Физический носитель что это

Физический носитель что это

Носители информации

Носитель информации (информационный носитель) – любой материальный объект, используемый человеком для хранения информации. Это может быть, например, камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), фотоматериал, пластик со специальными свойствами (напр., в оптических дисках) и т. д., и т. п.

Носителем информации может быть любой объект, с которого возможно чтение (считывание) имеющейся на нём информации.

Носители информации применяются для:

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (например, бумажные листы помещают в обложку, микросхему памяти – в пластик (смарт-карта), магнитную ленту – в корпус и т. д.).

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом:

Электронные носители имеют значительные преимущества перед бумажными (бумажные листы, газеты, журналы):

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск – запоминающее устройство (устройство хранения информации), основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферромагнитного материала – магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

Накопители оптических дисков делятся на три вида:

Основные характеристики оптических дисководов:

В настоящее время широкое распространение получили 52х-скоростные CD-дисководы – до 7,8 Мбайт/сек. Запись CD-RW дисков производится на меньшей скорости (например, 32х-кратной). Поэтому CD-дисководы маркируются тремя числами «скорость чтения х скорость записи CD-R х скорость записи CD-RW» (например, «52х52х32»).
DVD-дисководы также маркируются тремя числами (например, «16х8х6»).

При соблюдении правил хранения (хранение в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Флеш-память (flash memory) – относится к полупроводникам электрически перепрограммируемой памяти (EEPROM). Благодаря техническим решениям, невысокой стоимости, большому объёму, низкому энергопотреблению, высокой скорости работы, компактности и механической прочности, флеш-память встраивают в цифровые портативные устройства и носители информации. Основное достоинство этого устройства в том, что оно энергонезависимое и ему не нужно электричество для хранения данных. Всю хранящуюся информацию во флэш-памяти можно считать бесконечное количество раз, а вот количество полных циклов записи, к сожалению, ограничено.

Источник

Виды носителей информации, их классификация и характеристики

Физический носитель что это

Что такое носитель информации

Носитель информации – это физический объект, свойства и характеристики которого используются для записи и хранения данных. Примерами носителей информации являются пленки, компактные оптические диски, карты, магнитные диски, бумага и ДНК. Носители информации различаются по принципу осуществления записи:

Классифицируются хранилища данных по форме сигнала:

Первые носители информации

История записи и хранения данных началась 40 тысяч лет назад, когда Homo sapiens пришла идея делать эскизы на стенах своих жилищ. Первое наскальное творчество находится в пещере Шове на юге современной Франции. Галерея содержит 435 рисунков, изображающих львов, носорогов и других представителей фауны позднего палеолита.

Физический носитель что это

В Британском музее есть туппум, содержащий информацию о финансовой сделке, произошедшей в Месопотамии во времена правления царя Ассурбанипала. Офицер из свиты принца подтверждал продажу рабыни Арбелы. Табличка содержит его именную печать и записи о ходе операции.

Физический носитель что это

Кипу и папирус

С III тысячелетия до нашей эры в Египте начинают использовать папирус. Запись данных происходит на листы, изготовленные из стеблей растения papyrus. Портативный и легкий вид носителей информации быстро вытеснил свою глиняную предшественницу. На папирусе пишут не только египтяне, но и греки, римляне, византийцы. В Европе материал использовали до XII века. Последний документ, написанный на папирусе, – папский декрет 1057 года.

Одновременно с древними египтянами, на противоположном конце планеты инки изобретают кипу, или «говорящие узелки». Информация фиксировалась с помощью завязывания узлов на прядильных нитях. Кипу хранили данные о налоговых сборах, численности населения. Предположительно использовалась нечисловая информация, но ученым ее только предстоит разгадать.

Физический носитель что это

Бумага и перфокарты

С XII до середины XX века основным хранилищем данных была бумага. Ее использовали для создания печатных и рукописных изданий, книг, средств масс-медиа. В 1808 году из картона начали делать перфокарты – первые цифровые носители информации. Представляли собой листы картона с проделанными в определенной последовательности отверстиями. В отличие от книг и газет, перфокарты считывались машинами, а не людьми.

Изобретение принадлежит американскому инженеру с немецкими корнями Герману Холлериту. Впервые автор применил свое детище для составления статистики смертности и рождаемости в Нью-Йоркском Совете здравоохранения. После пробных попыток, перфокарты использовали для переписи населения США в 1890 году.

Но сама идея проделывать дырки в бумаге, чтобы записывать информацию, была далеко не новой. Еще в 1800 году перфокарты ввел в обиход француз Джозеф-Мари Жаккард для управления ткацким станком. Поэтому технологический прорыв заключался в создании Холлеритом не перфокарт, а табуляционной машины. Это был первый шаг на пути к автоматическому считыванию и вычислению информации. Компания TMC Германа Холлерита по производству табуляционных машин в 1924 году была переименована в IBM.

Физический носитель что это

OMR-карты

Представляют собой листы плотной бумаги с информацией, записанной человеком в виде оптических меток. Сканер распознает метки и обрабатывает данные. OMR-карты используют для составления опросников, тестов с опциональным выбором, бюллетеней и форм, которые необходимо заполнять вручную.

Технология основана на принципе составления перфокарт. Но машина считывает не сквозные отверстия, а выпуклости, или оптические метки. Погрешность исчислений составляет менее 1 %, поэтому OMR-технологию продолжают использовать государственные учреждения, экзаменационные органы, лотереи и букмекерские конторы.

Перфолента

Цифровой носитель информации в виде длинной бумажной полоски с отверстиями. Перфорированные ленты были впервые использованы Базиле Бушоном в 1725 году для управления ткацким станком и механизирования отбора нитей. Но ленты были очень хрупкими, легко рвались и при этом дорого стоили. Поэтому их заменили на перфокарты.

С конца XIX века перфолента получила широкое применение в телеграфии, для ввода данных в компьютеры 1950-1960 годов и в качестве носителей для мини-компьютеров и станков с ЧПУ. Сейчас бобины с намотанной перфолентой стали анахронизмом и канули в Лету. На смену бумажным носителям пришли более мощные и объемные хранилища данных.

Магнитная лента

Дебют магнитной ленты в качестве компьютерного носителя информации состоялся в 1952 году для машины UNIVAC I. Но сама технология появилась гораздо раньше. В 1894 году датский инженер Вольдемар Поульсен обнаружил принцип магнитной записи, работая механиком в Копенгагенской телеграфной компании. В 1898 году ученый воплотил идею в аппарате под названием «телеграфон».

Стальная проволока проходила между двумя полюсами электромагнита. Запись информации на носитель осуществлялась посредством неравномерного намагничивания колебаний электрического сигнала. Вольдемар Поульсен запатентовал свое изобретение. На Всемирной выставке 1900 года в Париже он имел честь записать голос императора Франца-Иосифа на свой девайс. Экспонат с первой магнитной звукозаписью по сей день хранится в Датском музее науки и техники.

Когда патент Поульсена истек, Германия занялась улучшением магнитной записи. В 1930 году стальная проволока была заменена гибкой лентой. Решение использовать магнитные полосы принадлежит австрийско-немецкому разработчику Фрицу Пфлеймеру. Инженер придумал покрывать тонкую бумагу порошком оксида железа и осуществлять запись посредством намагничивания. С использованием магнитной пленки были созданы компакт-кассеты, видеокассеты и современные носители информации для персональных компьютеров.

Физический носитель что это

HDD-диски

Винчестер, HDD или жесткий диск – это аппаратное устройство с энергонезависимой памятью, что означает полное сохранение информации, даже при отключенном питании. Является вторичным запоминающим устройством, состоящим из одной или нескольких пластин, на которые записываются данные с использованием магнитной головки. HDD находятся внутри системного блока в отсеке дисководов. Подключаются к материнской плате с помощью кабеля ATA, SCSI или SATA и к блоку питания.

Первый жесткий диск был разработан американской компанией IBM в 1956 году. Технологию применили в качестве нового вида носителей информации для коммерческого компьютера IBM 350 RAMAC. Аббревиатура расшифровывается как «метод случайного доступа к учету и контролю».

Чтобы вместить девайс у себя дома, потребовалась бы целая комната. Внутри диска было 50 алюминиевых пластин по 61 см в диаметре и 2,5 см шириной. Размер системы хранения данных приравнивался к двум холодильникам. Его вес составлял 900 кг. Емкость RAMAC была всего лишь 5МБ. Смешная цифра на сегодняшний день. Но 60 лет назад это расценивалось как технология завтрашнего дня. После анонсирования разработки, ежедневная газета города Сан Хосе выпустила репортаж под названием «Машина с суперпамятью!».

Физический носитель что это

Размеры и возможности современных HDD

Жесткий диск – компьютерный носитель информации. Используется для хранения данных, включая изображения, музыку, видео, текстовые документы и любые созданные или загруженные материалы. Кроме того, содержат файлы для операционной системы и программного обеспечения.

Первые винчестеры вмещали до нескольких десятков Мбайт. Постоянно развивающаяся технология позволяет современным HDD хранить терабайты информации. Это около 400 фильмов со средним расширением, 80 000 песен в mp3-формате или 70 компьютерных ролевых игр, аналогичных «Скайрим», на одном устройстве.

Дискета

Floppy, или гибкий магнитный диск, – носитель информации, созданный IBM в 1967 году как альтернатива HDD. Дискеты стоили дешевле винчестеров и предназначались для хранения электронных данных. На ранних компьютерах не было CD-ROM или USB. Гибкие диски были единственным способом установки новой программы или резервного копирования.

Вместительность каждой 3,5-дюймовой дискеты была до 1,44 Мбайт, когда одна программа «весила» не менее полутора мегабайт. Поэтому версия Windows 95 появилась сразу на 13 дискетах DMF. Floppy disk на 2,88 Мбайт появился только в 1987 году. Просуществовал этот электронный носитель информации до 2011 года. В современной комплектации компьютеров отсутствуют флоппи-дисководы.

Оптические носители

С появлением квантового генератора началась популяризация оптических запоминающих устройств. Запись осуществляется лазером, а считываются данные за счет оптического излучения. Примеры носителей информации:

Устройство представляет собой диск, покрытый слоем поликарбоната. На поверхности находятся микроуглубления, которые считываются лазером при сканировании. Первый коммерческий лазерный диск появился на рынке в 1978 году, а в 1982 году японская компания SONY и Philips выпустили в продажу компакт-диски. Их диаметр составлял 12 см, а разрешение было увеличено до 16 бит.

Электронные носители информации формата CD использовались исключительно для воспроизведения звуковой записи. Но на то время это была передовая технология, за которую в 2009 году Royal Philips Electronics получила награду IEEE. А в январе 2015 года CD был награжден как ценнейшая инновация.

В 1995 году появились цифровые универсальные диски или DVD, ставшие оптическими носителями нового поколения. Для их создания использовалась технология другого типа. Вместо красного лазер DVD использует более короткий инфракрасный свет, что увеличивает объем носителя информации. Двухслойные DVD-диски способны хранить до 8,5 Гбайта данных.

Физический носитель что это

Flash-память

Флеш-память – это интегральная микросхема, которая не требует постоянной мощности для сохранения данных. Другими словами, это энергонезависимая полупроводниковая компьютерная память. Запоминающие устройства с флеш-памятью постепенно завоевывают рынок, вытесняя магнитные носители.

К запоминающим устройствам Flash-типа относят:

Облачные хранилища

Облачные онлайн-хранилища – это современные носители информации, представляющие собой сеть из мощных серверов. Вся информация хранится удаленно. Каждый пользователь может получать к данным доступ в любое время и из любой точки мира. Недостаток в полной зависимости от интернета. Если у вас нет подключения к Сети или Wi-Fi, доступ к данным закрыт.

Физический носитель что это

Облачные хранилища гораздо дешевле своих физических аналогов и обладают большим объемом. Технология активно используется в корпоративной и образовательной среде, разработке и проектировании веб-приложений компьютерного софта. На облаке можно хранить любые файлы, программы, резервные копии, использовать их как среду разработки.

Из всех перечисленных видов носителей информации самыми перспективными являются облачные хранилища. Также все больше пользователей ПК переходят с магнитных жестких дисков на твердотельные накопители и носители с Flash-памятью. Развитие голографических технологий и искусственного интеллекта обещает появление принципиально новых девайсов, которые оставят флешки, SDD и диски далеко позади.

Источник

Носитель информации

Носителем информации может быть любой объект, с которого возможно (но не обязательно) чтение имеющейся (записанной) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения И (к примеру: бумажные листы — в обложку, микросхему памяти — в пластик (смарт-карта), магнитную ленту — в корпус и т. д.).

Носители информации в быту, науке (библиотеки), технике (скажем, для нужд связи), общественной жизни (СМИ) применяются для:

Содержание

Классификация носителей

В общем случае границы между этими разновидностями носителей довольно расплывчаты и могут варьироваться в зависимости от ситуации и внешних условий.

Основные материалы

Для внесения изменений в структуру материала носителя используются различные виды воздействия:

Электронные носители

Физический носитель что это

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом: CD-ROM, DVD-ROM, полупроводниковые (флеш-память и т. п.), дискеты.

Имеют значительное преимущество перед бумажными (листы, газеты, журналы) по объёму и удельной стоимости. Для хранения и предоставления оперативной (не долговременного хранения) информации — имеют подавляющее преимущество, также имеются значительные возможности по предоставлению И в удобном потребителю виде (форматирование, сортировка). Недостаток — малый размер экрана (или значительный вес) и хрупкость устройств считывания, зависимость от источников электропитания.

В настоящее время электронные носители активно вытесняют бумажные, во всех отраслях жизни, что приводит к значительному сбережению древесины. Минусом их является то, что для считывания И для каждого типа и формата носителя необходимо соответствующее ему устройство считывания.

Устройства хранения

Носитель, в совокупности с механизмом для записи/считывания на него информации (устройством считывания, считывающим устройством), называется устройством хранения информации (также — накопитель информации, если оно предусматривает дозапись поступающей к уже имеющейся). Эти устройства могут быть основаны на самых разных физических принципах записи.

В некоторых случаях (для гарантии считывания, при редкости носителя и т. п.) носитель информации доставляется потребителю вместе с запоминающими устройством для его считывания.

История

Необходимость обмена информацией, сохранения письменных свидетельств о своей жизни и т. п. существовала у человека всегда. За всю историю человечества было перепробовано множество носителей информации. Так как носитель обладает рядом параметров, эволюция носителя информации определялась тем, какие требования к нему предъявлялись.

Древние времена

Глина была тяжела для больших текстов, потребность в которых возрастала. Поэтому на смену ей должен был появиться другой носитель

Египет: папирус

Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое — хорошо забытое старое»: в Персии для письма издревле использовался дефтер — высушенные шкуры животных (в турецком и родственных ему языках слово «дефтер» и сейчас означает тетрадь), о чём вспомнили греки.

Как и в других странах, в Юго-Восточной Азии испробовали множество разных способов записи и сохранения информации:

Европа

На территории Европы высокоразвитые народы (греки и римляне) нащупывали свои способы записи. Сменяются множество различных носителей: свинцовые листы, костяные пластинки и т. д.

Начиная с VII века до н. э. запись производится острой палочкой — стилусом (как и на глине) на деревянных дощечках, покрытых слоем податливого воска (т. н. восковые таблички). Стирание информации (ещё одно преимущество данного носителя) производилось обратным тупым концом стилуса. Скрепляли такие дощечки по четыре штуки (отсюда и слово «тетрадь», так как др.-греч. τετράς в переводе с греческого — четыре).

Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Америка

Древняя Русь

Как носитель использовалась берёста (верхний слой берёзовой коры). Буквы на ней прорезывали писалом (костяная или металлическая палочка).

К концу XVI века на Руси появляется своя бумага (в русский язык слово «бумага» пришло скорее всего из итальянского, bambagia — хлопок).

Средневековье

В античном мире и Средневековье восковые таблички использовались в качестве записных книжек, для хозяйственных пометок и для обучения детей письму.

Новое время

Физический носитель что это

Современность

Физический носитель что это

Сейчас люди используют компьютеры для обработки и хранения информации.

Источник

Термин «Физический носитель» также может использоваться для описания прессованных или предварительно записанных оптических носителей, таких как CD, DVD и Blu-ray, особенно по сравнению с современными потоковыми носителями или контентом, который был загружен из Интернета на жесткий диск или другое запоминающее устройство. как USB-накопитель.

СОДЕРЖАНИЕ

Типы физических носителей

Медная проволока

Медная проволока в настоящее время является наиболее часто используемым типом физических носителей из-за обилия меди в мире, а также ее способности проводить электрическую энергию. Медь также является одним из самых дешевых металлов, что делает ее более удобной в использовании.

В среднем медный провод стоит около 1 доллара за фут.

Оптическое волокно

Сегодня используются два основных типа оптического волокна. Многомодовое волокно имеет диаметр примерно 62,5 мкм и использует светодиоды для передачи сигналов на максимальное расстояние около 2 км. Одномодовое волокно имеет диаметр примерно 10 мкм и способно передавать сигналы на расстояние в десятки миль.

Как и медный провод, оптическое волокно в настоящее время стоит около 1 доллара за фут.

Коаксиальные кабели

Thinnet используется в сетях Ethernet 10BASE2 и является более тонким и гибким из двух. В отличие от толстой сети, он использует байонет Niell-Concelman (BNC) на каждом конце для подключения к компьютерам. Thinnet является частью семейства кабелей RG-58 с максимальной длиной кабеля 185 метров и скоростью передачи 10 Мбит / с.

Заявление

Следующее крупное использование коаксиального кабеля в телекоммуникациях произошло в 1950-х годах, когда его использовали в качестве подводного кабеля для передачи международного трафика. Затем в середине 1960-х он был внедрен в сферу обработки данных. Ранние компьютерные архитектуры требовали коаксиального кабеля в качестве типа носителя от терминала к хосту. Локальные сети преимущественно основывались на коаксиальном кабеле с 1980 по 1987 год.

Коаксиальный кабель также использовался в кабельном телевидении и местной петле в виде архитектуры HFC. HFC доставляет волокна как можно ближе к окрестностям. Волокно заканчивается в узле соседства, где коаксиальный кабель разветвляется, чтобы обеспечить домашнее обслуживание.

Преимущества

Недостатки

Дебаты о физических носителях

Поскольку технологии постоянно меняются, ведутся споры о том, являются ли физические носители по-прежнему целесообразными и необходимыми во все более беспроводном мире. Беспроводные и физические носители могут фактически дополнять друг друга, и физические носители будут иметь большее, а не меньшее значение в обществе, где доминируют беспроводные технологии. Однако другие мнения считают физические носители мертвой технологией, которая со временем исчезнет.

Источник

2. оПУЙФЕМЙ ЙОЖПТНБГЙЙ

пЮЕОШ ЮБУФП РХФБАФ УБНХ ЙОЖПТНБГЙА Й ЕЈ ОПУЙФЕМШ. фБЛБС РХФБОЙГБ РТЙЧПДЙФ Л ОЕРПОЙНБОЙА УХФЙ РТПВМЕНЩ Й, УМЕДПЧБФЕМШОП, Л ОЕЧПЪНПЦОПУФЙ ЕЈ ТЕЫЙФШ. рПЬФПНХ УМЕДХЕФ ЮЈФЛП РТЕДУФБЧМСФШ УЕВЕ, ЗДЕ ЙОЖПТНБГЙС, Б ЗДЕ ЕЈ НБФЕТЙБМШОЩК ОПУЙФЕМШ.

2.1. чЙДЩ ОПУЙФЕМЕК

йОЖПТНБГЙС – ЧЕЭШ ОЕНБФЕТЙБМШОБС. ьФП УЧЕДЕОЙС, ЛПФПТЩЕ ЪБЖЙЛУЙТПЧБОЩ (ЪБРЙУБОЩ) ФЕН ЙМЙ ЙОЩН ТБУРПМПЦЕОЙЕН (УПУФПСОЙЕН) НБФЕТЙБМШОПЗП ОПУЙФЕМС, ОБРТЙНЕТ, РПТСДЛПН ТБУРПМПЦЕОЙС ВХЛЧ ОБ УФТБОЙГЕ ЙМЙ ЧЕМЙЮЙОПК ОБНБЗОЙЮЕООПУФЙ МЕОФЩ.

оПУЙФЕМЕН ЙОЖПТНБГЙЙ НПЦЕФ ВЩФШ МАВПК НБФЕТЙБМШОЩК ПВЯЕЛФ. й ОБПВПТПФ – МАВПК НБФЕТЙБМШОЩК ПВЯЕЛФ ЧУЕЗДБ ОЕУЈФ ОБ УЕВЕ ОЕЛХА ЙОЖПТНБГЙА (ЛПФПТБС, ПДОБЛП, ДБМЕЛП ОЕ ЧУЕЗДБ ЙНЕЕФ ДМС ОБУ ЪОБЮЕОЙЕ). оБРТЙНЕТ, ЛОЙЗБ ЛБЛ УПЧПЛХРОПУФШ РЕТЕРМЈФБ, ВХНБЦОЩИ МЙУФПЧ, Й ФЙРПЗТБЖУЛПК ЛТБУЛЙ ОБ ОЙИ СЧМСЕФУС ФЙРЙЮОЩН ОПУЙФЕМЕН ЙОЖПТНБГЙЙ.

юФПВЩ ПФМЙЮБФШ ЙОЖПТНБГЙА ПФ ЕЈ ОПУЙФЕМС, ОБДП ФЧЈТДП РПНОЙФШ, ЮФП ЙОЖПТНБГЙС – ЬФП УХЗХВП ОЕНБФЕТЙБМШОБС УХВУФБОГЙС. чУЈ, ЮФП СЧМСЕФУС НБФЕТЙБМШОЩН ПВЯЕЛФПН, ЙОЖПТНБГЙЕК ВЩФШ ОЕ НПЦЕФ, ОП ФПМШЛП МЙЫШ ЕЈ ОПУЙФЕМЕН. ч ФПН ЦЕ РТЙНЕТЕ У ЛОЙЗПК Й МЙУФЩ, Й ЪОБЛЙ ОБ ОЙИ – ФПМШЛП ОПУЙФЕМШ; ЙОЖПТНБГЙС ЦЕ ЪБЛМАЮЕОБ Ч РПТСДЛЕ ТБУРПМПЦЕОЙС РЕЮБФОЩИ УЙНЧПМПЧ ОБ МЙУФБИ. тБДЙПУЙЗОБМ – ФПЦЕ НБФЕТЙБМШОЩК ПВЯЕЛФ, РПУЛПМШЛХ СЧМСЕФУС ЛПНВЙОБГЙЕК ЬМЕЛФТЙЮЕУЛЙИ Й НБЗОЙФОЩИ РПМЕК (У ДТХЗПК ФПЮЛЙ ЪТЕОЙС – ЖПФПОПЧ), РПЬФПНХ ПО ОЕ СЧМСЕФУС ЙОЖПТНБГЙЕК. йОЖПТНБГЙС Ч ДБООПН УМХЮБЕ – РПТСДПЛ ЮЕТЕДПЧБОЙС ЙНРХМШУПЧ ЙМЙ ЙОЩИ НПДХМСГЙК ХЛБЪБООПЗП ТБДЙПУЙЗОБМБ.

нБФЕТЙС Й ЙОЖПТНБГЙС ОЕПФДЕМЙНЩ ДТХЗ ПФ ДТХЗБ. йОЖПТНБГЙС ОЕ НПЦЕФ УХЭЕУФЧПЧБФШ УБНБ РП УЕВЕ, Ч ПФТЩЧЕ ПФ НБФЕТЙБМШОПЗП ОПУЙФЕМС. нБФЕТЙС ЦЕ ОЕ НПЦЕФ ОЕ ОЕУФЙ ЙОЖПТНБГЙЙ, РПУЛПМШЛХ ЧУЕЗДБ ОБИПДЙФУС Ч ФПН ЙМЙ ЙОПН ПРТЕДЕМЈООПН УПУФПСОЙЙ.

фЕРЕТШ РЕТЕКДЈН Л ВПМЕЕ ЛПОЛТЕФОПНХ ТБУУНПФТЕОЙА. иПФС МАВПК НБФЕТЙБМШОЩК ПВЯЕЛФ – ОПУЙФЕМШ ЙОЖПТНБГЙЙ, ОП МАДЙ ЙУРПМШЪХАФ Ч ЛБЮЕУФЧЕ ФБЛПЧЩИ УРЕГЙБМШОЩЕ ПВЯЕЛФЩ, У ЛПФПТЩИ ЙОЖПТНБГЙА ХДПВОЕЕ УЮЙФЩЧБФШ.

фТБДЙГЙПООП ЙУРПМШЪХЕНЩН ОПУЙФЕМЕН ЙОЖПТНБГЙЙ СЧМСЕФУС ВХНБЗБ У ОБОЕУЈООЩНЙ ОБ ОЕК ФЕН ЙМЙ ЙОЩН УРПУПВПН ЙЪПВТБЦЕОЙСНЙ.

рПУЛПМШЛХ Ч ОБЫЕ ЧТЕНС ПУОПЧОЩН УТЕДУФЧПН ПВТБВПФЛЙ ЙОЖПТНБГЙЙ СЧМСЕФУС ЛПНРШАФЕТ, ФП Й ДМС ИТБОЕОЙС ЙОЖПТНБГЙЙ ЙУРПМШЪХАФУС Ч ПУОПЧОПН НБЫЙООП-ЮЙФБЕНЩЕ ОПУЙФЕМЙ. оЙЦЕ РТЙЧПДЙФУС РПМОЩК УРЙУПЛ ЙЪЧЕУФОЩИ ФЙРПЧ НБЫЙООЩИ ОПУЙФЕМЕК У ЙИ ЛБЮЕУФЧЕООЩНЙ ИБТБЛФЕТЙУФЙЛБНЙ.

лТПНЕ ФПЗП, ОПУЙФЕМЕН ЙОЖПТНБГЙЙ СЧМСЕФУС ПРЕТБФЙЧОБС РБНСФШ ЛПНРШАФЕТБ, пъх (RAM), ОП ПОБ ОЕ РТЙЗПДОБ ДМС ДПМЗПЧТЕНЕООПЗП ИТБОЕОЙС ЙОЖПТНБГЙЙ, РПУЛПМШЛХ ДБООЩЕ Ч ОЕК ОЕ УПИТБОСАФУС РТЙ ПФЛМАЮЕОЙЙ РЙФБОЙС. фБЛ ЧЩЗМСДСФ НПДХМЙ ПРЕТБФЙЧОПК РБНСФЙ.

2.2. ъБЭЙФБ ОПУЙФЕМЕК Й ЕЈ ПФМЙЮЙЕ ПФ ЪБЭЙФЩ ЙОЖПТНБГЙЙ

чБЦОП ТБЪМЙЮБФШ ДЧБ ЧЙДБ ъй – ЪБЭЙФБ ОПУЙФЕМЕК Й ЪБЭЙФБ ОЕРПУТЕДУФЧЕООП ЙОЖПТНБГЙЙ, ВЕЪПФОПУЙФЕМШОП Л ФПНХ, ЗДЕ ПОБ ОБИПДЙФУС.

рЕТЧЩК ЧЙД ЧЛМАЮБЕФ ОЕУЛПМШЛП НЕФПДПЧ ЪБЭЙФЩ ОПУЙФЕМЕК ЙОЖПТНБГЙЙ (ЪДЕУШ НЩ ВХДЕН ТБУУНБФТЙЧБФШ ФПМШЛП ЛПНРШАФЕТОЩЕ ОПУЙФЕМЙ), ЙИ НПЦОП РПДТБЪДЕМЙФШ ОБ РТПЗТБННОЩЕ, БРРБТБФОЩЕ Й ЛПНВЙОЙТПЧБООЩЕ. нЕФПД ЦЕ ЪБЭЙФЩ УБНПК ЙОЖПТНБГЙЙ ФПМШЛП ПДЙО – ЙУРПМШЪПЧБОЙЕ ЛТЙРФПЗТБЖЙЙ, ФП ЕУФШ, ЫЙЖТПЧЛБ ДБООЩИ.

еУМЙ ЧЩ НОПЗП ТБВПФБМЙ У УПЧТЕНЕООЩНЙ РЕТУПОБМШОЩНЙ ЛПНРШАФЕТБНЙ, ФП РПЪОБЛПНЙМЙУШ У ОЕЛПФПТЩНЙ ОБЙВПМЕЕ ТБУРТПУФТБОЈООЩНЙ НЕФПДБНЙ ЪБЭЙФЩ ОПУЙФЕМЕК. чПФ ЙИ РЕТЕЮЕОШ.

дПРПМОЙФЕМШОБС ЙОЖПТНБГЙС Л ТБЪДЕМХ 2.2.

Физический носитель что этоб.рБЧМПЧУЛЙК, у.йЧБОПЧБ. ъБЭЙФБ ПФ РПДДЕМПЛ: ОПЧЩЕ НБФЕТЙБМЩ Й ФЕИОПМПЗЙЙ рЕТЕЮЙУМЕОЩ ТБЪМЙЮОЩЕ ЧЙДЩ ЪБЭЙФЩ ОПУЙФЕМЕК. пВТБФЙФЕ ЧОЙНБОЙЕ, ЮФП ЧУЕ ПОЙ РТЕДРПМБЗБАФ, ЮФП ЙЪДБФЕМШ ДПЛХНЕОФБ (РТПЙЪЧПДЙФЕМШ РТПДХЛГЙЙ) ЧМБДЕЕФ ОЕЛПЕК РЕТЕДПЧПК ФЕИОПМПЗЙЕК ЙМЙ НБФЕТЙБМПН, ЛПФПТЩЕ ОЕДПУФХРОЩ РПФЕОГЙБМШОЩН ЪМПХНЩЫМЕООЙЛБН.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *