемое и уменьшаемое в одних скобках. Для этого перед ними надо добавить знак «минус»:
Общим множителем этих дробей является произведение ху(3х – у):
Осталось разложить числитель, где стоит разность квадратов:
Следующий важный навык, который может потребоваться при работе с рациональными выражениями – это выделение целой части из дроби.
Продемонстрируем эту операцию на примере
Перепишем дробь, поменяв порядок слагаемых в числителе:
И в знаменателе, и в числителе есть сумма х 2 + 1. Теперь можно произвести выделение целой части:
В справедливости данного преобразования можно убедиться, выполнив его «в обратную сторону»:
Любой многочлен можно сделать дробью, если приписать ему числитель, равный 1. Пусть надо упростить формулу
Заменим 2х – 1 на дробь и произведем вычитание:
Упростить далее эту дробь довольно сложно, но всё же возможно. Для этого надо заменить одночлен (– 3х 2 ) на разность (– х 2 – 2х 2 ), а 14х на сумму (6х+8х). Посмотрим, что получится в результате:
Складывать можно и более двух дробей. Пусть надо упростить сумму
Будем складывать слагаемые последовательно, то есть сначала сложим два первых слагаемых, потом к результату добавим третье, а далее и 4-ое слагаемое:
Представление дроби в виде суммы дробей
Сумму двух дробей можно представить в виде несократимой дроби единственным образом, например:
Однако у обратной задачи, разложения одной дроби на сумму нескольких других, есть бесконечной множество решений:
То же самое верно в отношении дробных выражений. Например,
можно разложить так:
С другой стороны, это же выражение можно представить в следующем виде:
Для раскладывания дроби на сумму дробей можно воспользоваться методом неопределенных коэффициентов, предложенным Рене Декартом в 1637 году. Покажем, как его использовать, на примере. Пусть надо представить в виде суммы двух дробей отношение
Заметим, что знаменатель х 2 – 4 можно записать как произведение полиномов первой степени (х – 2)(х + 2):
Это означает, что исходное выражение можно представить как сумму дробей со знаменателями (х – 2) и (х + 2). Обозначим числители в этих дробях как неизвестные величины aи b (они и носят название неопределенных коэффициентов). Тогда можно записать, что
Задача сводится к тому, чтобы найти a и b. Для этого преобразуем сумму дробей:
Полученная дробь должна равняться исходной дроби:
У правой и левой части равны знаменатели, а значит, должны равняться и числители:
(a + b)x + (2a– 2b) = 2x + 6
Это тождество может быть верным только тогда, когда справа и слева равны коэффициенты перед переменной х, а также свободные члены, поэтому можно записать систему:
Решив эту систему, мы сможем найти значения a и b. Используем метод подстановки, выразив а из первого уравнения:
Подставим эту формулу во второе уравнение:
а = 2 – b = 2 – (– 2,5) = 2 + 2,5 = 4,5
Итак, получили, что a = 4,5 и b = – 2,5. Это значит, исходную дробь можно разложить следующим образом:
Теперь рассмотрим, как производится умножение и деление дробных выражений. Эти действия аналогичны операциям с обычными числами, которые уже изучались в 5 классе. Напомним две основные формулы:
Пусть требуется перемножить величины
Эта операция осуществляется так:
Теперь посмотрим, как выполняется деление:
Деление заменяется умножением на дробь, обратную делителю:
Для упрощения выражений часто используют формулы сокращенного умножения:
При возведении дроби в степень надо отдельно возводить в степени знаменатель и числитель:
Вообще для любого натурального числа nбудет верным тождество:
Пусть надо возвести в 4-ую степень дробь
Выглядеть это будет так:
Преобразование рациональных выражений
Если у дроби в знаменателе и числителе записаны полиномы, то ее называют рациональной дробью. В виде рациональной дроби можно записать любое рациональное выражение.
Пусть надо записать в виде рациональной дроби выражение
Сначала выполним вычитание в скобках, а потом и деление:
Обратим внимание, что выражение
представляет собой не что иное, как разность квадратов, для которой можно применить формулу сокращенного умножения:
(2а + 1) 2 – (2а – 1) 2 = (2а + 1 + 2а – 1)( 2а + 1 – (2а – 1)) =
= (2а + 1 + 2а – 1)( 2а + 1 – 2а + 1).
Используя это, продолжим работать с дробью:
Однако иногда удобнее не производить вычисления в скобках, а использовать распределительный закон умножения:
Пусть требуется упростить произведение:
Сначала раскроем скобки:
Часто проблемы возникают с так называемыми «многоэтажными» дробями. Так называют дроби, у которых в числителе и знаменателе стоят другие дробные выражения. Выглядят они внушительно, однако правила работы с ними такие же, как и с другими выражениями. Каждая дробная черта просто означает операцию деления.
Пусть требуется выполнить преобразование дробного рационального выражения
Сначала представим эту дробь как операцию деления:
Теперь в каждой из скобок произведем сложение: