Устьица закрываются при недостатке чего

Значение для растения испарения воды листьями. Листопад

Вопрос 1. Какое значение для растения имеет испарение воды листьями?
Испарение, наряду с корневым давлением, способствует передвижению воды в растении. Испарение воды создает силу, под влиянием которой вода поднимается вверх по стеблю. С токами воды передвигаются и минеральные вещества. У видов, интенсивно испаряющих воду, разница между температурой воздуха и температурой листа может достигать 15 o С. Интенсивность испарения регулируется при помощи устьиц. Освещение листа приводит к открыванию устьиц, в темноте они закрыты. Устьица закрываются также днем, в сильную жару. Происходит это следующим образом. Замыкающие клетки устьиц содержат хлоропласты. При освещении листа в них начинается фотосинтез, образуются сахара и осмотическое давление в клетках возрастает. Вследствие усиленного притока воды тургор замыкающих клеток увеличивается, их стенки растягиваются и устьичная щель раскрывается. При отсутствии фотосинтеза (в темноте) и при усиленном испарении воды в жаркий день тургор замыкающих клеток ослабевает и устьица закрываются.
Таким образом, испарение воды растением имеет огромное значение для жизнедеятельности растения. Испарение называется транспирацией. Вода испаряется через всю поверхность тела растения, но особенно интенсивно через устьица в листьях. Значение транспирации: она принимает участие в передвижении воды и растворенных веществ по телу растения; способствует углеводному питанию растений; защищает растения от перегрева.

Вопрос 2. Как влияют на испарение воды растениями условия внешней среды?
Интенсивность испарения зависит от внешних условий среды и состояния устьиц. У некоторых растений устьица открыты только днем, а на ночь закрываются. При недостатке воды устьица таких растений закрываются даже днем, и выделение водяного пара из листьев в воздух прекращается. В благоприятных условиях устьица открываются снова. При разных условиях внешней среды одно и то же растение испаряет разное количество воды. Например, в пасмурную погоду воды испаряется меньше, чем в солнечный день. При сильном сухом ветре испарение идет сильнее, чем в тихую погоду.

Вопрос 3. Каково значение устьиц?
Через устьица происходит газообмен с окружающей средой, а также испарение воды. У растений испарение регулируется открыванием и закрыванием устьиц.

Вопрос 4. Каково значение воды в жизни растений?
Вода необходима для всех жизненно важных процессов, происходящих в организме растений, в том числе для образования органических веществ в процессе фотосинтеза.

Вопрос 5. Каково значение листопада?
Листопад представляет собой адаптацию растений к сезонным изменениям климата, из-за которых происходит уменьшение испарения воды осенью и зимой. С понижением температуры всасывание воды корнями снижается, и поэтому растение может обезводиться и погибнуть. Сбрасывание листвы уменьшает общую площадь поверхности дерева, что предотвращает поломку ветвей при снегопаде. Кроме того, за счет сбрасывания листьев растения освобождаются от вредных и ненужных веществ.

Вопрос 6. Отчего изменяется окраска листьев?
Перед листопадом хлорофилл разрушается, а каротиноиды становятся видимыми. Они придают желтую, оранжевую и красную окраску листьям.

Источник

Лист как орган транспирации

Строение листа. Устьица.

Основным транспирирующим органом является лист. Средняя толщина листа составляет 100—200 мкм. Паренхимные клетки листа расположены рыхло, между ними имеется система межклетников, которые занимают от 15 до 25% объемалиста. Эпидермис — покровная ткань листа, состоит из компактно расположенных клеток, наружные стенки которых утолщены. Кроме того, листья большинства растений покрыты кутикулой, в состав которой входят оксимонокарбоновые кислоты, содержащие по 16—28 атомов углерода и по 2—3 гидроксильные группы. Эти кислоты соединены друг с другом в цепочки с помощью эфирных связей. Кутикула варьирует как по составу, так и по толщине. Более развитой кутикулой характеризуются листья светолюбивых растений по сравнению с теневыносливыми и засухоустойчивых по сравнению с влаголюбивыми. Кутикула вместе с клетками эпидермиса образует как бы барьер на пути испарения паров воды. Удаление кутикулы во много раз повышает интенсивность испарения. Все эти особенности выработались в процессе эволюции как приспособление к сокращению испарения. Для соприкосновения листа с атмосферой имеются поры — устьица. Устьице — это отверстие (щель), ограниченная двумя замыкающими клетками. Устьица встречаются у всех наземных органов растения, но больше всего у листьев. Каждая замыкающая клетка устьица в отличие от клеток эпидермиса имеет хлоропласта. В них происходит фотосинтез, хотя с меньшей интенсивностью, чем в клетках мезофилла. Устьица — одно из оригинальных приспособлений, обладающих способностью открываться и закрываться в зависимости от насыщенности замыкающих клеток водой. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых неравномерно утолщены. У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу клеточные стенки более толстые, а внешние — более тонкие. Протопласты замыкающих клеток связаны в единое целое перфорациями в основании граничащих общих стенок. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на клеточные стенки, и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется щель.

Устьица закрываются при недостатке чего

В последнее время доказано, что для движения устьиц большое значение имеет также расположение микрофибрилл целлюлозы. Если обычно в клетках листьев целлюлозные фибриллы ориентированы в длину и в этом направлении утолщены, то в замыкающих клетках устьиц микрофибриллы организованы радиально, что усиливает устойчивость к процессу растяжения. У злаков строение замыкающих клеток несколько иное. Они представлены двумя удлиненными клетками, на концах которых стенки более тонкие. При насыщении водой более тонкие стенки на концах растягиваются и раздвигают замыкающие клетки, благодаря чему образуется щель. Число устьичных отверстий колеблется в зависимости от вида растений от 10 до 600 на 1 мм 2 листа. У многих растений (75% видов), в том числе для большинства древесных, устьица расположены на нижней стороне листа. Диаметр устьичных щелей составляет всего 3—12 мкм. Устьица соединяют внутренние пространства листа с внешней средой. Вода поступает в лист через сеть жилок, в которых расположены сосудистые элементы. Возможны три пути испарения: через устьица — устьичная, кутикулу — кутикулярная и через чечевички — лентикулярная транспирация. Впервые разграничение на кутикулярную и устьичную транспирацию было введено в 1877 г. Кутикулярная транспирация. В том, что действительно испарение идет не только через устьица, но и через кутикулу, легко убедиться. Так если взять листья, у которых устьица расположены только с нижней стороны (например, листья яблони), и замазать эту сторону вазелином, то испарение воды будет продолжаться, хотя и в значительно меньших размерах. Следовательно, определенное количество воды испаряется через кутикулу.

Устьица закрываются при недостатке чего

Интенсивность этого процесса прежде всего определяется толщиной слоя кутикулы. Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом. Однако у растений, листья которых характеризуются слабым развитием кутикулы, доля этого вида транспирации может повышаться до 30%. Имеет значение также возраст листа. Молодые листья, как правило, имеют слабо развитую кутикулу и, следовательно, более интенсивную кутикулярную транспирацию. У старых листьев юля кутикулярной транспирации снова возрастает, так как, хотя кутикула и сохраняет достаточную толщину, в ней появляются трещины, через которые легко проходят пары воды. Трещины в кутикуле могут появляться и после временного завядания листьев, благодаря чему транспирация усиливается. Кутикулярная транспирация зависит от оводненности листа. При насыщении кутикулы водой испарение идет интенсивнее, а при подсыхании кутикулы — снижается. Имеются данные, что кутикулярная транспирация меньше зависит от условий внешней среды по сравнению с устьичной (Н.И. Антипов). Устьичная транспирация. Основная часть воды испаряется через устьица. Процесс транспирации можно разделить на ряд этапов.

Первый этап — это переход воды из клеточных оболочек, где она находится в капельножидком состоянии, в межклетники (парообразное состояние). Это собственно процесс испарения, отрыв молекул воды с поверхности клеточных стенок. Важно подчеркнуть, что уже на этом этапе растение обладает способностью регулировать процесс транспирации (внеустьичная регулировка). Так, если в растении недостаток воды, то в сосудах корня и стебля создается сильное натяжение, которое делает их водный потенциал более отрицательным, что оказывает сопротивление передвижению воды в клетку и уменьшает интенсивность испарения. Надо учитывать также, что между всеми частями клетки существует водное равновесие. Чем меньше воды в клетке, тем выше становится концентрация клеточного сока. А это, в свою очередь, уменьшает содержание свободной воды в протопласте и клеточной оболочке. Соотношение свободной воды к связанной падает, водоудерживающая сила растет, интенсивность испарения уменьшается. Кроме того, снижение оводненности клеточных стенок приводит к изменению формы менисков в капиллярах на вогнутую. Это увеличивает поверхностное натяжение, затрудняет переход воды в парообразное состояние и снижает количество водяного пара в межклетниках.

Второй этап — это выход паров воды из межклетников или через кутикулу, или, главным образом, через устьичные щели. Поверхность всех клеточных стенок, соприкасающихся с межклетными пространствами, превышает поверхность листа примерно в 10—30 раз. Все же если устьица закрыты, то все это пространство быстро насыщается парами воды и переход воды из жидкого в парообразное состояние прекращается. Иная картина наблюдается при открытых усть­ицах. Как только часть паров воды выйдет из межклетников через устьичные щели, так сейчас же этот недостаток восполняется за счет испарения воды с поверхности клеток. Поскольку устьичная транспирация составляет 80—90% от всего испарения листа, то степень открытости устьиц является основным механизмом, регулирующим интенсивность транспирации. При открытых устьицах общая поверхность устьичных щелей составляет всего 1—2% от площади листа. Казалось бы, это должно очень сильно уменьшать испарение по сравнению с испарением со свободной водной поверхности той же площади, что и лист. Однако это не так. Сравнение испарения листа с испарением со свободной водной поверхности той же площади показало, что оно идет не в 100 раз, как это следовало бы, исходя из размеров открытой площади (1%), а всего в 2 раза медленнее. Объяснение этому явлению было дано в исследованиях английских ученых Г. Броуна и Ф. Эскомба, которые установили, что испарение из ряда мелких отверстий идет быстрее, чем из одного крупного той же площади. Это связано с явлением краевой диффузии. При диффузии из отверстий, отстоящих друг от друга на некотором расстоянии, молекулы воды, расположенные по краям, рассеиваются быстрее. Естественно, что таких краевых молекул значительно больше в ряде мелких отверстий по сравнению с одним крупным. Для малых отверстий интенсивность испарения пропорциональна их диаметру, а не площади (закон Й. Стефана). Указанная закономерность проявляется в том случае, если мелкие поры расположены достаточно далеко друг от друга. Структура листа удовлетворяет указанным требованиям. Поры (устьица) имеют малый диаметр и достаточно удалены друг от друга. При открытых устьицах выход паров воды идет достаточно интенсивно, закрытие устьиц резко тормозит испарение. Именно на этом этапе вступает в действие устьичная регулировка транспирации. При недостатке воды в листе устьица автоматически закрываются. Полное закрывание устьиц сокращает транспирацию на 90%. Вместе с тем уменьшение размеров устьиц всегда приводит к соответственному сокращению транспирационного процесса. Определения показали, что устьица должны закрыться больше чем на 1 /2, чтобы это сказалось на уменьшении интенсивности транспирации.

Третий этап транспирации — это диффузия паров воды от поверхности листа в более далекие слои атмосферы. Этот этап регулируется лишь условиями внешней среды.

Источник

Влияние на растения недостатка воды

В естественных условиях очень часто даже в обычные ясные дни поступления воды в растение не успевает за ее расходованием. Образуется водный дефицит, который легко обнаружить, определяя содержание воды в листьях в разные часы суток. Измерения показали, что в полуденные часы содержание воды в листьях примерно на 25—28% меньше по сравнению с утренними. Увеличение водного дефицита сопровождается уменьшением водного потенциала листьев. Именно поэтому в дневные часы водный потенциал листьев, как правило, наименьший (более отрицательный).

Полуденный водный дефицит представляет собой нормальное явление и осо­бенной опасности для растительного организма не представляет. Значительно­му увеличению водного дефицита препятствует сокращение транспирации в ночные часы. В нормальных условиях водоснабжения перед восходом солнца листья растений насыщены водой. Однако при определенном сочетании внеш­них условий водный дефицит настолько возрастает, что не успевает восстанав­ливаться за ночь. В утренние часы листья растений уже недонасыщены водой, появляется остаточный утренний водный дефицит (Л.С. Литвинов). В после­дующие дни, если снабжение водой не улучшится, недостаток воды будет все больше и больше нарастать. В некоторых случаях может наблюдаться завядание растений и утрачивается тургор. Первые фазы завядания сходны с первыми фа­зами плазмолиза, так как в силу уменьшения содержания воды объем клетки сокращается. Однако в дальнейшем течение процессов завядания и плазмолиза различно. При плазмолизе происходит отставание цитоплазмы от клеточной обо­лочки, а при завядании сокращающаяся в силу потери воды цитоплазма тянет за собой оболочку. На оболочке образуются как бы складки, она теряет пер­воначальную форму, что и вызывает потерю прямостоячего положения тка­ней и организма в целом. Завядание не означает, что растение погибло. Если своевременно снабдить растение водой, то тургор восстанавливается, жизнедея­тельность организма продолжается, правда, с большими или меньшими повреж­дениями.

Различают два типа завядания.. Причиной временного завядания чаще всего бывает атмосферная засуха, когда доступная вода в почве есть, однако низкая влажность воздуха, высокая температура настолько увеличивают транспирацию, что поступление воды не поспевает за ее расходованием. При временном завядании в основном теряют тургор листья. Чаще всего это наблюдается в полу­денные часы. В ночные часы растения оправляются и к утру вновь находятся в тургесцентном состоянии. Временное завядание не проходит без последствий. При потере тургора устьица закрываются, фотосинтез резко замедляется, расте­ние не накапливает сухого вещества, а только тратит его. Однако все же, вре­менное завядание сравнительно легко переносится растением.

Глубокое завядание наступает тогда, когда в почве почти не остается доступ­ной для растения воды. В этих условиях даже небольшая транспирация вызыва­ет все возрастающий водный дефицит и глубокое завядание, при котором про­исходит общее иссушение всего растительного организма. Растущие молодые листья оттягивают воду от стебля и корневой системы. Последствия такого завядания могут быть необратимыми и губительными. Вместе с тем непродолжительное завядание может рассматриваться как один из способов защиты растения от гибельного обезвоживания. Так, при завядании благодаря устьичным и внеустьичным регулирующим механизмам транспирация резко сокращается, что позволяет растительному организму в течение определен­ного промежутка времени сохранить воду и не погибнуть от полного высыхания. Завядание может происходить при разной потере воды. У растений тенистых местообитаний с малоэластичными клеточными оболочками потеря воды, рав­ная 3—5%, уже вызывает завядание. Однако есть и такие растения, у которых завядание наступает только при 20—30%-ном водном дефиците. Водный дефицит и завядание вызывают сдвига в физиологической деятельности растения. Эти изменения могут быть более или менее сильными, обратимыми и необратимыми, в зависимости от длительности обезвоживания и от вида растения.

За начало страдания растений от недостатка воды обычно принимается появление остаточного утреннего водного дефицита. Одновременно в этот же пери­од прекращается плач растений. Последствия водного дефицита многообразны. Прежде всего, в клетках понижается содержание свободной воды, одновременно возрастает концентрация клеточного сока. Происходят глубокие изменения в цитоплазме, увеличивается ее вязкость. Возрастает проницаемость мембран. Листья, подвергшиеся завяданию, при помещении в воду выделяют значительное количество солей и других растворимых соединений. Усиленный выход солей (экзоосмос) наблюдается также из клеток корня, подвергнутых завяданию. Од­новременно эти клетки теряют способность к поглощению питательных веществ. Изменения связаны с нарушениями в структуре мембран, которые наблюдаются при снижении содержания воды ниже 20% от массы. В результате нарушения гидратных оболочек меняется конфигурация белков-ферментов и, как следствие, их активность. Особенно резко падает активность ферментов, катализирующих процессы синтеза. Вместе с тем активность фер­ментов, катализирующих процессы распада, возрастает. Крахмал распадается на сахара. Завядание приводит к увеличению активности ферментов, катализирую­щих распад белков (протеолиз). Содержание белкового азота резко падает, а не­белкового — возрастает. Распад белков при обезвоживании может быть настолько глубоким, что наступает гибель растений.

Изменяется нуклеиновый обмен. Показано, что при возрастании водного дефицита усиливается распад РНК, возрастает активность рибонуклеаз, приостанавливается синтез ДНК. Возможно, что изменение в нуклеиновом обмене является одной из причин остановки синтеза белков. При рассмотрении вопроса о влиянии происходящих при завядании процессов распада на жизнедеятельность организма надо, по-видимому, учитывать два обстоятельства. С одной стороны, этот процесс приводит к увеличению концентрации клеточного сока и в этой связи представляет собой защитную реакцию организма. С другой стороны, усиление процессов распада приводит к тяжелым физиологическим нарушениям и даже к гибели организма. Недостаток воды изменяет и такие основные физиологические процессы, как фотосинтез и дыхание. При обезвоживании устьица закрываются, это резко ухи о снижает поступление С02 в лист и, как следствие, интенсивность фотосинтеза падает. Однако уменьшение содержания воды снижает интенсивность фотосин­теза и у растений, не имеющих устьиц (мхи, лишайники). Обезвоживание нару­шает структуру хлоропластов, а также конформацию ферментов, участвующих в процессе фотосинтеза, уменьшает их активность, нарушается процесс фотофосфорилирования (И.А. Тарчевский). Что касается интенсивности дыхания, то в первый период завядания она даже возрастает. Это связано с тем, что в резуль­тате усиления под влиянием завядания процесса распада крахмала возрастает количество Сахаров — основного субстрата дыхания. При этом сахара в основ­ном накапливаются в листьях, так как отток ассимилятов при засухе резко тор­мозится. Вместе с тем при недостатке воды в клетках энергия, выделяющаяся в процессе дыхания, не аккумулируется в АТФ, а в основном выделяется в виде тепла (В.Н. Жолкевич). Таким образом, при завядании энергия дыхания не мо­жет быть использована растением. Из всех физиологических процессов наиболее чувствительным к недостатку влаги является процесс роста. Наблюдения показывают, что в самый начальный период, когда растение испытывает недостаток влаги, фотосинтез еще идет, дыхание осуществляется нормальным путем, а рост уже приостанавливается (НА. Максимов). Это объясняется несколькими причинами. Уменьшение содер­жания воды прекращает редупликацию ДНК, а, следовательно, деление клеток. Вторая фаза роста клеток (фаза растяжения) идет за счет усиленного поступления воды. В условиях недостатка воды эта фаза резко тормозится. Клетки, образовав­шиеся в условиях засухи, отличаются малым размером. Недостаток воды приво­дит и к другим анатомическим изменениям — большему развитию механических тканей. Торможение процессов роста, наблюдаемое при недостатке воды, может также явиться следствием нарушения гормонального обмена. Действительно, показано, что при недостатке воды увеличивается активность ингибиторов роста (абсцизовой кислоты, этилена).

Таковы общие закономерности страдания растительного организма под влия­нием водного стресса. Надо заметить, что отдельные органы растения страдают не в одинаковой степени и в определенной последовательности. При начинающемся водном дефиците в растении наблюдается перераспределение воды. Мо­лодые листья оттягивают воду от более старых, а также от корневой системы. Отмирают корневые волоски. Усиливаются процессы опробковения корней. Ука­занные изменения приводят к значительному сокращению зоны, участвующей в поглощении воды, к снижению проницаемости клеток корня для воды. Имен­но это определяет тот факт, что после длительного завядания растения оправля­ются медленно. Более того, способность корневой системы к поглощению воды после завядания полностью не восстанавливается. После достижения растени­ем полного тургора процессы обмена также восстанавливаются не сразу, так как водный стресс вызывает нарушения в системах регуляции.

Рассматривая в целом процессы, происходящие в растении под влиянием не­достатка воды, необходимо отметить, что они проходят разные этапы. Извест­но, что при воздействии неблагоприятных условий среды в организме развива­ются приспособительные процессы. На начальных этапах недостаток воды вызывает в растительном организме физиологические изменения, повышающие его устойчивость. К таким процессам относится осморегуляция — накопление осмотически действующих веществ, таких как ионы (в первую очередь К + ) и органические вещества (органические кислоты, аминокислоты). Благодаря это­му вода удерживается (повышается соотношения связанной воды к свободной), и клетки предохраняются от высыхания. Однако накопление ионов небезопас­но, т. к. может привести к ингибированию ферментов. В силу этого основное приспособительное значение имеет образование при водном стрессе раствори­мых органических соединений — сорбитола, глицинбетаина, и в первую очередь пролина. В условиях водного дефицита содержание пролина возрастает во мно­го раз. Показано, что у ряда растений (ячмень, хлопчатник и др.) содержание пролина увеличивается почти в 100 раз. Такой фитогормон как абсцизовая кислота, накапливающаяся при стрессе, также способствует образованию этой аминокислоты. Пролин действует как осморегулятор, способствует удержанию воды, предотвращает дегидратацию белков, вызываемую засухой, увеличиваем оводненность мембран и стабилизирует их структуру. Опыты показали, что рас­тения, способные к осморегуляции, в условиях стресса сохраняют фотосинтез на более высоком уровне.

Необходимо отметить особую роль хлоропластов в регуляции водоудерживающей способности листьев. В начальный период стресса содержание воды в хлоропластах увеличивается, и они набухают. В период усиления водного де­фицита хлоропласты теряют воду медленнее по сравнению с клеткой в целом и могут служить дополнительным резервуаром воды. Это является одной из причин, что при засухе процесс фотосинтеза снижается медленно и при неболь­шом водном дефиците даже возрастает. Способность растительного организма сохранять при засухе способность к накоплению сухого вещества проявляется и в изменениях путей фотосинтеза. Предполагается, что САМ-путь наряду с кон­ституционным способом, когда САМ-путь экспрессируется в течение всего онтогенеза, может формироваться и как адаптация в ответ на действие водного стресса. В качестве сигнала может быть сочетание влияния водного дефицита и недостатка углекислого газа, вызванного закрытием устьиц. В результате пе­редачи сигнала в ядро происходят изменения экспрессии генов, кодирующих ферменты С4 и САМ-пути, например ФЕП-карбоксилазы. Как уже рассматри­валось, САМ или С4-путь позволяют расходовать воду в 3—5 раз экономнее по сравнению с растениями С3-пути.

В условиях водного стресса происходят заметные изменения и в гормональной системе. Это, прежде всего, выражается в накоплении таких фитогормонов как АБК и этилен. Абсцизовая кислота вызывает уменьшение транспирации при /,, одновременном усилении поглощения воды корневой системой. В этой связи проявляется ее ведущая роль в процессах водного обмена. Наряду с этим, как правило, содержание таких фитогормонов как ауксины и гиббереллины умень­шается. Изменение соотношения фитогоромонов приводит к торможению рос­та, что также может рассматриваться как защитная реакция.

В условиях водного дефицита при закрытых устьицах в клетках тормозится поступление углекислого газа. Недостаток С02 вызывает ослабление фотосинтеза и как следствие некоторый избыток кислорода. Как уже упоминалось и этих условиях возможно накопление супероксидных радикалов или других АФК. Это приводит к развитию перекисного окисления липидов и повреждению мембран. В этой связи важным моментом адаптации растений к условиям засухи является развитие антиоксидантной системы и образование соответствующих фермен­тов, в первую очередь СОД. Как и при других стрессорах важное значение в обеспечении устойчивости при засухе имеет образование особых стрессовых белков. Это, например большая группа белков-дегидринов (LEA-белки). Эти белки обычно синтезируются в период позднего эмбриогенеза, когда происходит естественное обезвоживание семян. Как уже отмечалось синтез таких белков индуцируется АБК. При обезвоживании LEA-белки предохраняют клеточные структуры от деграда­ции, связывая воду. Возрастает роль белков, участвующих в транспорте воды через мембраны — аквапоринов. Защита ДНК при засухе осуществляется другими стрессовыми белками — шаперонами. Значение этих белков заключается в под­держании целостности ДНК при обезвоживании. Вместе с тем дальнейшее воздействие недостатка воды приводит к таким на­рушениям, которые вызывают повреждение организма. Эти нарушения могут иметь обратимый и необратимый характер. Затянувшееся завядание может привести растение к гибели. В крайних случаях при внезапном и очень большом напряжении всех метеорологических факто­ров растение гибнет от высыхания (захват) или высоких температур (запал). Од­нако обычно гибель растений от водного дефицита наступает еще до их полного высыхания, и причиной ее являются нарушения обмена веществ. Особенно опасно в этом отношении нарушение нуклеинового и белкового обмена. Пре­кращение синтеза и усиление распада белка, снижение его содержания ниже критического уровня приводят к необратимым изменениям. Организм не может восстановить способность к новообразованию белка, а без этого невозможна жизнь. Глубокий распад сложных органических соединений ведет к образова­нию промежуточных продуктов распада (например, аммиака), которые, накап­ливаясь, отравляют организм. Не исключено также, что обезвоживание приводит к повреждению из-за резкого повышения концентрации клеточного сока и сдвига рН в кислую сторону.

Необходимо отметить, что растения на протяжении онтогенеза относятся к не­достатку воды неодинаково. У каждого вида растений существуют критические периоды, т. е. периоды наибольшей чувствительности к снабжению водой. Иссле­дования показали, что именно периоды наибольшего роста данного органа или всего растительного организма в целом наиболее чувствительны к недостатку воды. С агрономической точки зрения критические периоды — это периоды, когда наи­более интенсивно растут и формируются те органы, ради которых данное растение возделывают. Особенно чувствительными к недостатку воды являются периоды формирования пыльцы и оплодотворения (ФД. Сказкин, В.В. Аникиев).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *