какое радиоактивное излучение обладает самой большой проникающей способностью
Под «радиацией» понимают любые разновидности излучений, существующих в природе. Радиоволны, солнечный свет, ультрафиолетовое и рентгеновское излучение – это тоже радиация. Нейтронное, альфа-, бета-, гамма-излучения обладают наибольшей опасностью.
Что такое радиоактивность в физике
Атомное ядро состоит из протонов и нейтронов. Причем число протонов всегда одинаково и соответствует порядковому номеру химического элемента в периодической системе Менделеева. Ядра, в которых количество нейтронов отличается, называются изотопами.
Некоторые атомные ядра могут превращаться в разные изотопы с выделением элементарных частиц или легких ядер. Собственно этот процесс и называется радиоактивностью.
Можно дать такое определение этому явлению: способность атомного ядра бесконтрольно распадаться с испусканием проникающих частиц.
Распад ядер возможен в том случае, если он сопровождается выделением энергии. Сегодня известно около 3 тыс. атомных ядер. Из них не являются радиоактивными всего лишь 264.
В физике существуют такие виды радиоактивного распада:
α-распад с выделением α-частицы;
β-распад с испусканием электрона и антинейтрино, позитрона и нейтрино, а также поглощение ядром электрона с выделением нейтрино;
бесконтрольное деление ядра на осколки.
Альфа-излучение
Это поток ядер атомов гелия, имеющих положительный заряд. Возникает из-за распада атомов урана, тория или радия.
Их пробег очень короток (до 8 сантиметров в воздухе). Это означает, что их может задержать бумажный листок.
Вещества, которые испускают эти частицы, имеют большой период полураспада. Попадая в организм, они накапливаются в селезенке или лимфатических узлах и вызывают облучение.
Альфа-частицы опасны: они создают значительное количество ионов. Сами же альфа-частицы распространяются в тело на доли миллиметра.
Бета-излучение
Являет собой поток электронов (частиц с отрицательным зарядом) или позитронов (соответственно, с положительным зарядом). Электрон образуется при превращении нейтрона в протон, а позитрон – в процессе обратного превращения.
Электроны намного меньше ядра атомов гелия. Они могут проникать в тело человека примерно на 15 см. Попадая на кожу живого организма, частицы вызывают сильные ожоги. Чтобы оградиться от бета-излучения, достаточно тонкого оргстекла. Если вещество, излучающее электроны или позитроны, попадет в организм, то оно будет облучать ткани.
Бета-излучение применяется в медицине в качестве лучевой терапии.
Гамма-излучение
Это волны с огромной энергией, образующиеся внутри ядра.
переходе его из возбужденного состояния в стабильное;
аннигиляции электрона и позитрона.
Гамма-лучи могут проходить значительные расстояния, постепенно теряя свою энергию. Они обладают чрезвычайно высокой проникающей способностью.
Очень интенсивное излучение повреждает не только кожу, но и внутренние органы человека. Особая его опасность в том, что оно способно поражать ДНК, вызывая раковые новообразования.
Чтобы ослабить поток гамма-излучения, достаточно использовать вещества с высоким массовым числом атома и плотные составы.
Нейтронное излучение
Оно являет собой поток нейтронов, без заряда, не имеющих ионизирующего воздействия. Проявляется в результате рассеивания на атомных ядрах вещества.
Вещества, облученные нейтронами, могут обретать радиоактивные характеристики. Это свойство называется наведенной радиоактивностью.
Нейтроны отличаются наибольшей проникающей характеристикой. От них можно защититься материалами, содержащими атомы водорода. Излучение быстрых нейтронов губительно для всего живого в радиусе 2,5 км.
Рентгеновское излучение
Оно имеет внеядерное происхождение. Его источник – рентгеновская трубка и некоторые радиоактивные нуклиды. Рентгеновские лучи возникают в результате сильного ускорения заряженных частиц или в результате переходов в электронных оболочках атомов.
Рентгеновская трубка имеет катод и анод. При нагревании катода происходит излучение электронов. Движение этих частиц ускоряется электромагнитным полем, и частицы падают на анод, резко снижая скорость. Вследствие этого и возникают рентген-лучи.
Рентген-излучение, проходящее сквозь вещество, рассеиваются либо поглощается. Это их свойство используется в медицине.
Какое излучение самое опасное
Наиболее опасным является излучение нейтронов. Оно может пройти толщину вещества до 10 см. Приблизившись к ядру, нейтрон только отклоняется. А при столкновении с протоном нейтрон передает ему половину внутренней энергии, и последний увеличивает свою скорость, вызывая ионизацию.
Именно эти быстрые протоны разрушают весь организм. От наведенной нейтронной радиации нельзя избавиться.
Второе место в рейтинге опасности – гамма-излучение, обладающее высокой проникающей способностью.
В природе существует много разновидностей радиационного излучения. Не каждое их них опасно для здоровья. Соблюдая меры предосторожности, можно защитить себя от вредных лучей.
Какое радиоактивное излучение обладает самой большой проникающей способностью
Почему? Потому что в этом случае речь идёт о совсем другом свойстве излучений — об их проникающей способности. Да, у гамма-излучений такая способность много выше, чем у альфа- и бета- лучей. Но опасность излучений определяется не проникающей способностью, а дозой. Позднее мы вернемся к нашим гамма-лучам, а пока попробуем понять, что такое доза.
Рассмотрим на бытовом примере. Человек выпил 250 граммов водки. Это что — доза? Нет, это порция, которая содержит 100 граммов спирта. А доза рассчитывается с учетом массы тела человека. Если он весит 100 кг, то в нашем примере доза будет равна 1 грамму алкоголя на 1 килограмм массы тела. Если же человек весит 50 кг, то доза будет равна 2 грамма на килограмм, то есть в два раза больше. Видите, как удобно сравнивать? Уже ясно, что на второго человека приём той же порции окажет более сильное действие. А от одинаковой дозы и последствия будут соразмерные.
Подобным образом оценивают и воздействие ионизирующих излучений на человека. Самая простая характеристика — так называемая поглощённая доза. Как её определяют? В два этапа. Сначала измеряют или рассчитывают — нет, не граммы спирта, а количество энергии, которое поглотило тело (человек или отдельный орган) в результате облучения. А потом эту поглощённую энергию делят на массу тела.
В чём измеряют энергию? Правильно, в джоулях (Дж). А массу? В килограммах. Выходит, что поглощённая доза будет измеряться в джоулях на килограмм: Дж/кг. Но когда речь идёт о радиации, «джоуль на килограмм» получает специальное имя, в честь известного учёного. Может быть, слышали — «грей» (Гр)? Возможно, вам знакомо слово «рад» — в радах измеряли поглощённую дозу прежде, до введения грея. Один рад в сто раз меньше грея, так относится копейка к рублю:1 Гр = 100 рад. А ещё раньше использовали общеизвестную единицу — рентген. Рентгенами оценивали не энергию, а ионизирующую способность излучения.
Не будем забивать голову, для простоты отметим, что рентген примерно равен раду. Обратите внимание на три важные детали.
Во-первых, доза — это дробь. И в числителе стоит вовсе не количество альфа-частиц или гамма-квантов, поглощённых телом. В числителе дроби — энергия. Значение имеет именно энергия ионизирующих излучений. Например, гамма-излучение может быть, как жёстким, так и мягким: жёсткое излучение (см. правый край шкалы на рис. 2.2) обладает высокой энергией, а мягкое (поближе к ультрафиолету) несёт меньшую энергию. Важен не только калибр пули. Выстрел из винтовки — одно дело, а той же пулей из рогатки — совсем другое.
Во-вторых, нас интересует не вся энергия излучения, а лишь та часть, что поглотилась облучённым телом. Энергия излучения, прошедшая сквозь тело, в дозу не входит.
пИ, в-третьих, в знаменателе дроби стоит масса. Но уже не масса радионуклида, как при расчёте удельной активности, а масса облучаемого тела — мишени. Ах, да, ещё используют какие-то зиверты. Но прежде, чем вы окончательно запутаетесь, хочу немного вдохновить вас. Правда, не всех, а лишь мужскую часть читателей.
Попробуем понять: а зачем нам, мужикам, нужно разбираться во всех этих греях и беккерелях? Представьте, вы знакомитесь с шикарной женщиной. Без больших денег удивить её трудно (я же понимаю: вряд ли эту книгу читает олигарх). Но мы поступаем так. Плавно переводим разговор на тему о радиации и небрежно вставляем типа: «Так… плотность загрязнения территории там была… м-м-м… 10 кюри на квадратный километр. Тогда эти чернобыльцы получали (тут надо потереть лоб указательным пальцем) среднюю дозу около 100 миллигрей. Больше нормы, но не опасно». Всё! Она в экстазе — она ваша!
А вот женщинам демонстрировать продвинутость в разговоре с мужчинами не рекомендуется: это оскорбление мужского достоинства. А если серьёзно, то пока не разберёмся в основах, — не сможем иметь самостоятельное мнение. И придётся нам принимать на веру мнение чужое. А потому — вперёд!
Вернёмся к нашим зивертам. Они-то зачем понадобились, греев нам мало? Оказывается, поглощённая доза учитывает не всё: она не учитывает различную способность разных видов излучений повреждать ткани живых организмов.Часто путают разные вещи: проникающую способность разных видов излучений и их повреждающее действие.
Да, у гамма-излучения высокая проникающая способность, от него труднее защититься. Но мы хотим сравнить повреждающее действие разных излучений при одинаковой поглощённой дозе. Например, когда полностью защититься не получается, и человек-таки набирает свои греи, — вот в этом случае альфа-излучение куда опаснее. Потому, что тяжёлые и заряженные альфа-частицы, попадая в живую клетку, тормозятся резко и гасят свою энергию на коротком участке пути. Альфа-частицы можно сравнить не просто с крупнокалиберными — а даже с разрывными пулями. Поэтому степень биологического повреждения при одинаковой поглощённой дозе для альфа-излучения будет выше.
Подчеркнём еще раз: один грей альфа-излучения опаснее, чем один грей бета- или гамма-излучения. Другое дело, что получить большую поглощённую дозу от бета- или гамма-излучения проще: достаточно находиться рядом с источником излучения (например, с изотопами стронция-90 или цезия-137). А от альфа-излучения способен защитить даже слой воздуха между вами и источником, например, урановым слитком.
Альфа-излучение становится опасным только при попадании радионуклида внутрь организма. Именно при внутреннем облучении и проявляется его повышенная опасность.
Если вы дышите радиоактивным радоном, или вы случайно выпьете урановый раствор (лучше не надо) — вот тогда полученный грей окажется зловредней, чем грей от стронция либо цезия.
Считается, что повреждающее действие бета- и гамма-излучения при равной их дозе одинаково: для бета-излучения коэффициент равен единице. А вот для альфа-излучения поправочный коэффициент равен двадцати [1].
Дозу, рассчитанную с учётом взвешивающего коэффициента, называют уже не поглощённой, а эквивалентной, — её-то и измеряют в зивертах (Зв).
Итак, мы имеем простую формулу:
Поглощенная доза * Коэффициент = Эквивалентная доза
Для бета- и гамма-излучения получаем:
А для коварного альфа-излучения имеем:
Каждый грей альфа-излучения в двадцать раз опаснее, чем гамма- или бета-излучения (кажется, я начинаю повторяться). Если же доза выражена в зивертах, её опасность для живых организмов — независимо от вида излучения — будет одинакова. Потому такую дозу и называют эквивалентной. Это понятие более удобное, чем поглощённая доза.
До введения зиверта эквивалентную дозу рассчитывали в бэрах. Расшифровывается бэр просто: биологический эквивалент рентгена. Сегодня бэры, как и рады, ушли в прошлое, но в научной литературе пока встречаются. Знайте, что соотношение зиверта и бэра такое же, как грея и рада:
Кстати, один зиверт — доза большая, можно сказать: аварийная. Такая доза может привести к острой лучевой болезни. Для небольших доз более удобная единица — миллизиверт (мЗв), одна тысячная часть зиверта. Для ясности: один миллизиверт — это средний природный фон без радона.
Итак, мы знаем две разновидности дозы: поглощённую и эквивалентную. Обе выражаются в джоулях на килограмм. Но совпадают они не всегда. Поглощённую дозу можно измерить. Эквивалентная доза больше скажет о последствиях облучения, но измерить её нельзя. Но можно рассчитать из поглощённой дозы.
А теперь самое главное. Дозой, прежде всего величиной дозы, определяется опасность радиации. И тут надо иметь в виду одну важную вещь: происхождение радиации значения не имеет. Для организма без разницы, откуда вы набрали дозу: от Солнца, из рентгеновского аппарата, на радоновом курорте, от ближайшей АЭС или в результате чернобыльской аварии, — всё равно. Главное — сколько этих самых миллизивертов.
Читатели, вы ещё не заснули? Потерпите немного: тяжело в учении — легко в бою. Чтобы новый материал легче переварился, взгляните на схему.
Рис. 3.1 Схема воздействия ионизирующих излучений на облучаемое тело
Из азбуки радиационной безопасности осталось уточнить ещё одно понятие — мощность дозы. Помните школьный курс физики? В каких единицах измеряется мощность? Нет, в лошадиных силах по традиции измеряют лишь мощность автомобильных двигателей. А в остальных случаях используют ватты. А чем мощность (ватт) отличается от энергии (джоуль)? Правильно. Мощность — это энергия, отнесенная к интервалу времени, то есть ватт — это джоуль в секунду.
В радиации то же самое. Если вы слышите: природный радиоактивный фон составляет семь микрорентген в час, то речь идёт именно о мощности дозы. А в современных дозиметрических приборах мощность дозы выражается в микрогреях в час.
Подведём итоги. Миф о самом опасном виде радиации — гамма- излучении — объясняется путаницей: смотря что понимать под опасностью. У гамма-излучения максимальная проникающая способность, от него труднее защититься. Но при одинаковой поглощённой дозе наиболее опасно альфа-излучение.
Опасность ионизирующих излучений определяется дозой, поглощённой мишенью. Доза может выражаться в двух единицах: греях и зивертах. Если доза выражена в зивертах, её последствия не зависят от вида излучения.
1. Нормы радиационной безопасности НРБ–99/2009: санитарно- эпидемиологические правила и нормативы. — М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. – 100 с.
Особенности и типы радиационного излучения
Радиационное излучение образуется в результате реакций на уровне атомов. Процесс характеризуется выбросом потока микрочастиц, имеющих заряд: протонов, электронов, фотонов и нейтральных микроэлементов – нейтронов. Они определяют тип радиационного излучения.
Излучение подразделяется на энергетическое, к нему относятся потоки гамма и рентгеновских частиц, и атомное, в его основе лежит выделение элементов вещества: альфа, бета и гамма-частиц. Классифицируется излучение в зависимости от структуры частиц, расстояния их действия, способности проникать в ткани, клетки и степени воздействия на них, скорости излучения.
Практически все типы излучения, за исключением альфа-излучения можно обнаружить с помощью бытового дозиметра радиации.
Альфа-излучение (α)
Альфа-частицы – результат распада нестабильных изотопов атома. Они имеют положительный заряд, состоят из 2-х пар протонов и нейтронов. Частицы образуются в результате распада таких элементов, как радий, уран характеризуются низкой скоростью излучения – 20 000км/с, обладают небольшой проникающей способностью из-за высокой удельной массы. Препятствие небольшой толщины и плотности остановит альфа частицы. Защитой от них может стать даже бумага.
Низкая проникающая способность альфа частиц, их большой энергетический заряд, обуславливает высокий уровень взаимодействия с клетками организма. Это приводит к мутации, патогенным изменениям тканей. Альфа частицы оседают в организме человека, попадая через повреждения кожи, воду, воздух, оказывают на него длительное воздействие. Поэтому они опасны для живых организмов, вывести их из тканей практически невозможно.
Бета-излучение (β)
Появление бета-частиц обусловлено процессами, происходящими в ядре вещества. Их результат – изменение свойств нейтронов и протонов. В итоге образуется поток частиц с положительным зарядом. Этот тип излучения характеризуется:
Бета-частицы обладают способностью накапливаться в тканях и оказывать на них длительное ионизирующее воздействие. Его результатом становятся тяжелые онкологические заболевания.
Нейтронное излучение
Поток нейтронов образуется в результате техногенной деятельности – работы ректоров, взрывов ядерных боеприпасов. Не имеющие заряда частицы, имеют наибольшую дальность действия по сравнению с другими типами радиационного излучения. Человек получает опасную для жизни дозу излучения на расстоянии 1,3–1,5км от его источника.
Нейтроны глубоко проникают в ткани, провоцируя мутации, патогенные изменения. Защитой от таких частиц станет вода и другие вещества, где много водорода. Нейтронное излучение является наиболее опасным для человека из-за большого радиуса действия.
Рентгеновское излучение
В результате смены орбит электронов в структуре атома, образуются фотоны или электромагнитное, энергетическое излучение. Оно характеризуется:
Фотоны оказывают слабое воздействие на клетки, ткани живых организмов, поэтому широко используются в медицине для проведения диагностических исследований.
Гамма излучение (y)
Поток фотонов, образующийся в результате изменения энергетического состояния атомов. Гамма излучение обладает высокой проникающей способностью, поэтому для защиты от него используется толстый слой металла или бетона. Его дальность действия достигает нескольких сотен метров. Гамма излучение не оказывает серьезного патогенного воздействия на клетки и ткани, менее опасно, чем альфа, бета или нейтронное.
Дозиметр – функциональные особенности
Прибор позволяет измерить дозу излучения, которую получают организмы за определенный промежуток времени. Не стоит его путать с радиометром, который показывает активность частиц. Он дает представление о радиационном фоне в то время, как дозиметр определяет мощность дозы излучения, что помогает оценить нанесенный человеку ущерб и его возможные последствия.
Виды радиоактивных излучений
Навигация по статье:
Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.
Что такое радиация
Для начала дадим определение, что такое радиация:
Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.
Альфа излучение
Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.
Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.
Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.
Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.
Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.
Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.
Нейтронное излучение
Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.
Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.
Бета излучение
Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.
При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.
Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.
Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.
Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.
Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.
Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.
Гамма излучение
Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.
Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения
Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.
Рентгеновское излучение
Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.
Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.
Каждое из рассмотренных излучений опасно!
Сравнительная таблица с характеристиками различных видов радиации
характеристика | Вид радиации | ||||
Альфа излучение | Нейтронное излучение | Бета излучение | Гамма излучение | Рентгеновское излучение | |
излучаются | два протона и два нейтрона | нейтроны | электроны или позитроны | энергия в виде фотонов | энергия в виде фотонов |
проникающая способность | низкая | высокая | средняя | высокая | высокая |
облучение от источника | до 10 см | километры | до 20 м | сотни метров | сотни метров |
скорость излучения | 20 000 км/с | 40 000 км/с | 300 000 км/с | 300 000 км/с | 300 000 км/с |
ионизация, пар на 1 см пробега | 30 000 | от 3000 до 5000 | от 40 до 150 | от 3 до 5 | от 3 до 5 |
биологическое действие радиации | высокое | высокое | среднее | низкое | низкое |
Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.
Коэффициент k | |
Вид излучения и диапазон энергий | Весовой множитель |
Фотоны всех энергий (гамма излучение) | 1 |
Электроны и мюоны всех энергий (бета излучение) | 1 |
Нейтроны с энергией 20 МэВ (нейтронное излучение) | 5 |
Протоны с энергий > 2 МэВ (кроме протонов отдачи) | 5 |
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) | 20 |
Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.