какое строение имеет водород

Водород. Особенности строения водорода.

Сходство с щелочными металлами весьма условное. Если сравнить энергию ионизации (энергию полного отрыва электрона) водорода с энергией ионизации лития или натрия, то видно, что водород не принадлежит группе щелочных металлов.

Элемент

Энергия ионизации, кДж/моль

Данные таблицы показывают, что для удаления 1-го электрона от щелочных металлов необходимо небольшое количество энергии, вследствие чего образуется устойчивая конфигурация инертного газа, чего нельзя сказать о водороде. Именно водород из-за своего маленького радиуса оказывается поляризующее действие, поэтому все соединения водорода, даже с более активными металлами, являются ковалентно-полярными связями.

Если рассмотреть сродство к электрону (энергия отрыва электрона), что свойственно для всех галогенов, то можно заметить, что и на галогены водород не похож:

Элемент

Сродство к электрону, кДж/моль

Атом водорода может, хотя с большим трудом, присоединять электрон, приобретая устойчивую оболочку гелия и образуя ион:

Но как и галогены водород имеет низкую температуру кипения и плавления и по физическим свойствам представляет собой двухатомный газ. В таком виде водород находится в гидридах (соединение с металлами).

Изотопы водорода.

У водорода 3 изотопные формы: протий ( 1 1Н), дейтерий ( 2 1Н), тритий ( 3 1Н). В природе существует 99,985% изотопа 1 1Н, остальное – дейтерий. Тритий встречается в виде радиоактивных следов. Они различаются по физическим свойствам:

какое строение имеет водород

Для каждого соединения водорода существует его дейтериевый аналог. Основной – D2O – тяжелая вода, использующаяся в качестве замедлителя реакций.

Оксид дейтерия получают электролизом воды. На катоде выделяется водород, а та вода, которая остается, обогащается оксидом дейтерия.

Распространение водорода в природе.

Источник

Водород: химия водорода и его соединений

Водород

Положение в периодической системе химических элементов

Водород расположен в главной подгруппе I группы и в первом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение водорода

Электронная конфигурация водорода в основном состоянии :

+1H 1s 1 1s какое строение имеет водород

Атом водорода содержит на внешнем энергетическом уровне один неспаренный электрон в основном энергетическом состоянии.

Физические свойства

Водород – легкий газ без цвета, без запаха. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью:

Соединения водорода

Типичные соединения водорода:

Степень окисленияТипичные соединения
+1кислоты H2SO4, H2S, HCl и др.

вода H2O и др. летучие водородные соединения (HCl, HBr)

кислые соли (NaHCO3 и др.)

основания NaOH, Cu(OH)2

основные соли (CuOH)2CO3

-1гидриды металлов NaH, CaH2 и др.

Способы получения

Еще один важный промышленный способ получения водорода — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Химические свойства

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов :

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

2. Водород взаимодействует со сложными веществами:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Применение водорода

Применение водорода основано на его физических и химических свойствах:

Водородные соединения металлов

Соединения металлов с водородом — солеобразные гидриды МеНх. Это твердые вещества белого цвета с ионным строением. Устойчивые гидриды образуют активные металлы (щелочные, щелочноземельные и др.).

Способы получения

Гидриды металлов можно получить непосредственным взаимодействием активных металлов и водорода.

2Na + H2 → 2NaH

Гидрид кальция можно получить из кальция и водорода:

Химические свойства

NaH + H2O → NaOH + H2

2. При взаимодействии с кислотами гидриды металлов образуют соль и водород.

NaH + HCl → NaCl + H2

3. Солеобразные гидриды проявляют сильные восстановительные свойства и взаимодействуют с окислителями (кислород, галогены и др.)

2NaH + O2 = 2NaOH

Гидрид натрия также окисляется хлором :

NaH + Cl2 = NaCl + HCl

Летучие водородные соединения

Соединения водорода с неметаллами — летучие водородные соединения.

Строение и физические свойства

Все летучие водородные соединения — газы (кроме воды).

CH4 — метан NH3 — аммиакH2O — вода HF –фтороводород
SiH4 — силанPH3 — фосфин H2S — сероводород HCl –хлороводород
AsH3 — арсин H2Se — селеноводород HBr –бромоводород
H2Te — теллуроводород HI –иодоводород

Способы получения силана

Силан образуется при взаимодействии соляной кислоты с силицидом магния:

какое строение имеет водород

Видеоопыт получения силана из силицида магния можно посмотреть здесь.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непрореагировавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Способы получения фосфина

В лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов.

Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах.

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства силана

1. Силан — неустойчивое водородное соединение (самовоспламеняется на воздухе). При сгорании силана на воздухе образуется оксид кремния (IV) и вода:

Видеоопыт сгорания силана можно посмотреть здесь.

2. Силан разлагается водой с выделением водорода:

3. Силан разлагается (окисляется) щелочами :

4. Силан при нагревании разлагается :

Химические свойства фосфина

Соли фосфония неустойчивые, легко гидролизуются.

3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей.

Серная кислота также окисляет фосфин:

С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора.

2PH3 + 2PCl3 → 4P + 6HCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства прочих водородных соединений

Кислоты образуют в водном растворе: водородные соединения VIA (кроме воды) и VIIA подгрупп.

Прочитать про химические свойства галогеноводородов вы можете здесь.

Физические свойства

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличие от ее газообразных аналогов H2S, H2Se и Н2Те.

Химические свойства

1.1. С активными металлами вода реагирует при комнатной температуре с образованием щелочей и водорода :

2Na + 2H2O → 2NaOH + H2

Ag + Н2O ≠

3. Вода взаимодействует с кислотными оксидами (кроме SiO2):

4. Некоторые соли реагируют с с водой. Как правило, в таблице растворимости такие соли отмечены прочерком :

6. Бинарные соединения неметаллов также гидролизуются водой.

6. Некоторые органические вещества гидролизуются водой или вступают в реакции присоединения с водой (алкены, алкины, алкадиены, сложные эфиры и др.).

Источник

Водород, свойства атома, химические и физические свойства

Водород, свойства атома, химические и физические свойства.

какое строение имеет водородкакое строение имеет водородкакое строение имеет водородкакое строение имеет водородкакое строение имеет водородкакое строение имеет водородкакое строение имеет водородкакое строение имеет водородкакое строение имеет водородкакое строение имеет водород

Водород — первый элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 1. Расположен в 1-й группе, первом периоде периодической системы.

Атом и молекула водорода. Формула водорода. Строение атома водорода:

Водород (лат. hydrogenium, от др.-греч. ὕδωρ – «вода» и γεννάω – «рождаю», т.е. «рождающий воду») – первый элемент периодической системы химических элементов Д. И. Менделеева с обозначением H и атомным номером 1. Расположен в 1-й группе, первом периоде периодической системы.

Водород обозначается символом Н.

Как простое вещество водород при нормальных условиях представляет собой двухатомный газ без цвета, вкуса и запаха.

Молекула водорода двухатомна.

Химическая формула водорода Н2.

Строение атома водорода – вокруг ядра, состоящего из одного протона, вращается по единственной s-орбитали один электрон. Гелий относится к элементам s-семейства.

Радиус атома водорода (вычисленный) составляет 53 пм.

Атомная масса атома водорода составляет 1,00784-1,00811 а. е. м.

При высокой температуре молекула водорода Н2 диссоциирует на атомарный водород. При 2000 К на атомарный водород диссоциирует 0,081% молекулярного водорода, при 3000 К – 7,85%, при 5000 К – 95,5%. Переход в атомарное состояние вызывается также электрическим разрядом или под действием излучения с длиной волны менее 85 нм. Распад на атомы требует затраты энергии 104,2 ккал/моль при 25 о С. Под давлением 0,2 мм.рт.ст. атомарный водород может существовать около 1 секунды.

Атомарный водород значительно химически активнее молекулярного.

Изотопы и модификации водорода. Протий, дейтерий, тритий. Ортоводород, параводород:

Молекулярный водород существует в двух спиновых формах (модификациях): ортоводород и параводород. Модификации немного различаются по физическим свойствам, оптическим спектрам, также по характеристикам рассеивания нейтронов. В молекуле ортоводорода o-H2 (температура плавления −259,10 °C, температура кипения −252,56 °C) спины ядер параллельны, а у параводорода p-H2 (температура плавления −259,32 °C, температура кипения −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

При комнатной температуре водород представляет собой равновесную смесь орто-Н2 (75%) и пара-Н2 (25%) форм. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода, так как энергия пара-молекулы немного ниже энергии орто-молекулы. При 80 К соотношение модификаций приблизительно 1:1.

Разделить две формы водорода возможно путем адсорбции на активном угле при температуре жидкого азота. При этом активный уголь катализирует превращение ортоводорода в параводород. Десорбированный с угля параводород при комнатной температуре превращается в ортоводород до образования равновесной смеси (75:25), однако это превращение без катализатора происходит медленно, что дает возможность изучить свойства отдельных аллотропных форм.

Водород имеет три природных изотопа: 1 H – протий, 2 H – дейтерий и 3 H – тритий (радиоактивен).

Ядро самого распространённого изотопа – протия ( 1 H) – состоит из одного только протона и не содержит нейтронов.

Ядро дейтерия ( 2 H) состоит из одного протона и одного нейтрона.

Ядро трития ( 3 H) состоит из одного протона и двух нейтронов.

Эти изотопы имеют собственные химические символы: протий – H, дейтерий – D, тритий – T.

Протий и дейтерий стабильны. Содержание этих изотопов в природном водороде составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 % соответственно. Оно может незначительно меняться в зависимости от источника и способа получения водорода.

Природный молекулярный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание в нём молекул из чистого дейтерия D2 ещё меньше, отношение концентраций HD и D2 составляет примерно 6400:1.

Физические свойства изотопов водорода (плотность, температура плавления, температура кипения, критическая температура, критическое давление и пр.) отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

Искусственно получены также другие – тяжёлые радиоактивные изотопы водорода с массовыми числами 4-7 и периодами полураспада 10 −21 −10 −23 с:

– 4 H, состоящий из одного протона и трех нейтронов,

– 5 H, состоящий из одного протона и четырех нейтронов,

– 6 H, состоящий из одного протона и пяти нейтронов,

– 7 H, состоящий из одного протона и шести нейтронов.

Молекулы водорода могут быть образованы как чистыми изотопами H2, D2, T2, так и смешанным составом: HD, HT, DT.

Молекулы чистых протия, дейтерия и трития могут существовать в двух аллотропных модификациях (отличающихся взаимной ориентацией спинов ядер) – орто- и параводород: o-D2, p-D2, o-T2, p-T2. Молекулы водорода с другим изотопным составом (HD, HT, DT) не имеют орто- и парамодификаций.

Свойства водорода (таблица): температура, плотность, давление и пр.:

100Общие сведения
101НазваниеВодород
102Прежнее название
103Латинское названиеHydrogenium
104Английское названиеHydrogen
105СимволН
106Атомный номер (номер в таблице)1
107ТипНеметалл
108Группа
109ОткрытГенри Кавендиш, Великобритания, 1766 г.
110Год открытия1766 г.
111Внешний вид и пр.Газ без цвета, запаха и вкуса
112ПроисхождениеПриродный материал
113Модификацииo-H2 – ортоводород,

p-H2 – параводород

114Аллотропные модификации
115Температура и иные условия перехода аллотропных модификаций друг в друга
116Конденсат Бозе-Эйнштейна
117Двумерные материалы
118Содержание в атмосфере и воздухе (по массе)0,00008 %
119Содержание в земной коре (по массе)0,15 %
120Содержание в морях и океанах (по массе)11 %
121Содержание во Вселенной и космосе (по массе)75 %
122Содержание в Солнце (по массе)75 %
123Содержание в метеоритах (по массе)2,4 %
124Содержание в организме человека (по массе)10 %
200Свойства атома
201Атомная масса (молярная масса)*1,00784-1,00811 а. е. м. (г/моль)
202Электронная конфигурация1s 1
203Электронная оболочкаK1 L0 M0 N0 O0 P0 Q0 R0

какое строение имеет водород

204Радиус атома (вычисленный)53 пм
205Эмпирический радиус атома25 пм
206Ковалентный радиус*31 пм
207Радиус иона (кристаллический)H +

0,1815 Вт/(м·К) (при 300 K)

500Кристаллическая решётка
511Кристаллическая решётка #1
512Структура решёткиГексагональная

какое строение имеет водород

513Параметры решёткиa = 3,780 Å, c = 6,167 Å
514Отношение c/a1,631
515Температура Дебая110 K
516Название пространственной группы симметрииP63/mmc
517Номер пространственной группы симметрии194
900Дополнительные сведения
901Номер CAS12385-13-6

201* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.

206* Ковалентный радиус водорода согласно [1] и [3] составляет 31±5 пм и 32 пм соответственно.

408* Удельная теплота испарения (энтальпия кипения ΔHкип) водорода согласно [4] составляет 0,916 кДж/моль.

410* Молярная теплоемкость водорода согласно [3] составляет 28,47 Дж/(K·моль).

Физические свойства водорода:

При стандартных температуре и давлении водород – бесцветный, не имеющий запаха и вкуса, нетоксичный двухатомный газ с химической формулой H2.

Водород – самый лёгкий газ. Он легче воздуха в 14,5 раз. Поэтому, например, мыльные пузыри, наполненные водородом, на воздухе стремятся вверх.

Плотность водорода2) составляет 0,00008988 г/см 3 при 20 °C и иных стандартных условиях ; а также 0,0000899 г/см 3 при 0 °C и иных стандартных условиях .

Общеизвестно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Теплопроводность водорода при 300 K составляет 0,1815 Вт/(м·К). Теплопроводность водорода примерно в 7 раз выше теплопроводности воздуха – 0,0243 Вт/(м·К).

Водород2) почти не растворяется в воде и органических растворителях. Так, растворимость водорода в воде составляет 0,000157 г/100 г (при температуре 25 °C).

Водород растворяется в металлах: алюминии, железе, никеле, палладии, платине, практически не растворим в серебре. Растворимость в железе и меди мешает при выплавке этих металлов, так как приводит к образованию пустот. Так, растворимость водорода в железе (объемов водорода на объем железа) составляет: при 500 о С – 0,05; при 700 о С – 0,14; при 900 о С – 0,37; при 1100 о С – 0,55; при 1200 о С – 0,65; при 1350 о С – 0,80; при 1450 о С – 0,87; при 1550 о С – 2,05. Растворимость водорода в палладии составляет 850 объёмов H2 на 1 объём Pd.

При обычных условиях и выше −80 о С при расширении водород разогревается, а не охлаждается как большинство газов (“нормально” он начинает себя вести ниже −80 о С).

При комнатной температуре водород представляет собой равновесную смесь орто-Н2 (75%) и пара-Н2 (25%) форм. В молекулах ортоводорода (температура плавления −259,10 °C, температура кипения −252,56 °C) ядерные спины направлены одинаково, а у параводорода (температура плавления −259,32 °C, температура кипения −252,89 °C) – противоположно друг другу.

Температура кипения водорода2) составляет −252,77 °C [согласно https://ru.wikipedia.org/wiki/Водород)].

Жидкий водород существует в очень узком интервале температур от −252,77 до −259,19 °C. Жидкий водород – это бесцветная жидкость, очень лёгкая (плотность при −253 °C составляет 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.

Температура плавления водорода2) составляет −259,19 °C [согласно https://ru.wikipedia.org/wiki/Водород)].

Твёрдый водород, температура плавления −259,19 °C, плотность 0,0807 г/см³ (при −262 °C) – снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм.

Температура разложения водорода2) составляет 1700-5000 °C.

Критические параметры водорода (Н2) очень низкие: критическая температура водорода −239,91 °C и критическое давление водорода 1,297 МПа [согласно https://ru.wikipedia.org/wiki/Водород)]. Этим объясняются трудности при сжижении водорода.

Скорость звука в водороде2) составляет: 1284 м/с (при 0 °C, состояние вещества – газ), 1301 м/с (при 18 °C, состояние вещества – газ), 1463 м/с (при 100 °C, состояние вещества – газ).

Водород коррозионно неактивен.

В смеси с воздухом и кислородом водород пожаровзрывоопасен, что обусловлено низким значением минимальной энергии зажигания водородно-воздушной смеси (0,017 мДж), высоким значением минимальной теплоты сгорания (121000 кДж/кг) и широкой областью горения и детонации.

Химические свойства водорода. Взаимодействие водорода. Реакции с водородом:

При нормальных условиях водород химически малоактивен.

Химические свойства водорода связаны со строением его электронной оболочки: в атоме один валентный электрон (как у щелочных металлов), а для завершения внешнего электронного слоя не хватает одного электрона (как у атомов гелия и других галогенов).

Поэтому в химических реакциях атом водорода может отдавать или принимать электрон, проявляя при этом в соединениях как положительную, так и отрицательную степени окисления: +1, 0 или –1.

Степень окисления +1 водород проявляет в соединениях с более электроотрицательными неметаллами (H2O, NH3, HCl и пр.); степень окисления 0 водород проявляет в молекулах протия H2, дейтерия D2, трития T2, протодейтерия HD, прототрития HT и дейтеротрития DT, т.к. эти молекулы образуются за счет ковалентных неполярных связей; степень окисления –1 водород проявляет в соединениях с металлами, кремнием и бором (NaH, LiH, Ca2H, SiH4 и пр.).

В соединениях с неметаллами водород образует ковалентную связь, в соединениях с металлами – ионную связь. В газообразном состоянии водород находится в виде двухатомных молекул, соединенных неполярной ковалентной связью.

Поскольку для водорода возможны положительная и отрицательная степени окисления, водород может проявлять и восстановительные, и окислительные свойства.

Проявляя окислительные свойства, водород взаимодействует с активными металлами.

Проявляя восстановительные свойства, водород взаимодействует с оксидами и галогенидами. В соединениях водород гораздо сильнее проявляет свои восстановительные свойства, чем окислительные. Водород является самым сильным восстановителем после угля, алюминия и кальция. Это свойство используются в промышленности для получения металлов и неметаллов (простых веществ) из оксидов.

Атомарный водород значительно химически активнее молекулярного.

Химическая активность водорода увеличивается при повышении температуры, под действием ультрафиолетового и радиоактивного излучений.

Получение водорода:

Водород может быть получен в результате:

Применение водорода:

Водород используется во многих областях промышленности и быту:

– в химической промышленности при получении некоторых металлов;

– в нефтеперерабатывающей промышленности в процессах гидрокрекинга и гидроочистки Он способствует увеличению глубины переработки сырой нефти и повышению качества конечных продуктов;

– в пищевой промышленности для производства твердых жиров из растительных масел. Водород зарегистрирован в качестве пищевой добавки E949;

– в атомной энергетике;

– в качестве ракетного топлива;

– для сварки и резки металлов при высокой температуре. Температура горения водорода в кислороде составляет 2600 °C.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *