Уторный шов резервуара что это

Большая Энциклопедия Нефти и Газа

Уторный шов

Коррозионные повреждения внутренней поверхности оболочек нефтяных резервуаров возникают не равномерно и с различной скоростью. Коррозия днища нефтяных резервуаров проявляется в виде язв и раковин, расположенных вблизи уторного шва, иногда и в центральной части днища. На первом поясе коррозионные повреждения встречают ся в нижней части высотой до 100 мм от уторного шва по всему периметру резервуара. В резервуарах, предназначенных для хранения бензина, преобладающим видом разрушения является коррозия верхних поясов, кровли и ферм покрытия, которые имеют постоянный контакт поверхности с кислородом воздуха. Большое значение следует уделять при осмотре местам переменного уровня нефтепродукта. [31]

При внешнем осмотре необходимо обращать особое внимание на коррозионное состояние нижних и верхних поясов, поверхность днища, несущих элементов покрытия кровли. Коррозионные повреждения внутренней поверхности оболочек нефтяных резервуаров возникают неравномерно и с различной скоростью. Коррозия днища нефтяных резервуаров проявляется в виде язв и раковин, расположенных вблизи уторного шва, иногда и в центральной части днища. На первом поясе коррозионные повреждения встречаются в нижней части высотой до-100 мм от уторного шва по всему периметру резервуара. В резервуарах, предназначенных для хранения бензина, преобладающим видом разрушения является коррозия верхних поясов, кровли и ферм покрытия, поверхность которых постоянно контактирует с кислородом воздуха. [32]

ОАО ИркутскНИИхиммаш в 2000 году, как и в предыдущие годы, проводил работы, связанные с комплексным техническим диагностированием резервуарного и газгольдерного парка на заводах ОАО АНХК. Анализ обнаруженных дефектов позволяет заключить, что они, в основном, относятся к разряду исправимых и ремонтируемых. Эти дефекты возникают как при изготовлении, так и при эксплуатации. Значительная часть дефектов заложена при изготовлении, так как требования современной нормативной документации выше по сравнению с существующими в период изготовления. К таким дефектам относятся непровары, поры, несплавления, подрезы и др. Следует отметить, что за период эксплуатации резервуаров в 20 и более лет дальнейшего развития эти дефекты не имели. Как правило, на всех обследованных резервуарах наблюдается просадка окраек днища, превышающая допустимые нормы. Так из 11 резервуаров, диагностируемых в 2000 году, на 6 из них требуется полная или частичная замена днищ и первого пояса на высоту до 500 мм от уторного шва по всему периметру. При этом на 8 из них необходима подбивка грунта под основание, для устранения неравномерной просадки резервуаров. Следует отметить, что такие дефекты от коррозии и неравномерной просадки наблюдается на резервуарах, отработавших 20 и более лет. [34]

Источник

8. Сварка резервуаров и контроль качества сварных соединений

8.1 Общие требования

8.1.1 Требования к сварным соединениям должны формулироваться на всех стадиях разработки рабочей проектной документации: в проекте КМ, проекте производства монтажных и сварочных работ, а также при составлении технологических карт на сварку.

8.1.2 Технологические процессы заводской и монтажной сварки должны обеспечивать получение сварных соединений, удовлетворяющих требованиям проекта КМ, а также соответствующих настоящему стандарту по предельно допустимым размерам и видам дефектов.

8.1.3 Технология сварки и применяемые сварочные материалы должны обеспечивать механические свойства сварных соединений не ниже свойств, требуемых настоящим стандартом.

8.1.4 На стадии разработки конструкции резервуара (проекта КМ) должны быть определены:

• конструктивная форма сварных соединений всех элементов резервуара, подлежащих сварке;

• требования к механическим свойствам сварных соединений основных конструктивных элементов и узлов;

• дифференцированно, в зависимости от уровня напряжений и условий работы соединений, назначена категория (класс) сварных швов, определяющая допускаемый уровень их дефектности (допускаемые размеры, вид и количество допускаемых внешних и внутренних дефектов);

• объем контроля физическими методами сварных соединений корпуса резервуара.

8.1.5 При разработке проекта технологии монтажа и сварки резервуара должны быть определены:

• способы сварки для выполнения всех монтажных сварных соединений резервуара и требования к сварочному оборудованию;

• геометрические параметры кромок соединяемых элементов и требования по их подготовке к сварке;

• сварочные материалы для выполнения всех типов сварных соединений;

• последовательность выполнения сварных соединений;

• технология выполнения монтажных сварных соединений резервуара;

• мероприятия по ограничению сварочных деформаций и перемещений свариваемых элементов;

• мероприятия по обеспечению требуемого качества сварных соединений при сварке в условиях пониженной температуры.

8.1.6 При разработке технологических карт на заводскую или монтажную сварку конструктивных элементов резервуара должны быть выбраны:

• форма подготовки кромок под сварку;

• режимы и техника сварки;

• количество проходов сварного шва и порядок их выполнения;

• мероприятия по ограничению сварочных деформаций и перемещений свариваемых элементов.

8.1.7 В случаях, когда в рабочей документации КМ предусмотрена термическая обработка каких-либо сварных соединений резервуара, в ППР следует разработать технологию ее выполнения, включая способ, режимы термообработки, указания по контролю качества термообработанных соединений.

8.1.8 В ППР должна быть разработана программа контроля качества сварных соединений, включающая способы и объемы контроля каждого сварного соединения резервуара.

8.2 Классификация сварных соединений резервуаров

В проектной документации для различных типов сварных соединений должны быть указаны способы сварки, методы и объем контроля.

В зависимости от уровня ответственности резервуара и условий его эксплуатации все типы сварных соединений подразделяются на 3 категории качества (табл. 8.1).

Таблица 8.1

8.3 Конструктивные требования к сварным соединениям

Требования к конструкции сварных соединений, форма разделки свариваемых кромок, геометрические параметры и форма сварных швов элементов резервуара должны соответствовать параметрам, приведенным в приложении Б.

8.4 Рекомендуемые способы сварки

8.4.1 При заводском изготовлении резервуарных конструкций основными способами сварки являются автоматизированная сварка под флюсом для листовых конструкций и механизированная сварка в углекислом газе или в смеси газов на основе аргона для решетчатых конструкций и оборудования. При автоматизированной сварке под флюсом резервуарных полотнищ необходимым является оснащение сварочного оборудования системами слежения электрода за стыком.

8.4.2 Рекомендуемые способы сварки для различных типов сварных соединений при сооружении резервуаров из рулонных заготовок, а также резервуаров, монтируемых полистовым методом, приведены в таблицах 8.2, 8.3.

Таблица 8.2. Рекомендуемые способы монтажной сварки резервуаров, сооружаемых из рулонированных полотнищ

Таблица 8.3. Рекомендуемые способы сварки цилиндрических резервуаров, сооружаемых полистовым способом

8.4.3 Применение ручной дуговой сварки при сооружении резервуаров должно быть ограничено из-за относительно высокого уровня удельного тепловложения, приводящего к повышенным сварочным деформациям, а также сравнительно низкой эффективности.

8.5 Контроль качества сварных соединений

8.5.1 Общие требования

При сооружении резервуаров применяются следующие виды контроля качества сварных соединений:

— механические испытания сварных соединений образцов-свидетелей;

— измерительный, с помощью шаблонов, линеек, отвесов, геодезических приборов и т.д.;

— контроль герметичности (непроницаемости) сварных швов с использованием проб «мел-керосин», вакуумных камер, избыточного давления воздуха или цветной дефектоскопии;

— гидравлические и пневматические прочностные испытания конструкции резервуара.

В рабочей документации должны быть указаны способы, объемы и нормы контроля качества сварных соединений.

8.5.2 Визуальный и измерительный контроль

8.5.2.1 Визуальный и измерительный контроль должен осуществляться в соответствии с РД 03-606-03 Госгортехнадзора России.

8.5.2.2 Визуальному контролю должны подвергаться 100% длины всех сварных соединений резервуара.

8.5.2.3 По внешнему виду сварные швы должны удовлетворять следующим требованиям:

— по форме и размерам швы должны соответствовать проекту;

— швы должны иметь гладкую или равномерно чешуйчатую поверхность (высота или глубина впадин не должка превышать 1 мм);

— металл шва должен иметь плавное сопряжение с основным металлом;

— швы не должны иметь недопустимых внешних дефектов.

8.5.2.4 К недопустимым внешним дефектам сварных соединений резервуарных конструкций относятся трещины любых видов и размеров, несплавления, наплывы, грубая чешуйчатость, наружные поры и цепочки пор, прожоги и свищи.

Подрезы основного металла допускаются не более величин, указанных в таблице 8.4.

Таблица 8.4

8.5.2.5 Выпуклость швов стыковых соединений не должна превышать значений, указанных в таблице 8.5.

Таблица 8.5

Толщина листов, миллиметрыМаксимальная величина выпуклости, миллиметры
вертикальных соединений стенкипрочих соединений
до 12 вкл.1,52,0
свыше 122.03,0

8.5.2.7 Выпуклость или вогнутость углового шва не должна превышать более чем на 20% величину катета шва.

8.5.2.8 Уменьшение катета углового шва допускается не более 1 мм. Увеличение катета углового шва допускается не более следующих значений:

8.5.2.9 В местах пересечения сварных швов и в местах исправления дефектов необходимо обеспечивать минимальную концентрацию напряжений за счет обеспечения плавного сопряжения шва с основным металлом и уменьшения его выпуклости.

8.5.3 Контроль герметичности

Контроль герметичности сварных соединений производится с использованием метода «мел-керосин», избыточного давления или вакуумным способом.

8.5.4 Контроль радиографический

8.5.4.1 Радиографический контроль применяется для контроля стыковых сварных швов стенки и окраек днищ в зоне сопряжения со стенкой резервуара.

8.5.4.2 Контроль радиографический (рентгенографированием или гаммаграфированием) должен производиться в соответствии с ГОСТ 7512.

При заводском изготовлении резервуарных конструкций вместо радиографического контроля может применяться рентгенотелевизионный контроль по ГОСТ 27947.

8.5.4.3 Оценка внутренних дефектов сварных швов должна производиться по ГОСТ 23055 и должна соответствовать:

8.5.5 Ультразвуковая дефектоскопия

8.5.5.1 Ультразвуковая дефектоскопия производится для выявления внутренних дефектов (трещин, непроваров, шлаковых включений, газовых пор) и определения количества дефектов, их эквивалентной площади, условной протяженности и координат расположения.

8.5.5.2 Ультразвуковая дефектоскопия должна проводиться в соответствии с ГОСТ 14782.

8.5.6 Магнитопорошковая или цветная дефектоскопия

8.5.6.1 Контроль магнитопорошковой или цветной дефектоскопией производится с целью выявления поверхностных дефектов основного металла и сварных швов. Магнитопорошковой или цветной дефектоскопии подлежат:

— сварные швы соединения стенки с днищем резервуаров;

— сварные швы приварки люков и патрубков к стенке резервуаров;

— места на поверхности листов стенок резервуаров из стали с пределом текучести свыше 345 МПа, в зонах удаления технологических приспособлений.

8.6 Классификация и нормирование дефектов

8.6.1 Методы контроля, классификация и объем контроля сварных соединений элементов резервуара приведены в таблице 8.6.

Источник

Уторный шов резервуара что это

Г.Г. Васильев, А.А. Катанов, Е.Е. Семин

(Научно-технический и производственный «Журнал нефтегазового строительства»)

В Российской Федерации создана мощная система магистрального трубопроводного транспорта нефти, включающая в себя более 1 тыс. вертикальных стальных резервуаров. Большая их часть построена в 1980-е годы и к настоящему времени исчерпала свой проектный ресурс, составляющий 30 лет.

Эксплуатирующие организации регулярно проводят диагностику и ремонт резервуаров, и для них чрезвычайно актуальными являются продление срока эксплуатации и снижение объемов ремонта.

При диагностике наибольшее внимание уделяется элементам конструкций резервуара, работающим в условиях сложного напряженно-деформированного состояния при высоком уровне напряжений. Одним из наиболее ответственных элементов резервуара является соединение между стенкой и днищем – уторный узел.

Известно, что наибольшую концентрацию напряжений вызывают дефекты сварных соединений – подрезы, которые можно рассматривать как трещиноподобные дефекты. Они являются определяющими при прогнозировании сроков безопасной эксплуатации резервуаров. Это также подтверждается результатами диагностики, при которой обнаруживаются трещины, развившиеся от подрезов в зоне сопряжения уторного шва и окрайки.

Учитывая современную практику применения высококачественных антикоррозионных покрытий на основе эпоксидных смол для защиты внутренней поверхности резервуаров, долговечность уторных узлов может определяться по критерию начала роста трещины или по критерию разрушения в процессе циклического нагружения.

Оценка долговечности уторных узлов выполняется в следующей последовательности:

Для определения НДС в уторном узле реальной геометрической формы был выбран метод конечных элементов. Для построения моделей и решения задачи использовался вычислительный комплекс ANSYS. В целях сокращения времени расчета были разработаны два типа конечно-элементных моделей.

Первая модель выбиралась из условия, что действие краевого эффекта от днища затухает в пределах первого пояса и включает первый пояс стенки резервуара, окрайку днища, уторный шов без дефектов и упругое основание резервуара. Нагрузки задаются от гидростатического давления и веса конструкций.

По результатам расчета установлено, что 95 % максимального значения напряжений составляет нагрузка от изгиба, возникающая в результате стесненности деформаций.

Вторая модель включает участки первого пояса стенки и окрайки длиной по 200 мм и уторный сварной шов с различными значениями выпуклости и вогнутости. Нагрузка задавалась в виде двух сил, приложенных к концам модели таким образом, что напряжения в зоне уторного шва отличались от первой модели не более чем на 2 %. Сгущение сетки производилось к пересечению сварного шва и окрайки. Все конструкции резервуара моделировались с использованием плоскостных элементов типа shell. Вычисление напряжений и деформаций производилось в предположении упругопластического тела. Модель использовалась для определения фактических напряжений в образце без дефектов сварного соединения и в образце с подрезами разной глубины. Было выполнено более 250 расчетов.

Напряжения в зоне подреза в окрайке, выполненной из стали 09Г2С варьируются от 285 МПа для соединения с вогнутостью 3–4 мм до 500 МПа для сварных соединений с подрезом глубиной 3 мм. Для стали 16Г2АФ аналогичные напряжения составляют от 346 МПа до 560 МПа соответственно.

По результатам расчетов второй модели установлено, что оптимальной формой сварного соединения является шов, вогнутый вовнутрь. Величина вогнутости уторного шва должна составлять 3–4 мм, в этом случае гарантируется отсутствие развивающихся пластических деформаций в зоне уторного сварного соединения в процессе эксплуатации.

Поэтому при проектировании и строительстве с целью снижения напряжений рекомендуется выполнять внутренний шов вогнутым на 3–4 мм.

Исследование долговечности уторных узлов выполнено по двум предельным состояниям: начало роста трещины и начало разрушения соединения.

Расчет ресурса по критерию начала роста трещины выполнялся по формуле Нейберга.

Анализ результатов расчета показывает, что инкубационный период роста трещин для уторных сварных швов с вогнутостью от 0,5 мм до 5 мм составляет 17 500 и более циклов, что соответствует сроку эксплуатации 50 лет при цикличности 350 циклов в год. Безопасная работа уторного узла резервуара с подрезами до 0,3 мм обеспечена на весь период эксплуатации для швов с оптимальными параметрами вогнутости, составляющей 3–4 мм.

Поэтому при проектировании и строительстве с целью безопасной эксплуатации уторного соединения без появления трещин рекомендуется устанавливать критерий отбраковки по глубине подреза 0,3 мм.

Исследование ресурса уторного узла по критерию начала разрушения выполнено по методике, использованной в нормативных документах «Транснефти» и «Газпрома». Для выполнения расчета разработана программа, позволяющая моделировать рост трещины до наступления разрушения уторного сварного соединения путем ее подращивания в цикле.

Алгоритм программы включает:

Анализ результатов расчетов показывает, что с увеличением вогнутости до
4 мм и уменьшением глубины дефекта увеличивается срок эксплуатации уторных узлов резервуаров. При равной глубине подреза срок эксплуатации уторных узлов различной формы отличается в 8–12 раз. Максимально допустимый подрез для эксплуатации уторного узла в течение 10 лет составляет 2 мм.

Для подтверждения результатов, полученных расчетным путем, выполнено экспериментальное определение долговечности уторных узлов с подрезом, выполненных из сталей 09Г2С и 16Г2АФ. Форма и условия нагружения образцов соответствуют второй расчетной модели.

Определение числа циклов до разрушения образцов производилось по результатам испытаний 18 образцов с подрезами различной глубины на испытательной машине Instron. Пропилы в образцах, имитирующие подрезы, располагались в околошовной зоне. Максимальное число циклов нагружения составляет 35 000. Для создания расчетных напряжений образцы закреплялись с использованием торцевых планок в зажимах машины и растягивались с постоянным усилием.

Анализ результатов экспериментов показывает, что для уторных соединений из стали 09Г2С сходимость результатов эксперимента и расчета с учетом остаточных сварочных напряжений укладывается в 14–18 %, для стали 16Г2АФ сходимость результатов эксперимента и расчета укладывается в 7–8%.

Выводы

1. На основании исследований НДС разработаны рекомендации по оптимизации формы уторного узла по критерию минимальных эксплуатационных напряжений. Установлено, что минимальные значения напряжений возникают в уторном шве с величиной вогнутости 3–4 мм.

2. Исследования ресурса уторных соединений показали, что при строительстве резервуаров глубина максимально допустимого подреза может составлять 0,3 мм, а при диагностировании резервуара могут допускаться для дальнейшей эксплуатации уторные узлы с подрезами глубиной до 2 мм.

3. Предложена комплексная методика расчета ресурса уторных соединений, основанная на полученных функциональных зависимостях НДС в вершине дефекта и применении апробированных методик, определяющих процесс развития трещины. Данная методика использована при разработке РД «Руководство по оценке технического состояния резервуаров».

4. Экспериментальными исследованиями натурных образцов подтверждены полученные расчетные зависимости.

Источник

3. Термины и определения

Уторный шов резервуара что это

В настоящем Стандарте применены следующие термины с соответствующими определениями.

Временные нагрузки подразделяются на:

а) длительные, расчетные значения которых в течение срока службы резервуара наблюдаются длительное время;

б) кратковременные, расчетные значения которых в течение срока службы резервуара наблюдаются в течение короткого отрезка времени;

— оптимальных габаритов резервуара (диаметра и высоты стенки);

— компоновки и вместимости резервуарных парков;

— количества установок пожаротушения и охлаждения резервуара;

— прочности и устойчивости конструкций резервуара (в соответствии с назначенным классом опасности резервуара).

В состав проекта КМ входят:

— общие данные и указания по применяемым материалам, изготовлению, монтажу и испытаниям резервуара, рекомендации по антикоррозионной защите;

— чертежи общих видов, планов и разрезов;

— чертежи узлов и элементов конструкций, с указанием профилей, толщин, сварных швов;

— расчеты конструкций резервуаров 1 и 2 классов опасности и резервуаров с защитной стенкой;

— нагрузки для проектирования основания и фундаментов.

В состав комплекта чертежей КМД входят:

— ведомости чертежей и отправочных марок;

— монтажные схемы с указанием отправочных марок;

— комплектовочная ведомость с указанием отгрузочных мест;

— чертежи отправочных марок, с указанием профилей, толщин, формы и размеров деталей и элементов, количеств и масс деталей и отправочных марок;

— отгрузочные чертежи (при отправке конструкций железнодорожным транспортом).

Уторный шов резервуара что это

© 2007–2021 «ГК «Газовик». Все права защищены.
Использование материалов сайта без разрешения владельца запрещено и будет преследоваться по закону.

Источник

Неразрушающий контроль резервуаров вертикальных стальных для нефти и нефтепродуктов

Проведение неразрушающего контроля (НК) на резервуарах вертикальных стальных (РВС) обязательно потому, что они относятся к опасным производственным объектам (ОПО), подведомственным Ростехнадзору. На них распространяется закон №116-ФЗ от 21.07.1997 года, а также Федеральные нормы и правила проведения экспертизы промышленной безопасности (ЭПБ), утверждённые Приказом Ростехнадзора от 14.11.2013 года.

1) проверять качество сварных соединений на предмет отсутствия дефектов, которые превышают допуски, заложенные в нормативно-технической и проектно-конструкторской документации;

2) оценивать степень износа и производить расчёт прочности и остаточного ресурса отдельных частей и РВС в целом. Например, поясов стенки, днища, понтона, кровли, патрубков и пр. Подробнее о том, какие конструктивные элементы резервуаров подвергаются неразрушающему контролю – читайте ниже;

3) определять скорость коррозионного поражения металла;

4) проверять герметичность понтона – конструкции, предназначенной для защиты от испарения нефти и нефтепродуктов, потери содержимого РВС, загрязнения внешней среды и снижения пожароопасности и взрывоопасности;

5) выявлять поверхностные дефекты металлоконструкций (коррозионные язвы, трещины, поры и прочее);

6) оценивать состояние антикоррозионных покрытий (нормальных, усиленных или особо усиленных) внутри резервуара, измерять толщину и выявлять дефекты (отслоения, наплывы, инородные вкрапления, потёки и прочие неоднородности);

7) контролировать качество ремонта и реконструкции РВС;

8) составлять дефектные ведомости и точнее планировать ремонты, поддерживая тем самым резервуарный парк в работоспособном и безопасном состоянии.

Проведение неразрушающего контроля – важная часть технического диагностирования резервуаров. Это даёт исходную информацию для экспертов промышленной безопасности, на основании которой они готовят своё заключение о пригодности РВС к дальнейшей эксплуатации. Либо, наоборот, о его аварийном состоянии, необходимости остановки эксплуатации и ремонтно-восстановительных работ.

Наконец, НК востребован не только для ЭПБ, но и в рамках технического освидетельствования РВС. Данное мероприятие относится к сфере государственного надзора и проводится специальными комиссиями на объектах, эксплуатация которых ещё не начиналась либо была приостановлена.

Уторный шов резервуара что это

При проведении неразрушающего контроля на вертикальных стальных резервуарах для хранения нефти и нефтепродуктов ориентируются на следующие руководящие документы: Руководство по безопасности (утверждённое Приказом Ростехнадзора №136 от 31.03.2016 года), СТО 02494680-0030-2004, ГОСТ 31385-2016, РД 08-95-95, ВСН 311-89, РД-77.060.00-КТН-234-12, СА 03-008-08, методику 4276/755-00.022 МУ. Правда, статус последних двух НТД считается неопределённым. В «Транснефти» ещё действуют РД-23.020.00-КТН-283-09, РД-77.060.00-КТН-234-12 и др. Плюс – нормативная документация по каждому методу НК. Например, ГОСТ Р ИСО 16809-2015 для ультразвуковой толщинометрии или ГОСТ 7512-82 для рентгенографического контроля.

Квалификационные требования к специалистам

Требования к технической оснащённости

Мерительные инструменты и приборы неразрушающего контроля, которые относятся к средствам измерения, должны быть внесены в Госреестр СИ, подлежат первичной метрологической аттестации и периодической поверке/калибровке. Метрологическое обслуживание СИ – одно из базовых требований для обеспечения единства измерений в соответствии с законом №102-ФЗ от 26.06.2008 года.

Уторный шов резервуара что это

Какие элементы резервуаров подвергают неразрушающему контролю и какие методы применяют

Днище

Уторный шов резервуара что это

Стенка

Уторный шов резервуара что это

Стальная крыша

Крыша купольного типа из алюминиевых сплавов

Уторный шов резервуара что это

Стальной или алюминиевый понтон

Уторный шов резервуара что это

Трубопроводы, соединительные детали и прочие объекты вне резервуара

Уторный шов резервуара что это

Уторный шов резервуара что это

Оформление результатов

Уторный шов резервуара что это

Требования к оформлению заключений по итогам неразрушающего контроля на резервуарах разных заказчиков могут отличаться. Запрашивать образцы (шаблоны) данной документации нужно заранее, если её, например, не предусмотрели в качестве приложений к договору на проведение работ.

На основании заключений (актов, протоколов контроля) составляется дефектная ведомость и технический отчёт, из которых, в свою очередь, складывается общая картина о фактическом состоянии РВС. Главный документ по итогам технического диагностирование – заключение экспертизы промышленной безопасности, в котором объект признают годным к эксплуатации (до истечения следующего расчётного периода) либо аварийным и подлежащим ремонту. И отчёт, и заключение ЭПБ должны храниться с остальной технической документацией на резервуар.

Вместо послесловия

На форуме «Дефектоскопист.ру» зарегистрированы тысячи специалистов, которые каждодневно проводят неразрушающий контроль резервуаров на нефтебазах, нефтетерминалах и нефтеперерабатывающих заводах по всей стране. Вы можете задать любой вопрос по техническому диагностированию РВС, от настройки чувствительности глубиномера УЗ-дефектоскопа до расшифровки рентгеновских снимков и правильного использования условных записей дефектов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *