Ультрафиолетовое излучение для чего используется

Что такое ультрафиолет

Ультрафиолетовое излучение для чего используется

Ультрафиолетовое (сокращённо — УФ) излучение представляет собой совокупность электромагнитных волн, спектр которых находится в интервале между рентгеновским излучением и видимым светом. Это диапазон длин волн от 10 до 400 нанометров. В обиходе часто употребляется название «ультрафиолет».

История открытия

После обнаружения инфракрасных волн учёные пришли к логичному предположению, что с другой стороны видимого диапазона тоже может иметь место излучение — с меньшей длиной волн, чем у фиолетового цвета.

Физик из Германии Иоганн Вильгельм Риттер приступил к практическим действиям. В 1801 году им было обнаружено быстрое разложение хлорида серебра под воздействием невидимого излучения, находящегося за чертой фиолетового спектрального диапазона. Разлагалось это соединение очень быстро, причём наиболее интенсивное потемнение поверхности происходило рядом с фиолетовой частью спектра. Этот факт подтолкнул учёных, в том числе Риттера к гипотезе о существовании ультрафиолетового излучения. Эта гипотеза позднее была подтверждена экспериментально.

Ультрафиолетовое излучение для чего используется

Разновидности УФ-излучения

В соответствии со стандартом ISO, по длине волн ультрафиолет делится на 4 группы:

Виды источников излучения

Источники ультрафиолетового света делятся на 2 главных категории:

Ультрафиолетовое излучение для чего используется

Области применения

В основе применения УФ-излучения лежат его основные свойства. Это способность убивать бактерии, повышенная химическая активность и люминесцентные свойства. Исходя из этого, главными сферами использования являются:

Ультрафиолетовое излучение для чего используется

Ультрафиолетовое излучение для чего используется

Принцип действия ультрафиолетового облучения при проведении дезинфекции

Дезинфекция ультрафиолетом применяется для обеззараживания воды или воздуха, уничтожения находящихся там болезнетворных микроорганизмов. Длина волн при этом составляет около 254-260 нм. Длительность процедуры зависит от конкретных условий. Излучение при таких длинах волн хорошо проникает в клетки вирусов и бактерий и воздействует на ДНК, разрушая её структуру. В итоге микроорганизмы теряют способность к воспроизведению и погибают.

Источник

Ультрафиолетовое излучение

Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9·10 14 — 3·10 16 Герц).

Содержание

История открытия

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

Ультрафиолетовое излучение для чего используется

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля, Македонио Меллони и др.

Подтипы

Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделен на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348) [1] даёт следующие определения:

НаименованиеАббревиатураДлина волны в нанометрахКоличество энергии на фотон
БлижнийNUV400 нм — 300 нм3.10 — 4.13 эВ
СреднийMUV300 нм — 200 нм4.13 — 6.20 эВ
ДальнийFUV200 нм — 122 нм6.20 — 10.2 эВ
ЭкстремальныйEUV, XUV121 нм — 10 нм10.2 — 124 эВ
Ультрафиолет А, длинноволновой диапазонUVA400 нм — 315 нм3.10 — 3.94 эВ
Ультрафиолет B, средневолновойUVB315 нм — 280 нм3.94 — 4.43 эВ
Ультрафиолет С, коротковолновойUVC280 нм — 100 нм4.43 — 12.4 эВ

Ближний ультрафиолетовый диапазон часто называют «черным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения.

Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Воздействие на здоровье человека

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водяным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA и в небольшой доле — UVB.

Несколько позже в работах (О. Г. Газенко, Ю. Е. Нефёдов, Е. А. Шепелев, С. Н. Залогуев, Н. Е. Панфёрова, И. В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине [4, 5]. Профилактическое УФ облучение было введено в практику космических полётов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)» [6]. Оба документа являются надёжной базой дальнейшего совершенствования УФ профилактики.

Действие на кожу

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам.

Длительное воздействие ультрафиолетового излучения может способствовать развитию меланомы и преждевременному старению.

Действие на сетчатку глаза

Защита глаз

Источники ультрафиолета

Природные источники

Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

Ультрафиолетовое излучение для чего используется

Ультрафиолетовое излучение для чего используется

Ультрафиолетовое излучение для чего используется

Ультрафиолетовое излучение для чего используется

Искусственные источники

Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются ряд крупнейших электроламповых фирм и др.).Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов. В отличие от осветительных УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определенного ФБ процесса. Классификация искусственных УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определенными УФ диапазонами спектра:

В 70-80 годах эритемные ЛЛ, кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтеров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.

Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ Лазерные источники

Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокой интенсивности. Однако область ультрафиолета сложна для лазерной генерации, поэтому здесь не существует столь же мощных источников, как в видимом и инфракрасном диапазонах. Ультрафиолетовые лазеры находят своё применение в масс-спектрометрии, лазерной микродиссекции, биотехнологиях и других научных исследованиях.

Деградация полимеров и красителей

Многие полимеры, используемые в товарах народного потребления, деградируют под действием УФ света. Для предотвращения деградации в такие полимеры добавляются специальные вещества, способные поглощать УФ, что особенно важно в тех случаях, когда продукт подвергается непосредственному воздействию солнечного света. Проблема проявляется в исчезновении цвета, потускнению поверхности, растрескиванию, а иногда и полному разрушению самого изделия. Скорость разрушения возрастает с ростом времени воздействия и интенсивности солнечного света.

Описанный эффект известен как УФ старение и является одной из разновидностей старения полимеров. К чувствительным полимерам относятся термопластики, такие как, полипропилен, полиэтилен, полиметилметакрилат (органическое стекло), а также специальные волокна, например, арамидное волокно. Поглощение УФ приводит к разрушению полимерной цепи и потере прочности в ряде точек структуры. Воздействие УФ на полимеры используется в нанотехнологиях, трансплантологии, рентгенолитографии и др. областях для модификации свойств (шероховатость, гидрофобность) поверхности полимеров. Например, известно сглаживающее действие вакуумного ультрафиолета (ВУФ) на поверхность полиметилметакрилата. [10]

Сфера применения

Чёрный свет

Ультрафиолетовое излучение для чего используется

Ультрафиолетовое излучение для чего используется

Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт крайне мало видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами чёрного света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека. Однако при использовании данных ламп в темном помещении существует некоторая опасность связанная именно с незначительным излучением в видимом спектре. Это обусловлено тем, что в темноте зрачок расширяется и относительно большая часть излучения беспрепятственно попадает на сетчатку.

Обеззараживание ультрафиолетовым (УФ) излучением

Стерилизация воздуха и твёрдых поверхностей

Ультрафиолетовое излучение для чего используется

Ультрафиолетовое излучение для чего используется

Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. В наиболее распространённых лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 254 нм, которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.

Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Дезинфекция питьевой воды

Принцип действия УФ-излучения. УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов. Следует отметить, что данный механизм распространяется на живые клетки любого организма в целом, именно этим обусловлена опасность жесткого ультрафиолета.

Хотя по эффективности обеззараживания воды УФ обработка в несколько раз уступает озонированию, на сегодняшний день использование УФ-излучения — один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объем обрабатываемой воды невелик.

Химический анализ

УФ — спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ, нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар и «Горное солнце»

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D. В настоящее время популярны фотарии, которые в быту часто называют соляриями.

Ультрафиолет в реставрации

Один из главных инструментов экспертов — ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки — более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами. В человеческом теле это костная ткань, а на картине — белила. Основой белил в большинстве случаев является свинец, в XIX веке стали применять цинк, а в XX-м — титан. Все это тяжелые металлы. В конечном счете, на пленке мы получаем изображение белильного подмалевка. Подмалевок — это индивидуальный «почерк» художника, элемент его собственной уникальной техники. Для анализа подмалевка используются базы рентгенограмм картин великих мастеров. Также эти снимки применяются для распознания подлинности картины.

Источник

Ультрафиолетовое излучение

Вы будете перенаправлены на Автор24

Общая характеристика ультрафиолетового излучения

Условно диапазон излучения делят на 2 области:

Ультрафиолетовое излучение может быть ближним, дальним, экстремальным, средним, вакуумным, причем каждый его вид имеет свои свойства и находит свое применение. Каждый вид ультрафиолетового излучения имеет свою длину волны, но в обозначенных выше пределах.

Готовые работы на аналогичную тему

Источники ультрафиолетового излучения

Ультрафиолетовое излучение имеет свои источники:

Концентрация ультрафиолета на Земле зависит от целого ряда факторов:

Искусственные источники ультрафиолета, как правило, создаются человеком. Это могут быть сконструированные людьми приборы, устройства, технические средства. Создаются они для получения нужного спектра света с заданными параметрами длины волны. Цель их создания заключается в том, чтобы полученное ультрафиолетовое излучение можно было с пользой применить в разных областях деятельности.

К источникам искусственного происхождения относятся:

К искусственным источникам ультрафиолета относятся лазеры, работа которых основана на генерации инертных и не инертных газов. Это может быть азот, аргон, неон, ксенон, органические сцинтилляторы, кристаллы. В настоящее время существует лазер, работающий на свободных электронах. В нем получают длину ультрафиолетового излучения равную той, которая наблюдается в вакуумных условиях. Лазерный ультрафиолет используется в биотехнологических, микробиологических исследованиях, масс-спектрометрии и др.

Применение ультрафиолетового излучения

Ультрафиолетовое излучение имеет такие характеристики, которые позволяют его применять в разных сферах.

Характеристики УФ-излучения:

Исходя из этого, ультрафиолетовое излучение может широко использоваться, например, в спектрометрических анализах, астрономии, медицине, в обеззараживании питьевой воды, аналитическом исследовании минералов, для уничтожения насекомых, бактерий и вирусов. Каждая область использует свой тип УФ со своим спектром и длиной волны.

Спектрометрия специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. По результатам спектрометрии спектры для каждого вещества можно классифицировать, т.к. они являются уникальными. Уничтожение насекомых основано на том, что их глаза улавливают коротковолновые спектры, невидимые для человека. Насекомые летят на этот источник и подвергаются уничтожению. Специальные установки в соляриях подвергают тело человека воздействию УФ-А. В результате в коже происходит активизация выработки меланина, что придает ей более темный и ровный цвет. Здесь, конечно, важно защитить чувствительные зоны и глаза.

Медицина. Применение ультрафиолета в этой области тоже связано с уничтожением живых организмов – бактерий и вирусов.

Медицинские показания лечения ультрафиолетом:

Это далеко не весь перечень заболеваний, для лечения которых используется ультрафиолет.

Таким образом, ультрафиолет помогает медикам спасать миллионы человеческих жизней и возвращать им здоровье. Используется ультрафиолет и для обеззараживания помещений, стерилизации медицинских инструментов и рабочих поверхностей.

Аналитическая работа с минералами. Ультрафиолет вызывает у веществ люминесценцию и это дает возможность использовать его для анализа качественного состава минералов и ценных горных пород. Очень интересные результаты дают драгоценные, полудрагоценные и поделочные камни. При облучении их катодными волнами, они дают удивительные и неповторимые оттенки. Голубой цвет топаза, например, при облучении высвечивается ярко-зеленым, изумруд – красным, жемчуг переливается многоцветьем. Зрелище потрясающее, фантастическое.

Источник

Ультрафиолетовое бактерицидное излучение

Ультрафиолетовое излучение – сферы применения, принцип работы, на чём основано бактерицидное действие – всё это мы рассмотрим в данной статье, а также коснёмся темы работы ультрафиолетовых бактерицидных установок в которых используется уф-излучение.

Ультрафиолетовое излучение

Ультрафиолетовое излучение для чего используется

Ультрафиолетовое излучение – это электромагнитное излучение с длиной волны находящейся между видимым и рентгеновским спектрами излучения (от 10 до 400 нанометров). В искусственных источниках уф света существует возможность выбора необходимой степени пропускания ультрафиолета и как следствие появляется возможность разработки различных источников света для самых разных нужд.

Весь спектр ультрафиолетового излучения принято разделять на три диапазона:

1. Длинноволновый (400 – 315 нм)

2. Средневолновый (315 – 280 нм)

3. Коротковолновый (280 – 100 нм)

Разные длины волн УФ излучения обладают разным фитобиологическим действием. В соответствии с этими различиями уф-лампы находят самые разные области применения. Короткие и часть волн средней длины обладают бактерицидным действием, о котором и пойдёт речь в дальнейшем.

Бактерицидное уф излучение

Ультрафиолетовое бактерицидное излучение – излучение в очень узкой области (спектре) уф диапазона 252 – 254 нм. Данный диапазон был выбран неслучайно – именно в этом диапазоне практически полностью отсутствует образование ядовитого озона.

Ультрафиолетовое излучение для чего используется

Бактерицидные ультрафиолетовые установки (облучатели)

Одним из способов применения ультрафиолета является обеззараживание воздуха и поверхностей в помещениях. Для этих целей существуют специальные ультрафиолетовые бактерицидные излучатели или же если говорить правильно – облучатели ультрафиолетовые бактерицидные.

Существует два типа ультрафиолетовой бактерицидной установки:

Разницу между данными видами устройств мы постарались максимально подробно описать в одной из наших статей.

Ультрафиолетовое излучение для чего используется

Вкратце, работа ультрафиолетовой бактерицидной установки открытого типа основана на открытом расположении бактерицидных ламп, которые облучают ультрафиолетом все вокруг, тем самым обеззараживая воздух и поверхности, на которые он попадает. Но при этом такие аппараты нельзя использовать в присутствии людей и животных.

Обеззараживание только воздуха возможно ультрафиолетовыми бактерицидными облучателями-рециркуляторами закрытого типа. В таких установках воздух попадает в закрытый корпус и облучается бактерицидными уф-лампами уже внутри, не оказывая воздействие на людей. Такие бактерицидные светильники можно использовать в присутствии людей, но они никак не очищают поверхности, а только воздух.

Сфера использования

Ультрафиолетовое бактерицидное обеззараживание помещений применяется в первую очередь в медицинской сфере. Бактерицидные установки часто можно встретить в кабинетах поликлиник и частных медицинских центров.

У закрытых ультрафиолетовых излучателей сфера применения более широка в сравнении с отрытыми. В первую очередь это связано с возможностью их использования в присутствии людей. Такие бактерицидные облучатели можно встретить в офисах, пищеблоках и даже в квартирах.

Также в медицинской сфере имеется задача стерилизации инструмента для его повторного использования. Для этих целей используются специальные камеры ультрафиолетовые бактерицидные принцип работы, которых похож на работу рециркуляторов, только вместо воздуха обеззараживаются предметы в камере.

Где купить? Сколько стоит?

Зачастую различные ультрафиолетовые бактерицидные установки можно купить в магазинах медтехники, а также в специализированных магазинах. Цены же будут зависеть от типа устройства.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *