Ультразвуковой мотор в объективе что это

hammerzeit

среда, 12 июня 2013 г.

Как работают автофокус камеры и ультразвуковой мотор в объективе

Интересно, что до сих пор не задумывался, как работает автофокус в камере.

Оказывается, там под основным полупрозрачным зеркалом (толстая чёрная линия под 45 градусов на картинке), которое отводит часть света на видоискатель (8), есть ещё одно «вспомогательное» полупрозрачное зеркало (3), забирающее часть света, идущего на матрицу (4), на нужды сенсора автофокуса (7):

Ультразвуковой мотор в объективе что это

Сенсор автофокуса имеет несколько «зон» («зоны автофокуса», которые соответствуют определённым местам в кадре), над каждой из которых расположена маленькая линза. У каждой «зоны автофокуса» под линзой есть два маленьких сенсора: условно «левый», принимающий только «левую» сторону света, пришедшего из объектива, и условно «правый», принимающий только «правую» сторону света, пришедшего из объектива.

Изображение на этих двух маленьких сенсорах будет совпадать, если объектив сфокусирован правильно (другими словами, если «красный» луч света на картинке попадает точно в центр «красного» сенсора, и «зелёный» луч света на картинке попадает точно в центр «зелёного» сенсора, то изображение на этих двух маленьких сенсорах будет совпадать, объектив сфокусирован правильно).

Ультразвуковой мотор в объективе что это

Алгоритм автоматического поиска фокуса работает так (случаи пронумерованы как на картинке):

1. Линза объектива выдвинута слишком близко. Фотоаппарат может это угадать, заметив, что картина распределения интенсивностей такая же, как если бы она состояла из двух одинаковых картин интенсивностей, сдвинутых друг относительно друга (это можно сразу засечь, чуть-чуть сдвинув фокусировочную линзу объектива; алгоритм угадывания выполняется на процессоре фотоаппарата).

3. Линза объектива выдвинута слишком далеко.

4. Вообще не в фокусе.

Для того, чтобы этот алгоритм давал верные результаты, очевидно, требуется, чтобы сенсор автофокуса и матрица были равноудалены от «вспомогательного» полупрозрачного зеркала.

А ещё сейчас в моде объективы с «ультразвуковым мотором».
Звучит-то как!
Прямо как «лазерный принтер».
Наверняка в 90-ых, услышав в первый раз о таких принтерах, первое, что каждый себе представлял — это как принтер выжигает на бумаге изображение разноцветными лазерами из фантастических фильмов.

Оказалось, что, как и ожидалось, маркетологи всех снова обманули, и мотор никакой не ультразвуковой (не крутится с ультразвуковой скоростью).
Тем не менее, конструкция очень остроумная.

Ультразвуковой мотор в объективе что это

Ультразвуковой двигатель объектива состоит из двух колец: ротора (синий) сверху и статора (красный) снизу.
В свою очередь, статор (красный) состоит из тонкого пьезоэлектрического керамического кольца снизу и толстого (но «эластичного») зубчатого слоя сверху.

Когда на статор (красный) подаётся ток ультразвуковой частоты, в нём возникает резонанс (стоячая волна), и волна эта начинает по кругу путешествовать по статору (красный):

Ультразвуковой мотор в объективе что это

При этом, обратите внимание на то, что статор (красный) стоит не месте и никуда не крутится — он просто «волнуется», как море.
А вот ротор (синий) уже как раз крутится.
Спрашиваете, почему?

А из этой картинки и не поймёте.

Крутится ротор потому что на статоре есть зубцы.
Они очень мелкие (порядка 0,001 мм), и их очень много.

Ультразвуковой мотор в объективе что это

Работают они так, как показано на рисунке: когда под зубец подходит волна, он отклоняется на некоторый угол в сторону движения этой волны, и пока волна проходит под ним, он сначала выравнивается вертикально, а потом наклоняется в уже другую сторону (когда волна уходит из-под него).
Получается, что каждый зубец описывает дугу, и именно это создаёт вращение ротора.

Источник

Что такое USM и каковы его плюсы и минусы?

У моих объективов Canon обозначение USM, которое, как я полагаю, по той же причине, что и «Ультразвуковой». Что это значит, и почему или почему я этого не хочу?

Это большое улучшение по сравнению со старыми системами автофокусировки на основе микромотора, которые значительно медленнее и громче. Существует два типа систем USM: «Микро» и «Кольцо». Предпочтительным типом является «Тип кольца», который всегда позволяет выполнять ручную фокусировку без отключения автофокуса. Большинство, но не все, объективы Micro USM от Canon также имеют ручную фокусировку.

Преимущества ультразвуковых двигателей :

Недостатки :

Брендинг

USM является товарным знаком Canon, поэтому аналогичные термины используются другими производителями. Эти другие имена включают в себя:

Вы хотите это по нескольким причинам:

Вы можете НЕ хотеть этого, потому что:

Назовите меня глупым, но после нескольких минут напряженного мышления я все еще не могу придумать ЛЮБУЮ другую причину, по которой вы, возможно, НЕ захотите этого. Делая мой ответ почти идентичным предыдущему lol.

Ультразвуковой мотор (USM) в этом случае не должен быть связан с человеческой звуковой частотой. Я не думаю, что производитель линз строит его из-за отсутствия шума во время работы, а из-за более простого управления движением линзы с помощью синусоидальной электрической волны на частоте ультразвукового диапазона. Ультразвуковой двигатель имеет низкую скорость и высокий крутящий момент, и отличается от любого из электродвигателей с высокой скоростью и низким крутящим моментом. Соответственно, такая охота за фокусом может быть устранена характеристикой USM, и в итоге мы можем получить более быструю автофокусировку.

Ультразвуковой мотор в любом случае дороже по сравнению с любым из электродвигателей.

Предпочтительным типом USM является тип кольца, который включает несколько вращающихся / движущихся частей и, следовательно, простую конструкцию, так что в результате получается очень быстрая автофокусировка, практически нет шума, и мы можем вращать кольцо ручной фокусировки в любое время независимо от режима фокусировки. Другой конструкцией является микро USM, который работает так же, как и обычный электродвигатель. Несмотря на это, преимущество низкой скорости и высокого крутящего момента остается преимуществом для быстрой автофокусировки. Как и в случае обычного двигателя, для соединения двигателя и рамы объектива требуются некоторые звездочки, что, следовательно, требует большего количества механических конструкций, а не типа кольца. Следовательно, мы можем слышать более сильный шум во время работы и немного медленную автофокусировку. Автофокус, все же, намного быстрее по сравнению с другим типом электродвигателей.

Так же как конструкция системы почти такая же, как у электродвигателя, кольцо ручной фокусировки также будет вращаться, когда оно установлено в режиме автоматической фокусировки. Единственное переключение в режим ручной фокусировки позволяет вращать кольцо вручную. Исключением является объектив EF 50 мм f / 1,4 (микро) USM. Вы можете повернуть кольцо фокусировки вручную в любое время независимо от режима фокусировки. Сложное расположение звездочек (похоже на новейшую машину с автоматической коробкой передач, колесо может вращаться в любом направлении под включенной передачей без повреждения коробки передач) приводит нас к работе с объективом, а также с использованием типа кольца.

Amazon показывает 50-миллиметровую линзу за 100 долларов США, а не 300 долларов США. AFAIK это то же самое стекло в обоих, так что вы платите за быстрый и тихий мотор. Это также тяжелее.

Слышимый человеком шум в целом означает разряды батареи. Это относится и к цифровым камерам с включенным шумом щелчка затвора.

Источник

Приводы фокусировки

Приводы фокусировки

Полностью электронная система крепления и система привода, встроенная в объектив, — это ответ компании Canon на проблемы, присущие системам привода, встроенным в корпус фотокамеры, а также ключевой пункт при реализации бесшумной, плавной и быстрой автофокусировки с высокой точностью, которая принесла известность системе EOS. Эта система представляет правильную реализацию концепции Canon по разработке фотоаппаратов с использованием мехатроники, суть которой — « размещение привода вблизи соответствующего перемещаемого блока и полностью электронное управление всеми операциями передачи данных и сигналов управления». Эта исключительно рациональная и логичная система обладает следующими преимуществами над обычными системами.

В настоящее время Canon использует пять типов приводов, выбирая лучший тип в соответствии с характеристиками объективов.

К другому типу приводов, используемых в объективах EF, относится EMD ( электромагнитная диафрагма), в которой объединен шаговый двигатель деформации управляемой диафрагмы и блок лепестковой диафрагмы. Подробные сведения будут изложены далее.

Ультразвуковой мотор в объективе что это

Рис. 1 — Различные приводы двигателей

USM ( ультразвуковой двигатель) — это новый тип двигателей, впервые примененный в фотографических объективах Canon EF. Кольцевой USM, дебютировавший в 1987 году в объективе EF 300mm f/2.8L USM, поразил мир своей беззвучной и сверхскоростной автофокусировкой. Затем, в 1990 году, компания Canon внедрила новую технологию серийного производства на основе усовершенствованного кольцевого USM для использования в объективах массового спроса. В 1992 году последовала успешная разработка Micro USM, нового типа USM, позволяющего использовать методы автоматизированного производства, а в 2002 году был разработан сверхкомпактный Micro USM II, вдвое короче Micro USM. С таким арсеналом USM недалек тот день, когда Canon реализует свою мечту: использовать USM во всех объективах EF.

Ультразвуковой мотор в объективе что это

Рис. 2 — Объектив EF 28-135mm f/3.5-5.6 IS USM, в котором показан двигатель USM

Описание кольцевого USM

Существует множество различных типов и конструкций обычных двигателей; в их основе лежит преобразование электромагнитных сил в крутящий момент. Ультразвуковые двигатели, с другой стороны, используют абсолютно новый принцип, когда сила вращения формируется из энергии ультразвуковых колебаний. В настоящее время известны три типа USM, включая USM, находящиеся в стадии исследования и разработки, классифицируемые по способу преобразования энергии колебаний в крутящий момент: стоячая волна, бегущая волна и вибрирующий язычок. По этой классификации все USM, используемые в объективах Canon, относятся к типу бегущей волны. Базовая конструкция двигателя очень простая, она состоит из эластичного статора и вращающегося ротора. Нижняя часть статора состоит из эластичного металлического кольца с прикрепленным к нему пьезоэлектрическим керамическим элементом, а верхняя часть состоит из множества равноотстоящих выступов с поперечным сечением трапециевидной формы. Статор изготовлен из особого материала с коэффициентом теплового расширения, близким к коэффициенту теплового расширения пьезоэлектрического керамического элемента, что минимизирует искривления кольца, возникающие при изменении температуры. Этим обеспечивается стабильная работа в широком диапазоне температур. Ротор представляет собой алюминиевое кольцо с пружиной в форме фланца в месте контакта со статором, поэтому ротор прижат к статору. Так как алюминий — довольно мягкий материал, в месте контакта ротора со статором поверхность покрыта особым износостойким материалом.

Ультразвуковой мотор в объективе что это

Рис. 3 — Конструкция кольцевого USM

Возможности кольцевого USM

Основные возможности ультразвуковых двигателей состоят в следующем:

В добавление к вышесказанному кольцевые USM компании Canon обладают также следующими возможностями:

Для любого двигателя система управления двигателем привода является важной подсистемой, необходимой для полного достижения конкретных характеристик двигателя. Это верно и для ультразвуковых двигателей. В объективах Canon USM такие функции, как обнаружение ультразвукового резонанса при изменении температуры, генерация двух напряжений переменного тока с разными фазами, управление запуском и остановкой, электронное регулирование скорости ручной фокусировки, управляются микрокомпьютером, встроенным в объектив.

Ультразвуковой мотор в объективе что это

Фото 1 — Кольцевой USM

Принцип действия кольцевого USM состоит в следующем: вибрация воздействует на эластичное тело, называемое статором, в результате чего в статоре возникают вибрации. Эта энергия колебаний через плотный контакт между ротором и статором вызывает непрерывное вращение ротора. Говоря более технически, сила трения, порожденная бегущей волной изгиба в статоре, является источником силы вращения. Рис. 4 иллюстрирует способ передачи силы бегущих волн изгиба, сформированных в статоре, на ротор. Если рассмотреть движение конца штырька P при распространении волны слева направо, видно, что он движется в направлении, противоположном движению волны. Ротор сдвигается под действием силы трения в каждой точке P, таким образом выполняя рабочий цикл.

Ультразвуковой мотор в объективе что это

Рис. 4 — Вращение ротора под действием распространения волн изгиба

Как показано на рис. 5 и 6, бегущие волны изгиба формируются с помощью пьезоэлектрического керамического элемента ( элемент, который расширяется и сжимается под действием переменного напряжения), который прикреплен к основанию статора и управляется электронной схемой.

Ультразвуковой мотор в объективе что это

Рис. 5 — Колебания, создаваемые пьезоэлектрическими керамическими элементами

Ультразвуковой мотор в объективе что это

Рис. 6 — Схема расположения пьезоэлектрических керамических элементов ( в основании статора)

Этот пьезоэлектрический керамический элемент попеременно поляризуется в направлении толщины, к нему прикладывается напряжение переменного тока с частотой, близкой к резонансной частоте колебаний изгиба и приблизительно равной 30 000 Гц ( это частота находится в ультразвуковом диапазоне, откуда и произошло название USM). Прикладываемое напряжение порождает колебания в статоре ( с амплитудой всего лишь около 0,001 мм), которые объединяются со сдвинутыми по фазе колебаниями, создаваемыми другим пьезоэлектрическим элементом, прикрепленным к основанию статора в другом месте, смещенном на одну четвертую часть периода. Эта порождает волну — бегущую волну изгиба (7 колебаний волны за цикл), движущуюся вдоль статора, которая и является источником энергии вращения двигателя.

Описание и возможности Micro USM

Кольцевой USM является ультразвуковым двигателем, который с самого начала разрабатывался для встраивания в объективы с круглым тубусом. Micro USM, напротив, является новым двигателем, который разрабатывался как « многоцелевой миниатюрный ультразвуковой двигатель». Micro USM обладает следующими возможностями:

Ультразвуковой мотор в объективе что это

Ультразвуковой мотор в объективе что это

Фото 2 — Micro USM ( слева) Micro USM II ( справа)

Основная конструкция Micro USM

Как показано на рис. 7, Micro USM имеет совмещенную конструкцию, в которой пьезоэлектрический элемент, статор и ротор соединены вертикально и объединены с выходной зубчатой передачей в одном компактном блоке. Статор состоит из 5 слоев пьезоэлектрических элементов, причем сверху и снизу от каждого слоя проложены диски металлических вибраторов. В целом блок статора работает как эластичный цилиндрический стержень.

Ультразвуковой мотор в объективе что это

Рис. 7 — Конструкция Micro USM/Micro USM II

Ротор, который объединен с корпусом пружины, прижимается к статору под давлением пружин, встроенных во внутренний цилиндр корпуса пружины. Вращение ротора передается прямо на выходную зубчатую передачу с передаточным соотношением 1:1. Различные компоненты двигателя — статор, ротор и выходная зубчатая передача — объединены в единый блок Micro USM с помощью вала статора, который проходит через центр всех компонентов, и фланца сверху, который удерживает их вместе. Двигатель встраивается в объектив, как показано на рис. 1.

Принцип действия Micro USM

Ультразвуковые вибрации, являющиеся источником энергии вращения, создаются с помощью электронной цепи для движения четырех слоев пьезоэлектрических элементов, которые имеют характеристики, показанные на рис. 8.

Ультразвуковой мотор в объективе что это

Каждый из четырех пьезоэлектрических слоев состоит из двух пьезоэлектрических элементов, разделенных на две фазы, фазу A и фазу B, которые сдвинуты друг относительно друга на 90°. В самом основании пакета находится пятый слой пьезоэлектрических элементов, который используется для обнаружения волны резонансного колебания ( рис. 9)

Ультразвуковой мотор в объективе что это

Эти пять слоев встроены в основание статора. Если напряжение переменного тока прикладывается только к фазе A группы пьезоэлектрических элементов, то расширение и сжатие пьезоэлектрических элементов вызывает небольшие колебания верхней части статора влево-вправо ( рис. 10).

Ультразвуковой мотор в объективе что это

Ультразвуковой мотор в объективе что это

Если напряжение переменного тока прикладывается к фазе B, то расширение и сжатие пьезоэлектрических элементов вызывает небольшие колебания верхней части статора вперед-назад. Наконец, если приложить к фазе A и к фазе B переменный ток со сдвигом на 90° по фазе, то сумма колебаний обеих фаз порождает небольшую волну вращения (1 колебание за цикл с амплитудой 0,002 мм), которая вызывает небольшое круговое движение верхней части статора, как показано на рис. 11.

Ультразвуковой мотор в объективе что это

В свою очередь, ротор, который прижат к статору благодаря дополнительной энергии пружины, также начнет вращаться из-за силы трения, порождаемой волной вращения. Вращение ротора, в свою очередь, вызывает вращение прикрепленной прямо к нему выходной зубчатой передачи. В Micro USM сохраняется принцип действия кольцевого USM, в котором фрикционные колебания, порожденные сформированными в статоре бегущими волнами изгиба, причем ротор вращается в направлении, противоположном направлению движения волн.

Micro USM II — ультракомпактный ультразвуковой двигатель, разработанный в качестве привода автофокусировки для встраивания в еще меньшее пространство, обусловленное уменьшением размеров тубусов объективов. Он обладает следующими возможностями.

В обычных Micro USM статор и ротор расположены последовательно. Если просто сократить длину блока без изменения порядка, то резонансная частота колебаний изгиба в статоре становится слишком высокой, не позволяя достичь достаточной амплитуды колебания. Для разрешения этой проблемы часть статора была расположена внутри ротора, а также был разработан абсолютно новый формат колебаний для Micro USM II, что позволило сократить длину блока, не повышая резонансной частоты. В результате был разработан ультракомпактный блок приблизительно вдвое короче и легче двигателя Micro USM, но с почти такими же характеристиками. Привод Micro USM II был впервые установлен в объектив EF 28-105mm f/4-5.6 USM, и разрабатываются планы расширения его использования и в других объективах, в основном, в ультракомпактных зум-объективах.

Источник

Ультразвуковой мотор в объективе что этоnesovet

мастерская lensservis.ru

Ультразвуковой мотор автофокуса. Ремонт.

Ультразвуковой мотор в объективе что это

Самые массовые китовые объективы 18-55 у кэнона, никона, сони и других.
С этих объективов все начинают.
И потом они ломаются. Ломаются, когда уже приходит пора переходить на более продвинутые.
Они и сделаны на год не больше и то, если бережно к ним относиться.
Даже прибережном отношении со временем пластиковые детали начинают затирать.
Прилагается больше усилий, направляющие гнутся и зум ломается.
У меня об этом есть в постах по ремонту механики.
Этот пост про ремонт ультразвукового мотора, который просто изнашивается со временем.

Как извлечь мотор, я не пишу, нет ничего проще.

Ультразвуковой мотор в объективе что это

В моторе нечему ломаться, три детали.

Ультразвуковой мотор в объективе что это

Для усложнения задачи сломаем шлейф.

Ремонтируется прсто, всего три провода, средний земля.
И немного о работе самого двигателя, может, кто не знает.
На металлическое кольцо с ножками наклеены пъезопластины.
Когда к ним подается напряжение с частотой резонанса детали,это статор, он начинает колебаться.
Частота примерно 30 кГц, поэтому ультразвуковой мотор.
Ножки толкают ротор и происходит фокусировка.

Ультразвуковой мотор в объективе что это

Плата мотора выглядит так. DC-DC блок питания и 2 фазоинвертора, три провода к мотору.

Для сравнения просто электромотор не ультразвуковой, у кэнона выглядит так.

Ультразвуковой мотор в объективе что это

Разводка USM мотора имеет ещё один немаловажный контакт.
Это четвёртый контакт подстройки частоты блока питания.
Дело в том, что резонансная частота статора меняется в зависимости от температуры.
Если частота питания отличается от резонансной частоты, двигатель работает медленнее.
Нужно сказать, что с подстройкой частоты заморачивается только кэнон, сигма не особо.

Ультразвуковой мотор в объективе что это

Три контакта у сигмы.

Ультразвуковой мотор в объективе что это
Это кэноновский в процессе ремонта, 4 провода.

По большому счёту при сборке объектива на заводе частота блока питания должна подстраиваться до резонансной частоты статора.
В таком случае тупая замена мотора при ремонте невозможна. Нужно подстраивать частоту.

Вернемся к нашему мотору.
Поверхность статора очень чувствительна ко всяким инородным предметам, типа песчинок и нужна хорошая чистота поверхности ножек.
На работу двигателя влияет чистота поверхности и усилие прижимной пружины.
Будем считать, что усилие пружины не изменяется со временем, а вот поверхность истирается.
Я пробую шлифовать поверхность несколькими способами.
Для начала наждачкой 2500, результат плохой.
Ротор сразу нарабатывает задиры и двигатель клинит.
Пробую шлифовать в зеркало на войлочном круге.

Ультразвуковой мотор в объективе что это

Поверхность красивая, но ротор, как бы прилипает, пищит и двигатель плохо вращается.

Последний способ и самый результативный шлифовка с пастой гои на зеркале.

Оказалось важно даже не чистота поверхности а её плоскостность.

Ультразвуковой мотор в объективе что это

Нет предела совершенству.

Шлейф меняется просто

Ультразвуковой мотор в объективе что это

Провода напаиваются и покрываются поксиполом.

Ультразвуковой мотор в объективе что это

Здесь одна тонкость, прижим деталей усиливается за счёт увеличения толщины статора и двигатель может не пойти.
Лишний клей убираем.

Ультразвуковой мотор в объективе что это

Пружину можно укоротить, но тогда прижим будет совсем непонятный.
В сборе, как то так.

Отдельно двигатель вращается.

С редуктором вращается

Тубус объектива вращает

Это для общего развития замер напряжения на двигателе.
Пиковое напряжение доходит до 19 вольт, бъет чувствительно.

А знаете как проверить работает ли статор отдельно?
Погрузить его в воду и получите фонтан. Я не снял, а сейчас уже лень разбирать двигатель.

Да и ещё, эти двигатели не ремонтопригодны их просто меняют.
Причем, если заменить на донорский с поломанного объектива, неизвестно сколько он проработает.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *