Ускоритель частиц для чего нужен

Зачем нужен ускоритель

Ускоритель — это самый «зоркий» микроскоп, который есть в распоряжении ученых. Он позволяет увидеть самые маленькие детали строения вещества, которые нельзя различить никакими другими способами.

Когда мы рассматриваем что-то в обычный микроскоп, мы освещаем предмет и наблюдаем его в рассеянном свете. Но у микроскопа есть физическое ограничение: в него нельзя увидеть объекты размером меньше длины световой волны. Для видимого света это примерно полмикрона (1 мкм = 10 –6 м).

Ускоритель частиц для чего нужен

Более мелкие объекты позволяет различить электронная микроскопия: вместо света предмет «освещают» пучком электронов и смотрят, как они рассеиваются. Чем больше энергия электронов, тем меньше, согласно законам квантовой механики, их длина волны, а значит, мельче детали, которые можно увидеть. Электроны с энергией в несколько килоэлектронвольт позволяют «разглядеть» отдельные крупные молекулы, атомное ядро «видно» на ускорителе при энергии электронов в сотни мегаэлектронвольт, а структуру протона можно изучать, лишь достигнув энергии около 1 ГэВ.

Ускоритель частиц для чего нужен

До этого физики изучали свойства тех частиц, из которых непосредственно сложен наш мир, — электронов, протонов, нейтронов. Но превысив энергию в 1 ГэВ, физики открыли новую, неведомую ранее грань нашего мира. Протоны и нейтроны стали разрушаться, и в столкновениях рождались и распадались новые нестабильные частицы. Чем выше была энергия, тем более тяжелые и удивительные появлялись частицы.

Последовали десятилетия исследований, и постепенно выяснилось, что понять наш мир, изучая только электроны, протоны и нейтроны, — нельзя. Многие из этих нестабильных частиц — вовсе не «лишние»; оказалось, что они определяют строение нашего «обычного» мира. Роль других частиц предстоит выяснить в будущем; возможно, их наличие — отголосок какой-то глубинной симметрии нашего мира, которую физики еще не нащупали.

Новые ускорители сейчас строятся именно для того, чтобы подробнее изучить свойства тяжелых нестабильных частиц. Например, главная задача ускорителя LHC (Large Hadron Collider, Большой адронный коллайдер), тестовая эксплуатация которого началась в сентябре 2008 года в Европейской ядерной лаборатории в ЦЕРНе, — попытаться родить и изучить свойства бозона Хиггса и суперсимметричных частиц. Это будет чрезвычайно важным шагом вперед в понимании устройства нашего мира.

Источник

Что такое ускоритель частиц? Как это работает?

Ускоритель частиц для чего нужен

История ускорителя частиц восходит к 1930 году, когда ученые разработали трансформатор на 200 000 вольт и ускоряли протоны по прямой траектории. Хотя машина не выполнила свое предназначение, она начала поиски ускорителей частиц более высокой энергии, которые продолжаются и по сей день.

В 20-м веке ускорители частиц были названы атомными разрушителями. Название сохраняется, несмотря на то, что современные ускорители создают столкновения между двумя субатомными частицами, а не атомными ядрами.

Столкновения таких частиц могут помочь ученым понять, как работает Вселенная. Ускорители частиц высоких энергий чрезвычайно полезны для фундаментальных и прикладных исследований в различных областях, от электроники и медицины до международной безопасности.

Мы рассмотрели некоторые из наиболее интересных фактов и статистических данных о современных ускорителях частиц, которые пробудят в вас интерес к физике частиц. Давайте начнем с основного.

Типы ускорителей частиц

Существует два основных типа ускорителей:

1) Электростатические ускорители: используйте статические электрические поля для увеличения скорости заряженных частиц. Положительная частица притягивается к отрицательно заряженной пластине, а отрицательная частица притягивается к положительно заряженной пластине.

Они простые, менее дорогие и имеют ограниченный выход энергии, что означает, что они не могут разогнать частицы до чрезвычайно высоких скоростей. Максимальная кинетическая энергия частиц зависит от ускоряющего напряжения, которое ограничено явлением, называемым электрическим пробоем.

Генератор Ван де Граафа и генератор Кокрофта-Уолтона являются наиболее распространенным примером электростатических ускорителей. Катодно-лучевая трубка любого старого компьютерного монитора является небольшим примером ускорителя этого типа.

2) Электродинамические ускорители: используйте изменяющиеся электромагнитные поля (либо колеблющиеся радиочастотные поля, либо магнитную индукцию) для ускорения частиц.

В этих устройствах частицы пропускаются через одно и то же электромагнитное поле несколько раз, поэтому они могут достигать гораздо более высоких скоростей, чем в электростатических ускорителях. Максимальная кинетическая энергия частиц не ограничена напряженностью ускоряющего поля.

Эти ускорители можно подразделить на два класса:

Ускоритель частиц для чего нужен

Как это работает?

На базовом уровне ускорители частиц генерируют пучок заряженных частиц, который используется для многочисленных исследовательских целей. Обычно пучок состоит из заряженных субатомных частиц (таких, как протоны и электроны), но в некоторых случаях используются целые атомы более тяжелых элементов (таких, как уран и золото).

Например, в кольцевых ускорителях частицы непрерывно ускоряются в круглой трубе. Напряженность электрического поля увеличивается с каждым проходом, повышая уровень энергии пучка частиц.

Когда частицы достигают необходимой скорости, цель (например, тонкий кусок металлического листа) помещается в их дорожку, где детектор частиц анализирует столкновение.

В целом, существует 6 ключевых компонентов в ускорителях частиц:

А) Частица S : обеспечивает ускорение частиц (таких, как электроны или протоны). Один баллон с газообразным водородом, например, может быть источником частиц. Один атом водорода содержит один электрон и один протон.

Б) Металлическая труба: содержит вакуум, в котором движется пучок частиц. Вакуум поддерживает беспыльную среду для беспрепятственного перемещения электрически заряженных частиц.

С) Электромагниты: контролируют движение частиц, когда они проходят через металлическую трубу.

Д) Электрические поля: регулярно переключаются с положительного на отрицательный. Это генерирует радиоволны, которые ускоряют заряженные частицы.

E) Цели: когда частицы достигают желаемой скорости, они сталкиваются с неподвижной целью. Иногда сталкиваются два пучка частиц.

F) Детекторы: регистрируют столкновение частиц и выявляют радиацию или субатомные частицы, генерируемые в процессе.

Самые большие ускорители частиц в мире

В настоящее время в мире действуют более 30 000 ускорителей частиц. Из них 44% используются для лучевой терапии, 41% для ионной имплантации, 9% для промышленной обработки и 4% для низкоэнергетических и биомедицинских исследований. Только 1% существующих ускорителей способны генерировать энергии свыше одного миллиарда электрон-вольт или 1 ГэВ.

В настоящее время Большой адронный коллайдер является самым мощным ускорителем частиц в мире. Он способен ускорять два пучка протонов до энергии 6,5 тера электрон-вольт. Когда эти два мощных пучка сталкиваются, они создают энергию центра масс 13 тераэлектронвольт (ТэВ).

Ускоритель частиц для чего нужен

Карта Большого адронного коллайдера| ЦЕРН

Машина лежит в туннеле глубиной 175 метров. Это 27 километров в окружности, и его кольцо магнитов может создавать магнитное поле 8.36 Тесла.

Структура содержит более 1000 дипольных магнитов, которые удерживают частицы, движущиеся почти со скоростью света: одна частица движется по 27-километровому кольцу 11 000 раз в секунду.

Он был разработан Европейской организацией ядерных исследований в сотрудничестве с более чем 10 000 исследователей и сотнями лабораторий и университетов из более чем 100 стран.

Частица бозона Хиггса, которую иногда называют «частицей Бога», была обнаружена в Большом Адронном Коллайдере в 2012 году. В том же году физики сформировали кварк-глюонную плазму, которая могла достигать 5,5 триллиона градусов по Цельсию — самой высокой температуры, зарегистрированной рукотворной машиной.

Ускоритель частиц для чего нужен

Бозон Хиггса впервые наблюдался во время экспериментов на Большом адронном коллайдере | Изображение предоставлено: Designua / Shutterstock

В ближайшие годы эта гигантская машина позволит физикам проверить различные теории физики элементарных частиц, включая анализ свойств бозонов Хиггса, поиск новых элементарных частиц, предлагаемых суперсимметричными теориями, а также других загадок во вселенной.

Применение

Применение в медицине. Ежегодно миллионы пациентов получают диагностику и лечение на основе ускорителей в клиниках и больницах по всему миру. Ускоренные частицы (такие, как протоны, электроны или более тяжелые заряженные частицы) используются для уничтожения раковых клеток и создания детального изображения изнутри тела.

Потребительские товары: ускорители частиц в настоящее время используются в различных промышленных процессах, начиная от сшивания пластмассы для термоусадочной пленки и заканчивая производством компьютерных чипов.

В частности, ускорители ионных пучков используются для изготовления электронных микросхем и упрочнения поверхностей материалов, подобных тем, которые используются в искусственных соединениях. Ускорители с электронным пучком, с другой стороны, обычно используются для изменения свойств материала, таких как пластические модификации для обработки поверхности.

Что еще они могут сделать?

Анализ столкновений частиц высоких энергий может быть полезным для фундаментальных и прикладных исследований в науке. Это может помочь физикам решить некоторые фундаментальные проблемы в физике, включая глубокую структуру пространства-времени и взаимосвязь между общей теорией относительности и квантовой механикой.

Ускоритель частиц для чего нужен

Столкновение двух протонов создает поток частиц мусора | CERN

Вот четыре основных вопроса, на которые ученые надеются ответить в течение следующих нескольких десятилетий:

По словам Стивена Хокинга, технология, основанная на ускорителе частиц, является самой близкой вещью к машинам времени. В 2010 году он написал статью, объясняющую, как можно путешествовать во времени.

Источник

Зачем вообще нужен LHC?

Узнав впервые о существовании LHC, повосхищавшись его размерами, поудивлявшись непонятности и практической бесполезности его задач, читатель, как правило, задает вопрос: а зачем вообще нужен этот LHC?

В этом вопросе есть сразу несколько аспектов. Зачем людям вообще нужны эти элементарные частицы, зачем тратить столько денег на один эксперимент, какая будет польза для науки от экспериментов на LHC? Здесь я попробую дать ответы, пусть краткие и субъективные, на эти вопросы.

Зачем обществу нужна фундаментальная наука?

Отношение большей части общества к фундаментальной науке — примерно такое же. Только вдобавок человек в современном обществе уже пользуется огромным количеством достижений фундаментальной науки, не задумываясь об этом.

Да, люди, конечно, признают, что высокие технологии делают жизнь комфортнее. Но при этом они неявно полагают, что технологии эти — результат чисто прикладных разработок. А вот это — большое заблуждение. Надо четко понимать, что перед практической наукой регулярно встают задачи, которые она сама решить просто не в состоянии — ни с помощью накопленного практического опыта, ни через прозрение изобретателей-рационализаторов, ни методом проб и ошибок. Зато они решаются с помощью фундаментальной науки. Скажем, те свойства вещества, которые недавно казались совершенно бесполезными, вдруг открывают возможность для создания принципиально новых устройств или материалов с неожиданными возможностями. Или же вдруг обнаруживается глубокая параллель между какими-то сложными объектами из сугубо прикладной и из фундаментальной науки, и тогда абстрактные научные результаты удается использовать на практике.

В общем, фундаментальная наука — это основа технологий в долгосрочной перспективе, технологий, понимаемых в самом широком значении. И если какие-то небольшие усовершенствования существующих технологий можно сделать, ограничиваясь сугубо прикладными исследованиями, то создать новые технологии — и с их помощью преодолевать новые проблемы, регулярно встающие перед обществом! — можно, лишь опираясь на фундаментальную науку.

Опять же, прибегая к аналогиям, можно сказать, что пытаться развивать науку, ориентируясь только на немедленную практическую пользу — это словно играть в футбол, прыгая исключительно на одной ноге. И то, и другое, в принципе, можно себе представить, но в долгосрочной перспективе эффективность от обоих занятий почти нулевая.

Почему фундаментальной наукой занимаются сами ученые?

Кстати, стоит подчеркнуть, что большинство ученых занимается наукой вовсе не потому, что это может оказаться полезно для общества. Люди занимаются наукой, потому что это жутко интересно. Даже когда просто изучаешь открытые кем-то законы или построенные кем-то теории, это уже «щекочет мозги» и приносит огромное удовольствие. А те редкие моменты, когда удается самому открыть какую-то новую грань нашего мира, доставляют очень сильные переживания.

Эти ощущения отдаленно напоминают чувства, возникающие при чтении детектива: автор построил перед тобой загадку, а ты пытаешься разгадать ее, стараясь увидеть в описываемых фактах скрытый, взаимосвязанный смысл. Но если в детективе глубина и стройность загадки ограничены фантазией автора, то фантазия природы выглядит пока неограниченной, а ее загадки — многоуровневыми. И эти загадки не придуманы кем-то искусственно, они настоящие, они вокруг нас. Вот ученым и хочется справиться хотя бы с кусочком этой вселенской головоломки, подняться еще на один уровень понимания.

Кому нужны элементарные частицы?

Хорошо, положим, фундаментальной наукой действительно стоит заниматься, раз она спустя несколько десятков лет сможет привести к конкретным практическим достижениям. Тогда давайте будем изучать фундаментальное материаловедение, будем манипулировать отдельными атомами, будем развивать новые методики диагностики веществ, поучимся рассчитывать сложные химические реакции на молекулярном уровне. Можно легко поверить в то, что спустя десятки лет всё это приведет к новым практическим приложениям.

Но трудно себе представить, какая в принципе может быть конкретная практическая польза от топ-кварков или от хиггсовского бозона. Скорее всего, вообще никакой. Тогда какой толк в развитии физики элементарных частиц?

Толк огромный, и заключается он вот в чём.

Физические явления эффективнее всего описываются на языке математики. Эту ситуацию обычно называют удивительной (знаменитое эссе Ю. Вигнера о «непостижимой эффективности математики»), но тут есть и другой, не менее сильный повод для удивления. Всё головокружительное разнообразие явлений, происходящих в нашем мире, описывается лишь очень небольшим числом математических моделей. Осознание этого поразительного, совсем не очевидного свойства нашего мира — одно из самых важных открытий в физике.

Пока знания ограничиваются лишь «повседневной» физикой, эта тенденция может оставаться незаметной, но чем глубже знакомишься с современной физикой, тем более яркой и завораживающей выглядит эта «математическая экономность» природы. Явление сверхпроводимости и хиггсовский механизм возникновения масс элементарных частиц, электроны в графене и безмассовые элементарные частицы, жидкий гелий и внутренности нейтронных звезд, теория гравитации в многомерном пространстве и сверххолодное облачко атомов — вот лишь некоторые пары разных природных явлений с удивительно схожим математическим описанием. Хотим мы или нет, но эта связь между разными физическими явлениями через математику — это тоже закон природы, и им нельзя пренебрегать! Это полезный урок для тех, кто пытается рассуждать о физических явлениях, опираясь только на их «природную сущность».

Аналогии между объектами из разных областей физики могут быть глубокими или поверхностными, точными или приблизительными. Но благодаря всей этой сети математических аналогий наука физика предстает как многогранная, но цельная дисциплина. Физика элементарных частиц — это одна из ее граней, которая через развитие математического формализма крепко связана со многими более «практическими» областями физики, да и естественных наук в целом.

Поэтому, кто знает, может быть, изучая теорию гравитации, мы в конце концов придем к пониманию турбулентности, развитие методов квантовой теории поля позволит по-иному взглянуть на генетическую эволюцию, а эксперименты по изучению устройства протона откроют нам новые возможности для создания материалов с экзотическими свойствами.

Кстати, иногда в ответ на вопрос о пользе физики элементарных частиц начинают перечислять те конкретные методики и приборы, которые явились побочным результатом изучения элементарных частиц. Их уже немало: адронная терапия раковых опухолей, позитронно-эмиссионная томография, мюонная химия, цифровые малодозные рентгеновские установки, самые разнообразные применения синхротронного излучения, плюс еще несколько методик в процессе разработки. Это всё верно, но надо понимать, что это именно побочная, а не главная польза от физики элементарных частиц.

Зачем надо изучать нестабильные частицы?

Окружающий нас мир состоит из частиц трех типов: протонов, нейтронов, электронов. Казалось бы, если мы хотим знать устройство нашего мира, давайте изучать только эти частицы. Кому интересны частицы, которые живут мгновения, а потом снова распадаются? Какое отношение эти частицы имеют к нашему микромиру?

Во-первых, многие из этих нестабильных частиц напрямую влияют на свойства и поведение наших обычных частиц — и это, кстати, одно из важных открытий в физике частиц. Оказывается, эти нестабильные частицы на самом деле присутствуют в нашем мире, но не в виде самостоятельных объектов, а в виде «некоторого» облачка, окутывающего каждую обычную частицу. И то, как обычные частицы взаимодействуют друг с другом, зависит не только от них самих, но и от окружающих их «облачков». Эти облачка порождают ядерные силы, связывающие протоны и нейтроны в ядра, они заставляют распадаться свободный нейтрон, они наделяют обычные частицы массой и другими свойствами.

Эти нестабильные частицы — невидимая, но совершенно неотъемлемая часть нашего мира, заставляющая его крутиться, работать, жить.

Вторая причина тоже вполне понятная. Если вам надо разобраться с устройством или с принципом работы какой-то очень сложной вещи, ваша задача станет намного проще, если вам разрешат как-то изменять, перестраивать эту вещь. Собственно, этим и занимаются отладчики (не важно чего: техники, программного кода и т. п.) — они смотрят, что изменится, если сделать так, повернуть эдак.

Экзотические для нашего мира элементарные частицы — это тоже как бы обычные частицы, у которых «что-то повернуто не так». Изучая все эти частицы, сравнивая их друг с другом, можно узнать о «наших» частицах гораздо больше, чем в экспериментах только с протонами да электронами. Уж так устроена природа — свойства самых разных частиц оказываются глубоко связаны друг с другом!

Зачем нужны такие огромные ускорители?

Ускоритель — это по своей сути микроскоп, и для того, чтобы разглядеть устройство частиц на очень малых масштабах, требуется увеличивать «зоркость» микроскопа. Предельная разрешающая способность микроскопов определяется длиной волны частиц, используемых для «освещения» мишени — будь то фотоны, электроны или протоны. Согласно квантовым законам, уменьшить длину волны квантовой частицы можно путем увеличения ее энергии. Поэтому-то и строятся ускорители на максимально достижимую энергию.

В кольцевых ускорителях частицы летают по кругу и удерживаются на этой траектории магнитным полем мощных сверхпроводящих магнитов. Чем больше энергия частиц — тем большее требуется магнитное поле при постоянном радиусе или тем большим должен быть радиус при постоянном магнитном поле. Увеличивать силу магнитного поля очень трудно с физической и инженерной точки зрения, поэтому приходится увеличивать размеры ускорителя.

Впрочем, физики сейчас работают над новыми, намного более эффективными методиками ускорения элементарных частиц (см., например, новость Первое применение лазерных ускорителей будет медицинским). Если эти методы оправдают свои ожидания, то в будущем максимально достижимая энергия частиц сможет увеличиться при тех же размерах ускорителей. Однако ориентироваться тут можно лишь на срок в несколько десятков лет.

Но не стоит думать, что гигантские ускорители — это единственное орудие экспериментальной физики элементарных частиц. Есть и «второй фронт» — эксперименты с меньшей энергией, но с очень высокой чувствительностью. Тут примером могут служить так называемые b-фабрики BaBar в Стэнфорде и Belle в Японии. Это электрон-позитронные коллайдеры со скромной энергией (около 10 ГэВ), но с очень высокой светимостью. На этих коллайдерах рождаются B-мезоны, причем в таких больших количествах, что удается изучить чрезвычайно редкие их распады и заметить проявление разнообразных тонких эффектов. Эти эффекты могут быть вызваны новыми явлениями, которые изучаются (правда, с другой точки зрения) и на LHC. Поэтому такие эксперименты столь же важны, как и эксперименты на коллайдерах высоких энергий.

Зачем нужны такие дорогие эксперименты?

Часто можно услышать возмущенные голоса: а по какому праву физики тратят такие огромные деньги налогоплательщиков на удовлетворение собственного любопытства? Ведь их можно потратить и с гораздо большей конкретной практической пользой!

На самом деле, если взглянуть на ситуацию реалистично, то альтернатива LHC состояла не в том, чтобы пустить эти же деньги на какую-то «практически полезную» деятельность, а в том, чтобы провести на них еще несколько десятков экспериментов по физике элементарных частиц, но среднего масштаба.

Логика тут совершенно прозрачна. Правительства большинства стран понимают, что некоторую долю бюджета необходимо тратить на фундаментальные научные исследования — от этого зависит будущее страны. Эта доля, кстати, не такая уж и большая, порядка 2-3% (для сравнения, военные расходы составляют, как правило, десятки процентов). Расходы на фундаментальную науку выделяются, разумеется, не в ущерб другим статьям бюджета. Государства тратят деньги и на здравоохранение, и на социальные проекты, и на развитие технологий с конкретными практическими применениями, и на благотворительность, и на помощь голодающим Африки и т. д. «Научные» деньги — это отдельная строка бюджета, и эти деньги сознательно направлены на развитие науки.

Как это финансирование распределяется между разными научными дисциплинами, зависит от конкретной страны. Значительная часть уходит в биомедицинские исследования, часть — в исследования климата, в физику конденсированных сред, астрофизику и т. д. Своя доля уходит и в физику элементарных частиц.

Типичный годовой бюджет экспериментальной физики элементарных частиц, просуммированный по всем странам, — порядка нескольких миллиардов долларов (см., например, данные по США). Большинство этих денег тратится на многочисленные эксперименты небольшого масштаба, которых поставлено в последние годы порядка сотни, причем они финансируются на уровне отдельных институтов или в редких случаях — стран. Однако опыт последних десятилетий показал, что если объединить хотя бы часть денег, выделяемых на ФЭЧ во многих странах, в результате может получиться эксперимент, научная ценность которого намного превзойдет суммарную ценность множества мелких разрозненных экспериментов.

Именно с целью резкого увеличения научной эффективности при тех же деньгах и был создан LHC. Подробности про ожидаемую научную ценность экспериментов можно узнать из списка задач, стоящих перед LHC.

Источник

Ускорители частиц — инструменты научных открытий

Ускоритель частиц для чего нужен

Сегодня из-за все более высоких запросов и усложнения передовых методов исследований растут требования к научным установкам в самых разных областях: от медицины и биологии до физики плазмы и элементарных частиц. Не единственный, но широко распространенный и эффективный подход — строительство больших (и дорогостоящих) научно-исследовательских комплексов, уникальных научных установок, рассчитанных на одновременное использование большим количеством групп и исследователей, почти всегда с широким международным участием. Такие мегасайенс-установки являются не отдельными центрами, университетами и лабораториями, а общенациональными или даже международными проектами. Среди наиболее известных уже действующих установок — ускорительные комплексы в ЦЕРН (Швейцария) и ОИЯИ (Дубна, Россия).

В СССР в 1980-х гг. было начато строительство ускорительного комплекса УНК периметром 21 км на рекордную энергию столкновений для изучения рождения новых элементарных частиц. Из-за распада страны и сокращения финансирования науки проект был закрыт в середине 1990-х гг. В последующие два десятилетия ситуация постепенно выравнивалась: РФ стала принимать сначала умеренное, а затем все большее участие в зарубежных мегасайенс-проектах, таких как БАК (LHC), ITER, XFEL, FAIR, ESRF. «Первой ласточкой» в России стал международный коллайдер ионов NICA, строительство которого началось в 2016 г. в Дубне. А в 2019 г. вышел Указ Президента РФ от 25.07.2019 № 356, инициировавший работы по созданию еще пяти таких установок в России. Примерная стоимость каждой — от 10 до 50 млрд руб., строиться и настраиваться они будут в течение пяти лет или более. При этом каждая из них даст уникальные возможности сотням, а в идеале и тысячам исследователей, включая международные коллаборации.

Большинство этих установок базируется на уникальных ускорителях заряженных частиц высоких энергий. Строящийся в Кольцово источник синхротронного излучения СКИФ (Сибирский кольцевой источник фотонов) — первый в России источник так называемого четвертого поколения и будущая гордость Новосибирского научного центра. Он станет центром притяжения не только для всех специалистов новосибирского Академгородка, но и Сибири, России, всего мира. Синхротронное излучение электронов в рентгеновском диапазоне позволит глубоко заглянуть в структуру вещества: от биологических объектов и медпрепаратов до горных пород и полупроводников. Благодаря очень сложной магнитной системе СКИФ будет давать пучок синхротронного излучения с уникальной яркостью, в несколько раз превосходящей как уже работающие источники подобного класса в Швеции и Бразилии, так и те, создание которых только планируется в мире.

Ускоритель частиц для чего нужен

Об авторе

Владимир Дмитриевич Шильцев — русский и американский физик, специалист в области физики частиц высоких энергий и физики ускорителей. Работает в Национальной ускорительной лаборатории имени Э. Ферми (США). Награжден рядом престижных премий и наград, в том числе Премией им. Нишикава за выдающиеся достижения в области ускорителей (2019). Председатель Международного академического совета Новосибирского государственного университета.

* Reproduced from Shiltsev V. Particle beams behind physics discoveries // Physics Today. 2020. V. 73. № 4. P. 32, with the permission of the American Institute of Physics.

В ночь на 30 июня 2017 г. группа физиков-ускорительщиков собралась в Центре управления ЦЕРН (CERN). Некоторые участники были из отделов и групп ЦЕРН, другие, как я, даже перелетели через океан. Нашей целью была проверка новой идеи по коллимации (формированию тонкого параллельно идущего потока) пучка Большого адронного коллайдера (БАК), имеющей решающее значение для грядущего улучшения самого мощного ускорителя в мире. Для изучения физики пучка БАК была назначена восьмичасовая смена. Как это часто бывает на крупных ускорительных установках, ускорительщики получают полный контроль над своими машинами поздно, чтобы минимизировать неудобства для пользователей и физиков, занимающихся детекторами частиц высокой энергией, и избежать многочисленных дневных отвлекающих факторов.

Одна ночь из жизни физика-ускорительщика

Мы планировали получить доступ к пучку в 10:00 вечера, но из-за проблем с криогеникой коллайдера в последнюю минуту нам пришлось ждать до полуночи. Стефано Редаелли, глава группы коллимации БАК, мой давний коллега и близкий друг, планировал это исследование в течение нескольких предыдущих месяцев. Для изучения физики пучка БАК была назначена восьмичасовая смена.

В ожидании пучка мы несколько раз просмотрели подробный пошаговый план нашего эксперимента, подкрепляясь кофе из знаменитой эспрессо-кофеварки Центра управления. БАК имеет более ста коллиматоров — армированных волокном графитовых пластин длиной 1,2 м — для перехвата паразитных протонов (Brüning & Collier, 2007). Они защищают сверхпроводящие магниты с полем 8 Тл и другое чувствительное оборудование от повреждения даже малым числом протонов с рекордной энергией 6,5 ТэВ (что примерно в 7 тыс. раз больше, чем энергия массы покоя), которые по каким-то причинам далеко отклоняются от заданной центральной траектории. Это происходит, к примеру, когда протоны сталкиваются либо с молекулами остаточного газа внутри вакуумной камеры, либо с пучком протонов противоположного направления в точках взаимодействия внутри одного из массивных детекторов новых элементарных частиц.

Ускоритель частиц для чего нужен

Детектор тяжелых ионов ALICE — один из семи экспериментальных детекторов, работающих на Большом адронном коллайдере. Фото: М Швейцер. © 2008 CERN

Между параллельными пластинами коллиматоров, расположенных в нескольких миллиметрах друг от друга, пролетают со скоростью света пучки протонов диаметром около 0,25 мм, чья энергия (примерно 500 МДж) сравнима с кинетической энергией летящего авиалайнера средних размеров. По сути, именно коллиматоры являются ближайшими к пучкам БАК объектами. И хотя графитовые пластины очень прочны и могут поглощать энергию рассеянных частиц, не разрушаясь, их электропроводность относительно низка, что имеет значение при очень высоких токах протонов.

После следующего крупного апгрейда БАК будет работать с гораздо более высокими токами, поэтому если коллиматоры не модифицировать, то это приведет к нестабильным поперечным колебаниям протонных пучков. План нашего ночного эксперимента заключался в том, чтобы испытать коллиматор нового типа, у которого графит был покрыт слоем материала с более высокой проводимостью толщиной 5 мкм.

Мы подготовили новый коллиматор, на поверхности которого были нанесены три параллельные полосы шириной 10 мм из карбида молибдена, нитрида титана и чистого молибдена. Помещая протонный пучок рядом с каждой из проводящих полос по очереди, мы ожидали увидеть трехкратное улучшение стабильности луча.

Получив наконец циркулирующий пучок от инжекторов БАКа, мы медленно ускоряли его в течение 20 мин, пока не достигли рабочей энергии 6,5 ТэВ. Потом происходило самое интересное. Перемещая протонные пучки относительно каждой из проводящих полос, мы наблюдали за изменениями частоты поперечных колебаний пучков, чтобы определить наилучшую последовательность действий. Затем начались плановые испытания, которые закончились лишь к 5 ч утра.

Ускоритель частиц для чего нужен

Вскоре после полуночи 30 ноября 2009 г. БАК побил новый мировой рекорд: два пучка протонов внутри ускорителя были разогнаны до энергии 1,18 ТэВ. Фото сделано в Центре контроля ЦЕРН — большом зале, где находятся четыре консоли-«островка», контролирующие Большой адронный коллайдер, протонный синхротрон и суперпротонный синхротрон в цепи впрыска коллайдера и техническую инфраструктуру ускорительного комплекса. © 2009 CERN

С нетерпением рассмотрев предварительные результаты наших измерений, мы убедились, что пучок протонов был наиболее устойчивым вблизи полосы чистого молибдена, имеющего лучшую электрическую проводимость.

Уже в 7 ч утра я вылетел обратно в Чикаго. В течение следующих нескольких месяцев собранные данные были проанализированы, сравнены с компьютерными моделями, представлены на крупной международной конференции и опубликованы. Главное, что наш подход оказался жизнеспособным, коллиматоры с покрытием из молибдена были одобрены в рамках проекта по увеличению светимости БАК, который планируется реализовать к 2026 г.

Ускорители и фундаментальные исследования

В 2011 г. исследователи Национальной ускорительной лаборатории SLAC (США) Э. Хауссекер и А. Чао решили оценить влияние ускорителей на физическое сообщество (Haussecker & Chao, 2011). Они проанализировали все исследования по физике, удостоенные Нобелевской премии, начиная с 1939 г., когда Э. Лоуренс получил эту награду за изобретение первого современного ускорителя (циклотрона), до 2009 г. Их основной вывод: ускорители были и остаются неотъемлемой частью физических исследований. Этот вывод не изменится, если учитывать награды и 2010–2018 гг.

В 1939–2018 гг. ускорители использовались в работе каждого четвертого физика, исследования на ускорителях отмечались Нобелевской премией по физике каждые три года. Еще две премии за саму науку об ускорителях были вручены после Лоуренса: награду получили Д. Кокрофт и Э. Уолтон в 1951 г. за изобретение линейного ускорителя, а половина премии 1984 г. досталась С. ван дер Мееру за разработку метода стохастического охлаждения.

Еще несколько разработок были признаны мировым научным сообществом как работы нобелевского калибра. Одна из них — это открытие в 1952 г. принципа сильной фокусировки, при котором пучок заряженных частиц проходит через переменные градиенты магнитного поля, оставаясь хорошо сфокусированным. В настоящее время этот принцип используется в большинстве ускорителей. Еще одно — изобретение лазеров на свободных электронах, в частности самоусиливающихся ЛСЭ со спонтанным излучением, которое произвело революцию в рентгеновских исследованиях. К этому списку можно добавить и впечатляющие результаты по синтезу новых сверхтяжелых элементов.

Ускорительные источники синхротронного излучения также сыграли важную роль в работе ряда лауреатов Нобелевской премии по химии: Д. Уокера (1997 г.), награжденного за раскрытие ферментативного характера синтеза АТФ в клетке; Р. Маккиннона (2003 г.), продемонстрировавшего структуру клеточных ионных каналов; Р. Корнберга (2006 г.), определившего структуру фермента РНК-полимеразы; А. Йонат (2009 г.), открывшей структуру и функции рибосомы; Б. Кобилка и Р. Лефковица (2012 г.) за изучения клеточных рецепторов, связанных с G-белком и ответственных за распознавание света, запахов и ряда гормонов.

Управление науки Министерства энергетики США является спонсором 28 пользовательских установок для фундаментальных исследований класса мегасайенс. Из них 16 — это ускорители: коллайдеры, источники света и источники нейтронов. Годовой бюджет на их эксплуатацию и строительство новых превышает 2 млрд долл. На этих установках ежегодно работает около 20 тыс. пользователей из академических, промышленных и государственных лабораторий. Около 400 ученых и студентов проводят исследования в области физики пучков на десятке специализированных исследовательских ускорителей и центров.

По ступенькам — к рекордам

Пока БАК, огромное подземное сооружение длиной 27 км, использующее сверхпроводящие магниты, — самый сложный научный инструмент нашего времени, но его жизненный цикл такой же, как и у его предшественников. Все ускорители сначала проектировались, строились и вводились в эксплуатацию, а затем улучшались в течение многих лет, постепенно повышая свою светимость. Такие периоды поиска путей к все более высокой светимости часто характеризуются повторяющимся циклом осознания проблем и их решений.

Так, протон-антипротонный коллайдер Tevatron в Фермилабе дольше всех оставался рекордсменом по энергии столкновений: с октября 1985 г. по сентябрь 2011 г. За эти четверть века было сделано более четырех десятков улучшений, касающихся физики пучков и методов ускорения, что позволило в 430 раз повысить пиковую светимость по сравнению с первоначальным расчетным значением (Holmes & Shiltsev, 2013). Эффект от некоторых из них составил 25–40%, но многие добавили всего лишь около 5%.

Ускоритель частиц для чего нужен

Светимость коллайдера количественно определяет его способность рождать новые частицы посредством высокоэнергетических столкновений. Скорость производства частиц, представляющих интерес, является произведением светимости и поперечного сечения для реакции рождения частицы. Для получения высокой светимости обычно требуется сжать пучки высокой интенсивности в маленький поперечный размер в месте столкновений. Значения светимости приведены для протон-протонных и протон-антипротонных коллайдеров. По данным автора

Многие улучшения эффективности можно провести в рабочем режиме, «на ходу» и, как правило, без прерывания исследований по физике частиц. Но более значительные апгрейды (например, плановое увеличение светимости БАК в три раза во второй половине текущего десятилетия) требуют многих лет подготовки и долговременной остановки коллайдера для установки нового оборудования, необходимого для увеличения токов протонов и более сильной фокусировки пучков в точках взаимодействия.

Примечательно, что у всех коллайдеров есть довольно длительные периоды устойчивого экспоненциального роста светимости. Светимость самых мощных коллайдеров с 1970-х гг. до настоящего времени увеличилась в 10 тыс. раз, среднее время удвоения — приблизительно 4 года. Для сравнения вспомним закон Мура, согласно которому число транзисторов в микропроцессорных микросхемах удваивается каждые два года. С учетом сложности и размеров современных ускорителей такой быстрый темп развития их эффективности поражает воображение.

Люди, которые занимаются всем этим, — специалисты по физике пучков. Помимо рутинной поддержки работы ускорителя, они постоянно изобретают и внедряют новые идеи, методы и подсистемы, а также совершенствуют уже существующие. Только в новом веке физики разработали дюжину оригинальных инструментов для высокоэнергетических адронных и электрон-позитронных коллайдеров, некоторые из них имеют странные для обычного уха названия: «краб-фокусировка», «электронные линзы», «нанопучки», «краб-резонаторы» и др.

Помимо физики элементарных частиц, ускорители являются основными инструментами фундаментальных и прикладных исследований в самых разных областях. В ускорителях движение электронов высокой энергии в магнитных полях генерирует электромагнитное излучение от терагерцевых волн до рентгеновских лучей. Способность источника рентгеновского излучения исследовать атомные структуры молекул для биологических и материаловедческих исследований определяется так называемой яркостью. Этот показатель отражает не только интенсивность потока фотонов, но и его пространственную и угловую компактность, т. е. насколько хорошо он сколлимирован (Altarelli, Salam, 2004).

Ускоритель частиц для чего нужен

За годы, прошедшие с открытия В. Рентгеном рентгеновских лучей в 1895 г., пиковая яркость источников вакуумного ультрафиолетового и рентгеновского излучения значительно возросла. Источники синхротронного излучения первого, второго, третьего и четвертого поколений базируются на электронных кольцевых ускорителях-накопителях. Основным элементом лазеров на свободных электронах являются сильноточные линейные ускорители электронов. По: (Eberhardt, 2015; с изменениями)

Современные источники синхротронного света в 10 11 раз ярче, чем те, которые используются в рентгеновских аппаратах в больницах. А лазеры на свободных электронах обеспечивают дополнительное увеличение яркости еще на десяток порядков, т. е. в 10 млрд раз. Увеличение яркости примерно в 10 22 раз с середины 1960-х гг. до настоящего времени соответствует среднему времени удвоения примерно в 8 месяцев — в три раза быстрее, чем для транзисторов, и в шесть раз — для светимости коллайдеров!

Причиной такого феноменального прогресса является устойчивая эволюция технологии генерации излучения релятивистских электронов. Источники синхротронного излучения первого и второго поколений использовали свет, излучаемый электронами в кольцевых ускорителях, в качестве полезного побочного продукта. Осознание его полезности пришло быстро. Только за последние два десятилетия во всем мире было построено около 40 специализированных накопительных колец третьего поколения, производящих рентгеновские лучи высокой яркости. Они используют специально разработанные магниты, называемые ондуляторами, которые отклоняют электроны из стороны в сторону по типу змейки, чтобы увеличить мощность электромагнитного излучения, и могут одновременно доставлять рентгеновские лучи на несколько десятков экспериментальных станций.

Ускоритель частиц для чего нужен

Ондулятор из 33 магнитов, отклоняющих проходящий электронный пучок на рентгеновском лазере, работающем в Национальной ускорительной лаборатории SLAC (США). © SLAC National Accelerator Laboratory

Яркость источника излучения может быть увеличена в десятки раз за счет уменьшения размера электронного пучка в накопителе. За последнее десятилетие физики-ускорительщики разработали многочисленные усовершенствования, такие как ультрасовременные сверхпроводящие ондуляторные магниты, новые системы для стабилизации орбит пучка вплоть до нескольких нанометров.

Одно из впечатляющих недавних изобретений — многоповоротная ахроматическая фокусирующая оптика (она, кстати, будет использоваться и в СКИФ), которая оптимизирует расположение и силу дипольных, квадрупольных и секступольных магнитов, задающих траекторию и размер пучка. Такая оптика может сделать размеры электронного пучка и угловые расхождения настолько малыми, что фазовое пространство излучаемых фотонов будет ограничено только дифракцией. Соответственно, на два-три порядка увеличивается и яркость источников четвертого поколения (также известных как накопительные кольца, ограниченные дифракцией) по сравнению с предыдущими.

Когда высокоэнергетические частицы попадают в твердые или жидкие мишени, они в изобилии производят вторичные частицы (например, мюоны, нейтрино и нейтроны), которые, в свою очередь, могут использоваться в таких приложениях, как мюонная спектроскопия, физика нейтрино и рассеяние нейтронов. Интенсивность потока вторичных частиц пропорциональна мощности первичного пучка, ускоряемого циклотроном, синхротроном или линейным ускорителем. За последние десятилетия ученым удалось увеличить эту мощность примерно на три порядка, улучшив технологию и решив множество проблем, связанных с конечным временем жизни мишеней, опасными неконтролируемыми потерями частиц и др.

Лазер на свободных электронах (ЛСЭ) — это новое слово в науке, так как мощность электромагнитного излучения в нем превосходит все другие источники в миллиард раз. Сложность в создании таких лазеров в том, что для усиления рентгеновского излучения нельзя использовать обычный оптический резонатор: в случае ЛСЭ излучение генерируется за один-единственный пролет электронов высокой энергии.

Еще в 1947 г. советский физик В. Л. Гинзбург предложил использовать для усиления интенсивности излучения заряженной частицы периодическое магнитное поле. Но само устройство для этого — ондулятор, обеспечивающий движения электронов по волнистой траектории вдоль продольной оси, — был создан намного позже. Метод был предложен в 1980 г. сотрудниками Института ядерной физики СО АН СССР (Новосибирск) А. М. Кондратенко и Е. Л. Салдиным. Уехав после перестройки в Германию, Салдин убедил руководство национальной лаборатории DESY построить ускоритель-прототип, который заработал в начале 2000 г.

Прогресс технологий

В середине XX в. произошла «ускорительная» революция: ускорители стали способны генерировать пучки с энергией частиц, превышающей на несколько порядков ту, что достижима в ядерных реакциях и лазерах (Sessler & Wilson, 2008). Тем не менее рекорды по энергии пучков росли существенно медленнее, чем по мощности, светимости или пиковой яркости.

Самые высокие энергии сталкивающихся частиц выросли с примерно 60 ГэВ в начале 1970-х гг. (на ускорителе пересекающихся накопительных колец SPS в ЦЕРН) до 13 ТэВ в 2019 г. (на БАК), что дает среднее время удвоения этой величины около 6 лет. Основной причиной такого относительно медленного прогресса энергии ускорителей является их стоимость, которая сильно зависит от используемых технологий.

Стоимость и доступность ускорителей определяют и их спектр: из более чем 30 тыс. ускорителей, действующих по всему миру, 99% относительно малы и работают с пучками низкой энергии. Они используются для коммерческого производства радионуклидов и радиофармацевтических препаратов, ионной имплантации, генерации нейтронов, литографии, исследований материалов, приложений в полупроводниковой промышленности, а также применяются в энергетике и при защите окружающей среды.

Лишь около 60 источников рентгеновского излучения во всем мире являются исследовательскими. А коллайдеров частиц в мире вообще только семь, включая два в новосибирском Институте ядерной физики СО РАН. И только два из них имеют энергии пучка более 100 ГэВ (100 млрд эВ): релятивистский коллайдер тяжелых ионов в Брукхейвенской национальной лаборатории (США) и БАК в ЦЕРН.

Ускоритель частиц для чего нужен

Рекордная мощность пучка в ускорителях протонов значительно возросла за последние несколько десятилетий. Пунктирная линия соответствует времени удвоения мощности, равному четырем годам. По: (Lindroos et al., 2013)

Ускорители рекордно высоких энергий часто стоят более 1 млрд долл., а устремления исследователей, работающих в физике частиц, требуют еще больших энергий, соответствующие установки, по оценкам, могут стоить на порядок дороже. Такие расходы становятся весьма заметными даже в масштабах национальных экономик. Для сокращения затрат принимаются все меры, включая повторное применение нынешних ускорителей в качестве инжекторов для новых, использование существующей инфраструктуры (электросетей, водоснабжения, дорог, туннелей и т. п.), а также распределение финансовой нагрузки между несколькими лабораториями или даже странами, как в ЦЕРН. Основные надежды на создание новых больших установок прямо связаны с улучшением их технологических характеристик и снижением стоимости, в идеале — с обоими этими показателями.

Основные современные ускорительные технологии включают теплые и сверхпроводящие магниты, а также теплые и сверхпроводящие радиочастотные резонаторы для ускорения частиц. Магниты фокусируют либо изгибают пучки в кольцевых ускорителях, а быстро изменяющиеся во времени высокочастотные электрические поля в радиочастотных полостях нужны для ускорения заряженных частиц. Туннели, электрическая инфраструктура и другие технические подсистемы могут быть довольно дорогими. Однако в полной стоимости строительства ускорителей пучков высоких энергий и больших мощностей обычно доминирует именно цена главных компонентов ускорителя — магнитов и ВЧ-структур.

Ускоритель частиц для чего нужен

Стоимость ускорителя или его крупной модификации во многом зависит от масштаба установки и технологий, лежащих в ее основе. Она может варьировать от десятков миллионов долларов для небольших медицинских установок до десятков миллиардов для будущих коллайдеров, энергия которых превзойдет Большой адронный коллайдер. По данным автора. Идея рисунка Д. Падиан (Shiltsev V. Particle beams behind physics discoveries // Physics Today. 2020. V. 73. № 4. 32 p.)

За последние четверть века сообщество ускорительщиков успешно работало над снижением стоимости основных технологий. Максимальные магнитные поля в работающих ускорителях выросли с примерно 4 до 12 Тл, это означает, что вместо трех магнитов можно теперь обойтись одним. Ускоряющие электрические поля достигли рекордных максимумов, увеличившись в три раза или более: до более чем 30 МВ/м в сверхпроводящих ВЧ-резонаторах и 100 МВ/м в теплых структурах с нормальной проводимостью, работающих при комнатных температурах.

Без улучшений магнитных и радиочастотных технологий затраты росли бы линейно с энергией пучка E, однако стоимость современных больших ускорителей увеличилась пропорционально примерно корню из E (Shiltsev, 2014). Тем не менее спрос на пучки со все более высокими энергиями опережает прогресс традиционных ускорительных технологий, поэтому исследователи продолжают искать и разрабатывать новые идеи и технологические решения.

Да будет СКИФ!

ЦКП «СКИФ» — Центр коллективного пользования «Сибирский кольцевой источник фотонов». Эта установка класса мегасайенс, не имеющая мировых аналогов по выходным параметрам, строится в новосибирском наукограде Кольцово. Проект был разработан Институтом ядерной физики, Институтом катализа и другими организациями СО РАН, РАН и Минобрнауки РФ.

Основа ЦКП «СКИФ» — ускорительный комплекс, источник синхротронного излучения поколения 4+ с энергией электронов в 3 ГэВ. Периметр основного ускорителя СКИФ составит 476 м, его кольцо будет разделено на 18 элементов, состоящих из поворотных и прямолинейных частей: в них будут встроены устройства для генерации СИ, которое пойдет на пользовательские станции. Установка способна генерировать излучение с энергией фотонов от 1 до 100 килоэлектронвольт.

Ускоритель частиц для чего нужен

Фото предоставлены проектным офисом ЦКП «СКИФ» и генеральным подрядчиком ГК «Росатом»

Уже стартовали работы по проектированию и комплексным инженерным изысканиям для СКИФ, идет отработка технологий создания элементов ускорительного комплекса. Так, в ИЯФ СО РАН разработан стенд одного из элементов инжектора, в котором будет происходить первоначальное ускорение электронов. В создании установки принимают участие специалисты из различных научных и производственных коллективов не только Новосибирска, но и Томска, Красноярска, Москвы, Калининграда, Екатеринбурга.

Строительство должно завершиться к концу 2023 г., а запуск первой очереди — 6 из 30 экспериментальных станций — планируется в 2024 г. Предполагаемая общая стоимость проекта — около 37 млрд руб. На новой установке будут идти работы в области промышленных технологий, включая глубокую переработку сырья; биомедицинских технологий, в том числе направленного дизайна новых лекарственных препаратов и средств их доставки, изучения механизма патогенеза особо опасных инфекционных заболеваний; создания возобновляемых источников энергии и получения новых материалов; исследования художественных ценностей, археологических, палеонтологических находок и т. п.

Наука о пучках

Сегодня около 5 тыс. ученых и инженеров-ускорительщиков работают в более чем 50 странах мира и сотрудничают с примерно в три раза большим числом технических экспертов. Несмотря на то что большинство из нас глубоко вовлечены в каждодневную работу и постоянные обновления своих установок, карьера ученого-ускорительщика включает в себя проектирование и строительство новых машин, исследования в области физики пучков, разработку важных технических компонентов и руководство проектами. К этому надо добавить передачу технологий в промышленное применение, обучение и подготовку следующего поколения экспертов по ускорителям, а также распространение знаний о наших достижениях в широких научных кругах и обществе в целом.

За последние 20 лет физика пучков превратилась в отдельную научную дисциплину со своим собственным предметом исследований и методами обучения. Ежегодно проходит серия международных конференций по ускорителям частиц, в которых участвуют около 1,5 тыс. человек, а также почти две дюжины других регулярно проводимых конференций и семинаров по всем важным темам, начиная от компьютерного моделирования до технологий ускорителей. Есть и специализированные рецензируемые журналы, ведущий из которых, Physical ReviewAccelerators and Beams, отметил в 2018 г. свое двадцатилетие.

Каждый год несколько тысяч человек (около 1400 человек в Европе и 400 в США) проходят подготовку по физике и технике ускорителей (Barletta, Chattopadhyay, Seryi, 2012). Такую подготовку обеспечивают около 40 академических программ в университетах по всему миру, в том числе по дюжине в США и Европе. В этой связи нельзя не упомянуть и выдающуюся новосибирскую школу подготовки, базирующуюся в Новосибирском государственном университете и ИЯФ СО РАН.

Обучение физиков и инженеров-ускорительщиков также включает в себя практику на рабочем месте, которая дополняется интенсивными курсами в рамках таких программ, как школы по ускорителям в США, ЦЕРН и Дубне. Приблизительно сотня специалистов ежегодно получает степени кандидатов и докторов наук в области физики ускорителей и пучков.

Ускоритель частиц для чего нужен

В Европейском центре синхротронного излучения (ESRF, Франция) проводится модернизация всех систем основного кольца ускорителя — электронного синхротрона на энергию 6 ГэВ, что позволит увеличить яркость источника СИ в 30 раз. В Институте ядерной физики им. Г. И. Будкера СО РАН (Новосибирск) разработали и изготовили для ESRF 66 октупольных магнитов, предназначенных для коррекции нелинейного движения пучка электронов. На фото на переднем плане — октупольный магнит на специальном столе-гирдере, где идет сборка магнитной системы. Вес магнита 200 кг, гарантийный срок службы — десятки лет. Фото С. Гурова (ИЯФ СО РАН)

Ученые-ускорительщики широко представлены во многих научных обществах, советах и группах по всему миру. Так, рабочая группа 14 Международного союза теоретической и прикладной физики (UIPAP) содействует обмену информацией и мнениями между членами сообщества ускорительщиков с 2015 г., а Международный комитет по будущим ускорителям (ICFA) — сотрудничеству в области создания и использования ускорителей на высокие энергии с 1976 г.

В США финансирование исследований и разработок по физике пучков и техники в области ускорителей составляет примерно 120 млн долл. в год, поступающие в основном от Управления науки Министерства энергетики США, которое ведет программы по физике высоких энергий, фундаментальным энергетическим наукам и ядерной физике, а также от Национального научного фонда (NSF). На сегодняшний день крупнейшим спонсором является Программа по физике высоких энергий: около 5% ее годового бюджета направляется на общие исследования и разработки ускорителей. Крупные специализированные исследовательские центры по физике пучков имеются и в больших национальных лабораториях, таких как Fermilab, SLAC, Национальная лаборатория им. Лоуренса в Беркли (Lawrence Berkeley) и др., а также в нескольких университетах, включая Корнелльский, Мичиганский и Университет Мэриленда. Их установки играют ключевую роль в развитии науки о пучках.

Самой большой проблемой для физиков-ускорительщиков является разработка технологий получения пучков рекордных энергий. Проблема в том, что если бы мы использовали лишь существующие технологии, то стоимость строительства коллайдеров с существенно более высокой энергией, чем тот же БАК, была бы непомерно высокой. Мы вряд ли найдем деньги или такое место на Земле, где труд, земля и сырье достаточно дешевы, чтобы использовать принцип «чем больше ускоритель, тем лучше».

Вместо этого мы ведем разработки по нескольким направлениям. Один из подходов заключается в использовании традиционных сверхпроводящих магнитов и радиочастотных резонаторов для ускорения нетрадиционных частиц, а именно мюонов. В отличие от протонов, в которых энергия распределена между составляющими их кварками и глюонами, мюоны являются точечными частицами, отдающими в столкновениях все 100% своей энергии для рождения новых частиц.

Ускоритель частиц для чего нужен

Ускоряющие структуры на основе сверхпроводящих радиочастотных резонаторов — это технология выбора для ускорителей частиц нового поколения. С их помощью можно понизить энергетические затраты на ускорение частиц пучка и улучшить его динамику, а также работать в непрерывном режиме при относительно высоком градиенте ускоряющего поля. Фото Р. Хана. © Fermilab

Соответственно, энергия центра масс в мюон-мюонных столкновениях будет в 6–10 раз больше, чем в протон-протонных при той же энергии пучка. Поэтому мюонный коллайдер на 14 ТэВ (что номинально является энергией в системе центра масс для БАК) будет приблизительно эквивалентен адронному коллайдеру на 100 ТэВ. Циклические электрон-позитронные коллайдеры при таких энергиях нецелесообразны, потому что легкие частицы теряли бы огромную энергию в виде синхротронного излучения. Но гораздо более тяжелые мюоны, имеющие массу в 207 раз больше, чем у электронов, свободны от этих проблем.

Мы разрабатывали эту стратегию в течение последних 20 лет и в настоящее время доказали концептуальную осуществимость мюонного коллайдера для сверхвысоких энергий. В 2019 г. был экспериментально продемонстрирован ключевой метод — ионизационное охлаждение мюонов. Прежде чем мы сможем окончательно убедиться в технической и экономической осуществимости такого коллайдера, придется, безусловно, решить еще много проблем, связанных, например, с эффективным и экономичным производством мюонных пучков высокой яркости. Но сама эта идея является очень многообещающей и стоит всех усилий.

Ускоритель частиц для чего нужен

Главный инжектор Tevatron — двухмильная «беговая дорожка» для протонов, самый мощный действующий ускоритель частиц в Фермилабе — поставляет пучки протонов для различных экспериментов по физике элементарных частиц и испытательного стенда. Благодаря недавним улучшениям ускорительный комплекс Фермилаб производит 750-киловаттные протонные пучки, используемые для рождения самого высокоэнергетического потока нейтрино в мире, и интенсивного потока мюонов. Фото П. Гинтера. © Fermilab

Менее революционный подход, который также имеет определенные перспективы, — это продолжать совершенствовать уже существующие технологии. Предполагая, что пучки рекордных энергий следующего поколения появятся через 15–20 лет, а скорость нашего технологического прогресса не замедлится, мы можем таким образом удвоить или даже утроить рекорды по энергии частиц. Например, уже есть идеи, как создавать магниты с полем 20–24 Тл при помощи высокотемпературных сверхпроводников или как получить темпы ускорения 60–90 МВ/м используя сверхпроводящие ВЧ-резонаторы новых типов и материалов. Конечно, нужно экспериментально подтвердить потенциал таких технологий, чтобы понять, насколько новые машины станут с их помощью осуществимыми и доступными. Этим разработкам будет способствовать наше многолетнее сотрудничество со специалистами в физике твердого тела и промышленных технологий.

Одним из самых значительных достижений может стать новая технология ускорения частиц плазменными волнами, которые возбуждаются либо лазерами, либо пучками частиц. За последние 25 лет эта область развивалась и расширялась благодаря наплыву методов и идей от ученых, работающих в области плазмы и лазеров (Seryi, 2015). Так, за работы в этих смежных областях Ж. Муру и Д. Стрикленд были удостоены Нобелевской премии по физике в 2018 г. За эти десятилетия мы стали свидетелями того, что прирост энергии электронов, ускоряемых в плазменной ячейке длиной 1 м, увеличился с нескольких мегаэлектронвольт до 9 ГэВ, со временем удвоения энергии около 2,5 лет (Joshi et al, 2018).

В то же время исследователи стали лучше понимать, что требуется для создания коллайдера на основе плазменного ускорения. В настоящее время научно-исследовательская работа в области ускорения плазмы направлена не столько на разработку рекордных ускоряющих градиентов, сколько на решение более обыденных, но важных вопросов. К ним относятся эффективность использования энергии, многостадийное ускорение, сохранение высокой яркости и энергии в пучках электронов и позитронов, проходящих через плотную плазму, разработка экономичных драйверов (возбудителей) плазменных волн.

Ускоритель частиц для чего нужен

Электрон-позитронный коллайдер SuperKEKB построен в Японии Организацией по изучению высокоэнергетических ускорителей (KEK). Официально запущен 26 апреля 2018 г. © KEK

Мы еще не создали надежную техническую конструкцию для доступного электронно-позитронного плазменного коллайдера на энергию более 1 ТэВ и высокую светимость. Однако основания для оптимизма есть: в наши дни более дюжины исследовательских групп по всему миру строят испытательные установки для систематического изучения различных вариантов и ведут эксперименты по достижению оптимальных режимов ускорения.

В январском выпуске Physics Today за 2001 г. директор лаборатории физики элементарных частиц Корнелльского университета М. Тигнер, основополагающая и ключевая фигура современной физики ускорителей, написал статью «Есть ли будущее у физики элементарных частиц на основе ускорителей?». Он сделал много умозаключений, удивительно близких к изложенным выше, и призвал других ученых, в частности тех, кто занимается физикой элементарных частиц, помочь изучить новые идеи и повысить экономическую эффективность наших ускорителей.

Отвечая сейчас на вопрос, вынесенный в заголовок его статьи, мы можем точно сказать — да, будущее есть, и мы быстро движемся в правильном направлении. Физика пучков развилась в отдельную научную дисциплину, и сообщество ускорительщиков гордится своими достижениями: источниками синхротронного излучения четвертого поколения, рентгеновскими лазерами на свободных электронах, протонными пучками с мегаваттной мощностью, современными источниками нейтронов и нейтрино и др. Мировые рекорды были установлены по всем параметрам ускорителей, так как возможности основных технологий удвоились или даже утроились. Увеличение максимальной энергии частиц было не столь значительным, но все-таки БАК расширил эту границу в семь раз по сравнению с Tevatron, и это привело к открытию в 2012 г. бозона Хиггса — последнего недостающего фрагмента Стандартной модели.

Множество достижений, прорывов и открытий ждут нас впереди. Совершенствование методов ускорения частиц продолжается по нескольким направлениям, включая использование экзотических частиц, таких как мюоны, разработку более совершенных магнитов и радиочастотных резонаторов, компактных ускорителей плазмы с высоким градиентом. Достижения в физике твердого тела, лазерах, плазме и физике высоких энергий, сотрудничество с экспертами в этих дисциплинах придают нам дополнительный импульс. Ускорительщики и специалисты по физике пучков уверены, что современные исследования и разработки уже в ближайшие десятилетия приведут к созданию более эффективных и экономичных исследовательских установок на основе пучков заряженных частиц.

Автор благодарит М. Арена, Д. Денисова, П. Гарбинсиуса, Х. О’Коннелла, Ц. Цина и Ф. Циммермана за их советы и полезные обсуждения при подготовке статьи.

** Кулипанов Г. Н. От субмиллиметрового — к рентгеновскому // Наука из первых рук. 2012. № 6(48). С. 16; Шильцев В. Д. Русские корни рентгеновского лазера // Наука из первых рук. 2012. № 6(48). С. 15.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *