Физика что нужно знать

ОСНОВЫ ФИЗИКИ ДЛЯ ЧАЙНИКОВ

В настоящее время нет ни одной естественнонаучной или технической области, где в той или иной степени не использовались бы достижения физики. А потому, единственная возможность узнать, как связаны между собой различные области науки и техники, это изучение основ физики. В то же время это и уникальная возможность познакомиться с новыми достижениями физики и их влиянием на другие области науки и техники. Предлагаемый вашему вниманию курс «Физика для чайников» на образовательном ресурсе FIZI4KA.RU удачно преподносит основы физики с нуля, неизменно востребованные все новыми поколениями.

Физика что нужно знать

Курс «Физика для чайников» — это не просто учебник, а интерактивный самоучитель по физике для начинающих, который доступен каждому любознательному и трудолюбивому школьнику и тем более студенту. От большинства учебников по физике FIZI4KA выделяется по пяти аспектам:

Все эти неоспоримые достоинства делают курс «физика для чайников» незаменимым пособием для самообразования или дополнительного чтения.

Во всех случаях, когда это возможно, законы физики выводятся из основных принципов; таким образом, всюду подчеркивается различие между основными принципами и следствиями из них. В курсе прослеживаются взаимосвязи различных областей физики (а также науки и техники). Независимые на первый взгляд разделы воссоединяются друг с другом и образуют единую картину. При введении каждого нового «закона», например закона магнитном силы, действующей на движущийся заряд, или закона равнораспределения энергии, мы стремимся разъяснить, действительно ли это новый закон, или же его можно вывести, используя уже известным материал. В большинстве случаев, проделав простые действия, удается проследить логическую структуру и замечательное единство всего того, что в противном случае выглядело бы просто как энциклопедическое собрание разнообразных явлений и законов.

Некоторых читателей может смутить рассмотрение в этом курсе таких актуальных вопросов современной физики, как нейтронные звезды, черные дыры, энергия Ферми, сохранение четности, кварки, голография, замедление времени, которые слишком сложны для начинающих студентов. Но мы сочли нужным включить их курс «Физика для чайников«, поскольку все эти вопросы захватывают воображение студентов, узнающих о них из средств массовой информации; это означает, что читатели хотели бы ближе познакомиться с этими проблемами в курсе физики, тем более многие из вопросов современном физики легче усваиваются студентами, чем то, что кроется за третьим законом Ньютона.

Стоит также отметить, что в «физике для начинающих» предпринята попытка связать изучение физики с изучением других областей науки, а также обратить внимание на взаимосвязь науки и общества. Например, центральной темой, пронизывающей весь курс, является проблема сокращения мировых ресурсов энергии. Обсуждаются и другие общественные, политические, экономические и философские предпосылки научного знания. Предлагаемый курс основ физики предназначен не только для того, чтобы заложить теоретические основы будущей профессии студентов: он призван также способствовать общему культурному росту человека, который будет занят в сфере науки и техники!

Источник

Теория по физике

Рассмотрим структуру экзаменационной работы

Она состоит из 32 заданий, распределенных по двум блокам. Для понимания более удобно расположить всю информацию в таблице.

ЗаданияВид ответа
1–4, 8–10, 14, 15, 20, 25–27В виде целого числа или десятичной дроби
5–7, 11, 12, 16–18, 21, 23, 24В виде последовательности двух цифр
19, 22В виде двух чисел
28–32В виде подробного ответа с описанием алгоритма решения

Вся теория ЕГЭ по физике по разделам

Да, информации много, объем очень приличный. Для того чтобы успешно сдать ЕГЭ по физике, нужно очень хорошо владеть всем школьным курсом по предмету, а изучается он целых пять лет. Потому за несколько недель или даже за месяц подготовиться к этому экзамену не удастся. Начинать нужно уже сейчас, чтобы во время испытаний чувствовать себя спокойно.

К сожалению, предмет физика вызывает трудности у очень многих выпускников, особенно у тех, кто выбрал его в качестве профилирующего предметы для поступления в вуз. Эффективное изучение этой дисциплины не имеет ничего общего с зазубриванием правил, формул и алгоритмов. Кроме того, усвоить физические идеи и почитать как можно больше теории недостаточно, нужно хорошо владеть математической техникой. Зачастую неважная математическая подготовка не дает школьнику хорошо сдать физику.

Как же готовиться?

Всё очень просто: выбирайте теоретический раздел, внимательно читайте его, изучайте, стараясь понять все физические понятия, принципы, постулаты. После этого подкрепляйте подготовку решением практических задач по выбранной теме. Используйте онлайн тесты для проверки своих знаний, это позволит сразу понять, где вы делаете ошибки и привыкнуть к тому, что на решение задачи даётся определенное время. Желаем вам удачи!

Источник

Книга «Теоретический минимум. Все, что нужно знать о современной физике»

Физика что нужно знать «Теоретический минимум» — книга для тех, кто пропускал уроки физики в школе и институте, но уже жалеет об этом. Хотите разобраться в основах естественных наук и научиться думать и рассуждать так, как это делают современные физики? В оригинальной и нестандартной форме известные американские ученые Леонард Сасскинд и Джордж Грабовски предлагают вводный курс по математике и физике для пытливых умов.

В отличие от прочих научно-популярных книг, пытающихся доступно объяснить законы физики, ловко уклоняясь от уравнений и формул, авторы учат читателя классическим основам естественных наук. Книга предлагает собственную оригинальную методику обучения, дополненную видео-лекциями, публикуемыми на сайте theoreticalminimum.com.

Лекция 9. Фазовая жидкость и теорема Гиббса—Лиувилля

Ленни любил смотреть на реку, особенно следить за мелкими соринками, плывущими по поверхности. Он пытался представить себе, как они будут двигаться между камнями или попадая в водовороты. Но течение реки как целого — совокупное движение большого объема воды, с разделяющимися, сходящимися и обгоняющими друг друга потоками, — это было за пределами его понимания.

Сконцентрироваться на конкретных начальных условиях и следить за отдельной траекторией в фазовом пространстве — это очень естественно для классической механики. Но есть и более широкий взгляд, который охватывает целое семейство траекторий. Вместо того чтобы помещать кончик карандаша в некую точку фазового пространства и прослеживать оттуда единственную траекторию, попытаемся сделать нечто более амбициозное. Представим, что у нас бесконечное число карандашей, и используем их так, чтобы однородно заполнить точками фазовое пространство (под однородностью я имею в виду то, что плотность точек в пространстве q, p везде одинакова). Считайте эти точки частицами, составляющими воображаемую жидкость, заполняющую фазовое пространство.

Пусть теперь каждая точка перемещается согласно гамильтоновым уравнениям движения:
Физика что нужно знать
Физика что нужно знать
чтобы наша жидкость бесконечно текла по фазовому пространству.

Гармонический осциллятор — хороший начальный пример. В лекции 8 мы видели, что каждая точка движется по круговой орбите с постоянной угловой скоростью. (Напомню, что мы говорим о фазовом, а не о координатном пространстве. В координатном осциллятор движется взад и вперед в одном измерении.) Вся жидкость в целом совершает твердотельное движение, равномерно вращаясь вокруг начала координат фазового пространства.

Теперь вернемся к общему случаю. Если число координат равно N, то фазовое пространство и жидкость в нем 2N-мерные. Жидкость течет, но весьма специ­фическим образом. У ее потока есть особые свойства. Одно из них состоит в том, что если точка стартует с определенной энергией — то есть при заданном значении H(q, p), — то она сохраняет это значение энергии. Поверхности постоянной энергии (например, с энергией равной E) определяются уравнением H(q, p) = E. (2)

Для каждого значения E у нас есть одно уравнение с 2N переменными фазового пространства, которое определяет поверхность размерностью 2N – 1. Другими словами, для каждого значения E имеется своя поверхность; когда вы пробегаетесь по всем значениям E, эти поверхности заполняют все фазовое пространство. Можно рассматривать фазовое пространство с поверхностями, заданными уравнением (2), как карту изолиний (рис. 1), на которой горизонтали представляют не высоту, а значения энергии. Если точка жидкости находится на определенной поверхности, она останется на ней вечно. Это закон сохранения энергии.

Фазовое пространство гармонического осциллятора двумерно, а энергетические поверхности являются окружностями:
Физика что нужно знать
В общем случае энергетические поверхности механической системы слишком сложны для визуализации, но принцип остается тем же самым: энергетические поверхности заполняют фазовое пространство как слои, а поток движется так, что точки остаются на той поверхности, на которой были изначально.

Здесь хочется остановиться и напомнить, о чем говорилось в самой первой лекции, где обсуждались монеты, кости и простейшие представления о законах движения. Мы описывали эти законы с помощью набора стрелок, соединяющих точки, которые представляют состояния системы. Мы также объяснили, что законы бывают допустимые и недопустимые, причем допустимые — обратимы. Суть в том, что каждая точка должна иметь ровно одну входящую стрелку и ровно одну исходящую. Если хотя бы в одной точке число входящих стрелок превосходит число исходящих (это называется конвергенцией), то такой закон необратим. То же самое относится и к случаю, когда исходящих стрелок больше, чем входящих (это называется дивергенцией). Как дивергенция, так и конвергенция стрелок нарушают обратимость и запрещены. До сих пор мы не возвращались к этой линии рассуждений. Теперь время пришло.

Поток и дивергенция

Рассмотрим некоторые простые примеры течения жидкости в обычном пространстве. Забудем на время о фазовом пространстве и просто рассмотрим обычную жидкость, движущуюся в привычном трехмерном пространстве с осями, обозначенными как x, y, z. Поток можно описать полем скоростей. Поле скоростей
Физика что нужно знать
определяется заданием в каждой точке пространства вектора скорости (рис. 2).

Можно также описать поле скоростей компонентами скорости:
Физика что нужно знать
Также скорость в точке может зависеть от времени, но давайте будем считать, что этой зависимости нет. В этом случае течение называется стационарным.
Физика что нужно знать
Рис. 2. Поле скоростей

занимает одинаковый объем. Это также значит, что плотность жидкости — число молекул в единице объема — везде одинакова и неизменна во времени. Кстати, термин «несжимаемость» означает также и нерастяжимость. Иными словами, жидкость не может увеличиваться в объеме. Рассмотрим небольшую кубическую ячейку, заданную условиями:
Физика что нужно знать
Несжимаемость подразумевает, что число точек жидкости в каждой такой ячейке постоянно. Это также означает, что суммарный поток жидкости, входящий в ячейку (в единицу времени), должен быть нулевым. (Сколько точек потока входит, столько же и выходит.) Рассмотрим число молекул, проходящих в единицу времени через поверхность ячейки x = x0. Оно будет пропорционально скорости потока на этой поверхности vx(x0).

Если скорость vx одинакова в x0 и в x0 + dx, то поток в ячейку через x = x0 будет таким же, как поток из нее через x = x0 + dx. Но если vx меняется на протяжении ячейки, то эти два потока окажутся несбалансированными. Совокупный поток, идущий в ячейку через эти две грани, будет пропорционален
Физика что нужно знать
Точно такие же рассуждения применимы к граням y0 и y0 + dy, а также z0 и z0 + dz. Если все их сложить, то суммарный поток молекул внутрь ячейки (приток минус отток) составит
Физика что нужно знать
Комбинация производных в скобках носит название дивергенции векторного поля
Физика что нужно знатьи обозначается
Физика что нужно знать
Дивергенция отражает степень рассеяния молекул, или увеличения занимаемого ими объема. Если жидкость несжимаема, этот объем не должен меняться, а значит, дивергенция должна быть равна нулю.

Один из способов понимания несжимаемости состоит в том, чтобы представлять себе каждую молекулу или точку как занимающую объем, который не может быть изменен. Их нельзя сжать в меньший объем, они не исчезают и не появляются ниоткуда. Немного подумав, можно увидеть, как похожи несжимаемость и обратимость. В примерах, которые мы разбирали в лекции 1, стрелки тоже определяли своего рода поток. И по сути этот поток был несжимаемым, по крайней мере если он был обратим. Естественный вопрос, который отсюда вытекает: является ли поток в фазовом пространстве обратимым? Ответ — да, если система удовлетворяет уравнениям Гамильтона. И теорема, выражающая эту несжимаемость, называется теоремой Лиувилля.

Вернемся к потоку жидкости в фазовом пространстве и рассмотрим компоненты скорости жидкости в каждой точке фазового пространства. Нет надобности говорить, что фазовая жидкость не является трехмерной в координатах x, y, z. Она является 2N-мерной жидкостью в координатах pi, qi.

Таким образом, имеется 2N компонент поля скоростей — по одной для каждой координаты q и каждой координаты p. Обозначим их
Физика что нужно знать
Понятие дивергенции, выраженное уравнением (4), легко обобщается на любое число измерений. В трех измерениях — это сумма производных от компонент скорости по соответствующим направлениям. Точно так же она определяется для любого числа измерений. В случае фазового пространства дивергенция потока — это сумма 2N членов:
Физика что нужно знать
Если жидкость несжимаема, то это выражение должно быть равно нулю. Чтобы вычислить его, нужно знать компоненты поля скоростей — они, конечно, не что иное, как скорости частиц фазовой жидкости.

Вектор течения в данной точке идентифицируется со скоростью воображаемой частицы в этой точке. Иными словами,
Физика что нужно знать
Причем Физика что нужно знать
— это как раз те величины, которые входят в уравнения Гамильтона (1):
Физика что нужно знать
Физика что нужно знать
Все, что нужно сделать, — это подставить уравнения (6) в формулу (5) и получить
Физика что нужно знать
Вспомнив, что вторая производная вида
Физика что нужно знать

не зависит от порядка дифференцирования, мы поймем, что члены уравнения (7) попарно в точности уничтожают друг друга:
Физика что нужно знать

Итак, фазовая жидкость несжимаема. В классической механике несжимаемость фазовой жидкости называется теоремой Лиувилля, хотя она не имеет почти никакого отношения к французскому математику Джозефу Лиувиллю. Первым в 1903 году ее опубликовал великий американский физик Джозайя Уиллард Гиббс, и она также известна как теорема Гиббса—Лиувилля.

Мы определили несжимаемость жидкости, потребовав, чтобы общее количество жидкости, входящей в любую малую ячейку, было равно нулю. Существует другое строго эквивалентное определение. Представим себе объем жидкости в некоторый момент времени. Этот объем может иметь любую форму: сферическую, кубическую, каплеобразную — какую угодно. Теперь проследим за движением всех точек этого объема. Спустя некоторое время капля жидкости будет находиться в другом месте и иметь другую форму. Но если жидкость несжимаема, объем капли останется таким же, каким он был первоначально. Так что можно переформулировать теорему Лиувилля: объем, занимаемый каплей фазовой жидкости, сохраняется во времени.

Рассмотрим пример гармонического осциллятора, в котором жидкость вращается вокруг начала отсчета. Очевидно, что капля сохраняет объем, поскольку все ее движение сводится к твердотельному вращению. Форма капли остается неизменной, но это имеет место именно для гармонического осциллятора. Рассмотрим другой пример. Допустим, гамильтониан имеет вид H = pq.

Возможно, это покажется вам непохожим на гамильтониан, хотя он совершенно корректный. Выведем уравнения движения:
Физика что нужно знать
Согласно этим уравнениям, q экспоненциально возрастает со временем, а p с такой же скоростью экспоненциально убывает. Другими словами, поток прижимает жидкость к оси p, одновременно и в той же степени расширяя ее вдоль оси q. Любая капля растягивается вдоль q и сжимается вдоль p. Очевидно, что капля испытывает колоссальные деформации, но ее фазовый объем не меняется.

Теорема Лиувилля — это ближайший вообразимый аналог того типа необратимости, который мы обсуждали в лекции 1. В квантовой механике теорема Лиувилля заменяется квантовой версией, которая называется унитарностью. Унитарность еще больше похожа на то, что мы обсуждали в лекции 1, но это тема следующего выпуска «Теоретического минимума».

Для читателей данного блога скидка 20% по купону — Теоретический минимум

Источник

Глава 2. Постигаем основы физики

Физика что нужно знать

Представьте себе, что вы бьетесь над решением почти неразрешимой физической задачи и пытаетесь найти подход к ней. Задача очень сложна и многим так и не поддалась. Внезапно в результате озарения все становится предельно ясным.

“Ну конечно, — говорите вы, — это же элементарно! Мяч в максимальной точке поднимется на высоту 9,8 м”.

Глядя на правильное решение задачи, преподаватель одобрительно кивнет головой, а вы, окрыленные успехом, с удвоенной силой приметесь за решение следующей задачи.

В физике, как и в любой другой области деятельности, заслуженный успех и слава достаются только в результате упорного труда. Не бойтесь работы, ведь цель оправдывает средства. По окончании чтения этого курса вы настолько овладеете предметом, что сможете решать те задачи, которые прежде казались вам просто неразрешимыми.

Эта глава начинается с описания некоторых базовых сведений и навыков, которые потребуются для освоения следующих глав. В ней описываются способы научных измерений, научные обозначения, базовые сведения по алгебре и тригонометрии, а также правила оценки значимости величин и точности полученных результатов. Полагаясь на эти твердые и незыблемые сведения, вы сможете овладеть всем другим материалом в этом курсе.

Не бойтесь, это всего лишь физика

Многих от слова “физика” бросает в дрожь. Легко прийти в ужас, если представить себе физику, как нечто совершенно чуждое с высосанными из пальца абстрактными числами и правилами. Однако истина заключается в том, что физика призвана помочь нам понять реальный мир. Погружение в физику — это увлекательное путешествие, которое совершает человечество в попытке понять устройство мира.

Хотя может показаться справедливым и обратное утверждение, но нет никакой загадки в целях и методах физики: физика просто моделирует мир. Идея заключается в том, чтобы создать мысленные модели, описывающие поведение мира: как бруски скользят по наклонной плоскости, как образуются и светят звезды, как черные дыры захватывают свет, что происходит при столкновении автомобилей и т.п. В момент создания модели она совсем не содержит чисел, а только описывает самую суть явления. Например, звезда образуется из этого слоя, потом из того слоя, дальше возникает реакция, за ней другая и — бац, вот вам новая звезда!

По мере совершенствования модели ее описание становится количественным, и именно с этого момента изучения физики у учеников и студентов возникает большинство проблем. С изучением физики было бы меньше проблем, если бы можно было просто сказать: “Тележка, скатываясь по наклонной плоскости, движется все быстрее и быстрее”. Но для полного физического описания этого явления недостаточно сказать, что тележка движется быстрее, нужно сказать, насколько именно быстрее движется тележка.

Суть физики заключается в следующем: сделать наблюдение, создать модель для имитации явления, добавить математическое описание и — все! В таком случае вы сможете предсказывать развитие событий в реальном мире. Математика нужна, чтобы занять более уверенную позицию в реальном физическом мире и чтобы помочь в исследовании принципов и причин такого явления.

Учитесь у гения: не отгораживайтесь математикой от физики

Ричард Фейнман, лауреат Нобелевской премии по физике 1965 года “За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц*, в 1950-1960 годах заработал уникальную репутацию среди физиков. Свой метод исследования он объяснял так: нужно мысленно “на пальцах” описать задачу с указанием аналогии из реальной жизни, тогда как другие стремились сразу перейти к математическому описанию. Когда ему встречалась очень длинная теория с подозрительным результатом, он стремился найти какое-то физическое явление, которое можно было бы объяснить этой теорией. Если в своих размышлениях он достигал точки, в которой ему становилось очевидно несоответствие предлагаемой теории и факта реального мира, он сразу же заявлял: “Это не верно, проблема в том-то и том-то”. Он всегда оказывался прав, что озадачивало многих его коллег и буквально лишало их дара речи. Многие современники считали и считают его настоящим гением. Хотели бы стать супергением? Поступайте так же: не дайте математике запугать вас и скрыть от вас физику.

Всегда имейте в виду, что реальный мир находится на первом месте, а математика — на втором. Для успешного решения физической задачи важно не утонуть в математических выкладках и сохранить глобальное видение явления, чтобы удержать контроль над ситуацией. После обучения физике студентов колледжа в течение многих лет я столкнулся с одной из самых крупных проблем в изучении физики: студенты часто напрочь запуганы математикой.

А теперь зададимся одним из наиболее важных вопросов: для чего вам нужна физика? Если вы хотите продолжить свою карьеру в физике или смежной области, то ответ прост: вам нужно знать физику для “ежедневного применения”. Но даже если вы не планируете карьеру физика, вы все еще можете извлечь достаточно много пользы от овладения этим предметом. Многие сведения из вводного курса физики можно применять на практике. Но еще более важным преимуществом овладения физикой является не ее применение на практике, а приобретенные навыки решения задач. Решение физических задач учит вас настойчивости, умению учитывать все варианты решения и выбирать наиболее оптимальный, а также поиску простейшего метода решения.

Измеряем окружающий мир и делаем предсказания

Физики прекрасно умеют измерять и предсказывать явления реального мира. В конце концов, именно потому физика оказалась такой жизнеспособной. Измерение является начальной точкой, на основе которой создается модель явления и делаются предсказания. Множество мер предусмотрено для измерения длины, веса, времени и т.д. Овладение искусством измерения величин является залогом успешного изучения физики.

Для достижения согласия в измерениях физики и математики сгруппировали меры в системы единиц измерения. Наиболее распространенными являются система СГС (сантиметр-грамм-секунда) и СИ (система интернациональная). Например, в табл. 2.1 показаны основные единицы измерения в системе СГС. (Пока не стоит напрягаться и запоминать эти единицы, поскольку мы вернемся к ним позже.)

Физика что нужно знать

В табл. 2.2 перечислены основные единицы измерения в системе СИ и их сокращения.

Физика что нужно знать

Никогда не смешивайте единицы из разных систем

Поскольку в разных системах используются разные единицы длины, то в зависимости от используемой системы можно получать разные численные значения. Например, для измерения глубины плавательного бассейна можно использовать систему СИ, с помощью которой ответ будет выражен в метрах; в системе СГС она будет представлена в сантиметрах, а в еще менее популярной системе — в дюймах.

Предположим, однако, что вам нужно узнать давление воды на дне бассейна. Измеряем глубину бассейна и подставляем найденное значение в формулу давления (см. главы 14 и 15). Однако в этом месте нужно обратить пристальное внимание на используемую систему единиц измерения.

Всегда помните, что в процессе решения задачи нужно использовать одну и ту же систему единиц измерения. Если вы начали решать задачу с помощью системы СИ, то придерживайтесь ее до конца. Иначе вместо правильного ответа вы получите бессмысленную смесь разных величин, поскольку в таком случае вы фактически приравниваете величины, измеренные с помощью разных мерок. Эта ситуация подобна ошибке кулинара, когда, читая рецепт, вместо двух ложек муки он использует два стакана.

В течение многих лет мне приходилось видеть, как студенты ошибочно смешивали величины, полученные с помощью разных систем измерения, и не могли понять причину неправильного решения. Конечно, их намерения были совершенно благородны, идеи прекрасны, выводы уравнений безупречны, а численные значения в ответах получались неверными. Например, в ответе для величины ускорения приведено значение 15, а студент получил 1500. Оказывается, в ответе используется система СИ и ответ дан в метрах на секунду в квадрате, а студент решал задачу с помощью системы СГС и получил правильный ответ, но выраженный в сантиметрах на секунду в квадрате. Численный ответ получился другим именно из-за использования другой системы единиц измерения.

От метров к дюймам и обратно: преобразуем значения из разных единиц измерения

Физики используют разные системы измерения для записи измеренных значений. Но как преобразовать эти значения при переходе от одной системы к другой? При решении физических задач часто приходится иметь дело с величинами, выраженными в разных системах: одни величины могут быть измерены в метрах, другие — в сантиметрах, а третьи — даже в дюймах. Не пугайтесь. Нужно просто научиться их преобразовывать из одной системы в другую. Как проще всего это сделать? Используйте коэффициенты преобразования! Рассмотрим следующую задачу.

Допустим, что за 3 дня вы преодолели расстояние 4680 миль. Впечатляет. Подсчитаем среднюю скорость движения. Как показано в главе 3, в физике скорость определяется так же, как и в жизни: нужно пройденное расстояние поделить на время. Итак, с помощью приведенной ниже формулы получим конечный результат:

Физика что нужно знать

Полученный ответ выражен в нестандартных единицах измерения. Обычно для скорости используют другие единицы, например мили в час (в США), а потому нам придется преобразовать полученный ответ в более понятные единицы.

Для преобразования величин из одной системы единиц измерения в другую нужно использовать коэффициенты преобразования. Коэффициент преобразования — это значение, после умножения на которое все нежелательные единицы измерения устраняются, а остаются только нужные.

В предыдущем примере результат получен в милях в день и записан как миль/день. Для вычисления количества миль в час нужно использовать коэффициент преобразования, который позволит исключить дни и оставить часы, т.е. нужно умножить на величину “количество дней в час” (дней/час) и таким образом избавиться от дней:

Физика что нужно знать

Коэффициентом преобразования в данном случае является количество дней в час. После подстановки всех значений, упрощения полученного выражения и умножения на коэффициент преобразования получим следующее выражение:

Физика что нужно знать

Слова “секунда” (или “метр”) можно рассматривать как некие переменные \( x \) или ​ \( y \) ​, которые исключают друг друга из соотношения, если встречаются одновременно в числителе и знаменателе.

Если числа затуманивают голову, взгляните на единицы измерения

Хотите узнать об одной хитрости, которую применяют учителя при решении задач по физике? Внимательно следите за единицами измерения! Мне приходилось тысячи раз решать задачи “лицом к лицу” со студентами, и я убедился в том, что преподаватели всегда пользуются этим трюком.

Допустим, что нужно определить скорость по заданному расстоянию и времени. Эта задача решается практически мгновенно, потому что всем известно, что расстояние (например, выраженное в метрах), деленное на время (например, выраженное в секундах), дает скорость (выраженную в метрах в секунду).

Однако в более сложных задачах может быть гораздо больше величин, например масса, расстояние, время и т.д. В таких случаях приходится вылавливать в формулировке задачи численные значения и единицы измерения. Как определить количество энергии? Как показано в главе 10, единица энергии выражается как единица массы, умноженная на квадрат единицы длины и деленная на квадрат единицы времени. Если вы сможете легко выделить величины и их единицы измерения, то сможете не запутаться и представить их в решении.

На самом деле единицы измерения — это наши друзья. Они упрощают нам жизнь, в общем, и путь к решению, в частности. Потому если вы чувствуете, что “погрязли» в числах, то проверьте используемые единицы измерения.

Обратите внимание, что в сутках 24 часа, т.е. коэффициент преобразования равен 1/24. Потому преобразование единиц измерения (дней на часы) происходит при умножении величины 1560 миль/день на этот коэффициент преобразования.

При исключении дней во время умножения отношений получается следующий ответ:

Физика что нужно знать

Итак, средняя скорость равна 65 милям в час, что достаточно быстро, если ехать с такой средней скоростью на протяжении 3 суток!

Совсем не обязательно использовать коэффициент преобразования. Если инстинктивно вам понятно, что для преобразования единицы измерения “миль в день” в единицу “миль в час” нужно поделить числовое значение на 24, то нечего такой огород городить. Но если вы все же пребываете в сомнениях, то лучше все-таки найти и использовать все нужные коэффициенты преобразования. Лучше пройти этот длинный путь преобразования единиц измерения, чем поспешить и людей насмешить. Мне довольно часто встречались студенты, которые умели успешно решать задачи, но не справлялись с такими преобразованиями.

Преобразование суток в часы выполняется легко и просто, поскольку всем известно, что в сутках содержится 24 часа. Однако не все преобразования единиц измерения столь очевидны. Далеко не всем хорошо известны системы единиц СГС и СИ. Потому всегда полезно иметь под рукой табличку преобразований единиц из одной системы в другую, как, например, табл. 2.3. (Расшифровка приведенных здесь сокращений приводится в табл. 2.1 и 2.2.)

Физика что нужно знать

Поскольку разница между величинами в двух этих системах практически всегда кратна степеням 10, то преобразование величин выполняется достаточно просто. Например, если шар падает с высоты 5 метров, но вам нужно выразить расстояние в сантиметрах, то для этого достаточно умножить результат на отношение 100 сантиметров/1 метр:

Физика что нужно знать

А как преобразовать величины в единицы измерения Английской системы мер на основе фута-фунта-дюйма (foot-pound-inch — FPI)? Нет проблем. Все необходимые сведения о таких преобразованиях приведены в шпаргалке. Держите ее под рукой при чтении этой книги или при решении задач.

Исключаем нули: представляем числа в экспоненциальном виде

Физики часто мысленно погружаются в самые темные глубины и отправляются в самые далекие дали, а потому вынуждены использовать чудовищно большие или малые величины. Например, расстояние от Солнца до Плутона приблизительно равно 5 890 000 000 000 метрам. Что делать с таким огромным количеством метров и нулей? Физики для более удобной работы с такими очень большими или очень малыми величинами используют экспоненциальное представление чисел. В этом представлении нули выражаются в степенях 10. Чтобы определить степень, нужно подсчитать все цифры справа налево до первой цифры (первая цифра будет находиться перед запятой в итоговом экспоненциальном представлении). Итак, расстояние от Солнца до Плутона можно выразить следующим образом:

Физика что нужно знать

Экспоненциальное представление чисел также используется для записи очень маленьких значений, где степень имеет отрицательный знак. В таком случае нужно подсчитать количество цифр слева направо от десятичной запятой до места после первой ненулевой цифры (опять первая ненулевая цифра будет находиться перед запятой в итоговом экспоненциальном представлении):

Физика что нужно знать

Если число больше 10, то в экспоненциальном представлении оно будет иметь положительную степень, а если меньше 1, то — отрицательную. Как видите, операции с очень большими или малыми числами в экспоненциальном представлении выполняются гораздо проще. Именно поэтому во многих калькуляторах встроена возможность такого представления чисел.

Проверяем точность измерений

Точность имеет огромную важность для измерения и анализа физических параметров. Нельзя считать, что измерение стало более точным, если к измеренной величине необоснованно добавить дополнительное количество значащих цифр. Кроме того, всегда следует указывать оценку ошибки измерения с помощью знака ±. В следующих разделах более подробно описываются указания точности измерения физических величин.

Определяем значащие цифры

В измеренной величине значащими цифрами считаются те, которые были фактически получены в ходе измерения. Так, например, если после измерения ученые сообщили, что ракета прошла расстояние 10,0 за 7,00 секунд, то в результате этих измерений получено по три значащие цифры.

Чтобы определить скорость ракеты, эти данные можно ввести в калькулятор и после деления 10,0 на 7,00 получить, казалось бы, очень точный результат: 1,428571429. Но это совсем не так: если после измерения расстояния и времени для них получено всего по три значащие цифры, то в результате манипуляций с числами точность измерений не может возрасти до десяти значащих цифр. Ведь после измерения расстояния с помощью линейки с миллиметровыми делениями нельзя утверждать, что результат получен с точностью до нескольких микрон.

В примере с ракетой получено только по три значащие цифры, потому величина скорости равна 1,43, а не 1,428571429. Если записать больше цифр, то в таком случае будет сделано ничем необоснованное заявление о повышенной точности измерений, которой не было на самом деле.

При округлении числа нужно учитывать следующее простое правило. Если цифра справа от округляемой цифры больше или равна 5, то округление выполняется в сторону увеличения, а если эта цифра меньше 5, то округление выполняется в сторону уменьшения. Например, число 1,428 округляется до 1,43, а число 1,42 — до 1,4.

А что если в результате двух измерений ракета преодолела 10,0 метров за 7,0 секунд? Одно число имеет три, а другое — две значащих цифры. В таком случае нужно учитывать перечисленные ниже правила округления чисел с разным количеством значащих цифр.

В примере с ракетой, где нужно поделить расстояние на время, результат будет иметь только две значащие цифры, т.е. правильный ответ равен 1,4 м/с.

Например, при сложении чисел 3,6, 14 и 6,33 получим:

Физика что нужно знать

Здесь нужно округлить результат до целого числа, поскольку число 14 не имеет значащих цифр после десятичной запятой, т.е. до 24.

По соглашению нули, используемые доя заполнения пустых мест до или после десятичной запятой, не считаются значащими цифрами. Например, по умолчанию число 3600 имеет только две значащие цифры. Но если некая величина измерена с высокой точностью и действительно равна 3600, то для подчеркивания точности измерения ее иногда приводят с указанием знака, отделяющего целую часть числа от десятичной дроби 3600,0.

Оцениваем точность

Физики при записи результатов измерений не всегда полагаются только на значащие цифры, и иногда можно встретить следующую запись:

Физика что нужно знать

Символ ± обозначает оценку физика возможной ошибки измерения. Физик сообщает таким образом, что действительное значение измеряемой величины находится в промежутке от 5,36+0,05 (т.е. 5,41) до 5,36-0,05 (т.е. 5,31) метров. (Это не значит, что именно настолько измеренное значение отличается от “истинного”. Это просто оценка точности измерения, т.е. насколько надежно это измерение.)

Вспоминаем алгебру

В физике используется довольно много уравнений, и чтобы умело работать с ними, нужно овладеть основными приемами манипулирования частями уравнения. Сейчас самое время напомнить некоторые основные сведения из курса алгебры.

Следующее уравнение выражает расстояние ​ \( s \) ​, которое проходит объект с ускорением ​ \( a \) ​ за время ​ \( t \) ​:

Физика что нужно знать

Допустим, что нужно определить ускорение по известному времени движения и пройденному расстоянию. Манипулируя отдельными членами уравнения, получим следующее соотношение:

Физика что нужно знать

Для получения такого соотношения для ​ \( a \) ​ нужно обе стороны предыдущего выражения умножить на 2 и поделить на ​ \( t^2 \) ​.

Физика что нужно знать

Нужно ли запоминать все эти три варианта одного уравнения? Конечно же, нет. Достаточно запомнить только один вариант, который связывает эти три величины (расстояние, ускорение и время), а потом извлекать из него соотношение для нужной переменной. (В шпаргалке приводится несколько основных соотношений, которые следует помнить.)

Немного тригонометрии

Кроме базовых сведений из алгебры для решения физических задач необходимо также иметь некоторые сведения из тригонометрии, например о синусе, косинусе, тангенсе. Для этого нужно запомнить простые соотношения на основе прямоугольного треугольника, который показан на рис. 2.1 во всей своей красе.

Физика что нужно знать

Для определения тригонометрических величин с помощью треугольника на рис. 2.1 нужно поделить длину одной стороны на длину другой, как показано ниже:

Физика что нужно знать

Эти простые соотношения пригодятся нам при изучении векторов в главе 4 и при решении многих задач по физике.

Зная величину одного острого угла и длину одной стороны этого треугольника, можно найти величину другого угла и длины двух других сторон. Ниже приводится несколько примеров, которые по мере изучения курса станут для вас просто родными, но которые вовсе не нужно запоминать наизусть. Если вы знаете предшествующие соотношения для синуса, косинуса и тангенса, то вы сможете легко вывести приведенные ниже соотношения:

Физика что нужно знать

Физика что нужно знать

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *