Удельная теплоемкость бетона 880 дж кг 0с что это значит

Что означает удельная теплоемкость бетона и как она изменяется. Какой удельный вес у строительного песка

Теплоемкость бетона довольно важный показатель при строительстве любого здания или сооружения. Как правило, такой показатель составляет 0,00001(°С)-1. Обусловлено это тем, что со временем все бетонные конструкции неизбежно претерпевают изменения плотности из-за набухания или усадки. Это происходит даже тогда, когда температура воздуха и уровень влажности вокруг бетона остаются неизменными. Если рассматривать подробно, то сам бетон как каменный материал для строительства формируется из смеси того или иного вида вещества, имеющие вяжущие свойства.
Соотношение между компонентами в бетонной смеси.

Изготовление такого искусственного материала проводится в соответствии с количеством вяжущего вещества и воды. При этом воду можно использовать как питьевую, так и любую другую. И именно исходя из предназначения бетонных материалов, строители производят расчеты по определению нужной теплоемкости смеси. Теплоемкость определяется как удельная величина, которая влияет на расстояние усадочных швов, необходимых для надежности самой конструкции. Существуют разные показатели усадки бетона и особая технология исследования его при изготовлении.

Расчёт

Выполним расчёт CP

воды и олова при следующих условиях:

Для начала определяем ΔT для воды и олова соответственно:

Затем находим удельную теплоёмкость:

Таким образом, удельная теплоемкость воды составила 1 Дж/г *ºC, а олова 0,35 Дж/г*ºC. Отсюда можно сделать вывод о том, что при равном значении подводимого тепла в 28 тыс. Дж олово нагрется быстрее воды, поскольку его теплоёмкость меньше.

Теплоёмкостью обладают не только газы, жидкости и твёрдые тела, но и продукты питания.

Таблица удельной теплоемкости пищевых продуктов

В таблице приведены значения средней удельной теплоемкости пищевых продуктов (овощей, фруктов, мяса, рыбы, хлеба, вина и т. д.) в диапазоне температуры 5…20°С и нормальном атмосферном давлении.
Таблица удельной теплоемкости продуктов питания

Кроме таблиц удельной теплоемкости, вы также можете ознакомиться с подробнейшей таблицей плотности веществ и материалов, которая содержит данные по величине плотности более 500 веществ (металлов, пластика, резины, продуктов, стекла и др.).

Виды кирпича и их показатели

Керамический материал используется печном деле.

Выпускается больше 10 разновидностей, различающихся технологией изготовления. Но чаще используются силикатный, керамический, облицовочный, огнеупорный и теплый. Стандартный керамический кирпич изготавливается из красной глины с примесями и обжигается. Его показатель тепла равен 700—900 Дж/ (кг град). Он считается довольно стойким к высоким и низким температурам. Иногда используется для выкладки печного отопления. Пористость и плотность его варьируется и влияет на коэффициент теплоемкости. Силикатный кирпич состоит из смеси песка, глины и добавок. Он бывает полно- и пустотелым, разных размеров и, следовательно, удельная теплоемкость его равна значениям от 754 до 837 Дж/ (кг град). Преимущество силикатной кирпичной кладки — хорошая звукоизоляция даже при выкладывании стены в один слой.

Облицовочный кирпич, используемый для фасадов зданий обладает довольно высокой плотностью и теплоемкостью в пределах 880 Дж/ (кг град). Огнеупорный кирпич, идеально подходит для кладки печи, потому что способен выдерживать температуру до 1500 градусов Цельсия. К этому подвиду принадлежат шамотный, карборундовый, магнезитовый и другие. И коэффициент теплоемкости (Дж/кг) отличается:

Теплый кирпич — новинка на строительном рынке, который является модернизированным керамическим блоком, размеры и теплоизоляционные характеристики его намного превышают стандартный. Структура с большим количеством пустот помогает аккумулировать тепло и нагревать помещение. Потери тепла возможны только в швах кладки или перегородках.

Удельная теплоемкость бетона 880 дж кг 0с что это значит Удельная теплоемкость бетона 880 дж кг 0с что это значит Удельная теплоемкость бетона 880 дж кг 0с что это значит Удельная теплоемкость бетона 880 дж кг 0с что это значит Удельная теплоемкость бетона 880 дж кг 0с что это значит

Использование теплоемкости на практике

Удельная теплоемкость бетона 880 дж кг 0с что это значит

Таблица теплоемкости строительных материалов.

Строительные материалы с высокой теплоемкостью используют для возведения теплоустойчивых конструкций. Это очень важно для частных домов, в которых люди проживают постоянно. Дело в том, что такие конструкции позволяют запасать (аккумулировать) тепло, благодаря чему в доме поддерживается комфортная температура достаточно долгое время. Сначала отопительный прибор нагревает воздух и стены, после чего уже сами стены прогревают воздух. Это позволяет сэкономить денежные средства на отоплении и сделать проживание более уютным. Для дома, в котором люди проживают периодически (например, по выходным), большая теплоемкость стройматериала будет иметь обратный эффект: такое здание будет достаточно сложно быстро натопить.

Значения теплоемкости строительных материалов приведены в СНиП II-3-79. Ниже приведена таблица основных строительных материалов и значения их удельной теплоемкости.

МатериалПлотность, кг/м3Удельная теплоемкость, кДж/(кг*°C)
Пенополистирол401,34
Минвата1250,84
Газо- и пенобетон6500,84
Гипсовые листы8000,84
Дерево5002,3
Клееная фанера6002,3
Керамический кирпич16000,88
Бетон23000,84
Железобетон25000,84
Кирпичная кладка18000,88

Удельная теплоемкость бетона 880 дж кг 0с что это значит

Кирпич обладает высокой теплоемкостью, поэтому идеально подходит для строительства домов и возведенияия печей.

Говоря о теплоемкости, следует отметить, что отопительные печи рекомендуется строить из кирпича, так как значение его теплоемкости достаточно высоко. Это позволяет использовать печь как своеобразный аккумулятор тепла. Теплоаккумуляторы в отопительных системах (особенно в системах водяного отопления) с каждым годом применяются все чаще. Такие устройства удобны тем, что их достаточно 1 раз хорошо нагреть интенсивной топкой твердотопливного котла, после чего они будут обогревать ваш дом на протяжении целого дня и даже больше. Это позволит существенно сэкономить ваш бюджет.

Что такое удельный вес бетона?

При реставрационных работах, капитальном или точечном ремонте нужно не только приобрести необходимое количество материала, но и сделать расчет по характеристикам.

Такое понятие как удельный вес не используют, но все виды бетона отличаются по примененным компонентам. Хотя чаще всего в качестве наполнителя применяют щебень, гальку и другие материалы, но, даже используя одинаковое их количество, не удается сделать идентичный раствор, так как гранулы одного и того же элемента могут отличаться друг от друга (по форме и размеру). Чем они крупнее, тем больше поры в структуре бетона.

Но при проведении работ строителей интересует, сколько весит материал. Ведь по этому параметру и определяют специфику его применения, так как именно по этой величине рассчитывают конструкции с учетом местного климата и других условий. Например, при возведении фундамента, для определения его типа (с учетом почвы на участке), необходимо знать, сколько составляет удельная масса бетона, то же самое касаемо перекрытий, несущей конструкции и др.

Специалисты чаще применяют такое понятие, как «объемный вес», но данная величина не является постоянной. А вес данного строительного материала полностью зависит от тех компонентов, из которых его готовят. Также сюда нужно приплюсовать и воду, которая необходима для замеса.

Учитывая все эти ингредиенты, различают следующие типы бетона:

Рассмотрим каждый вид в отдельности.

Теплофизические свойства бетонов

Образцы с разной теплофизикой
Основные свойства бетона, связанные с воздействием на него тепловой энергии, это теплоемкость, теплопроводность и весьма важный в сфере строительства коэффициент линейного расширения. Без учета данных характеристик бетона невозможно добиться создания прочной конструкции здания, не склонной к разрушению под воздействием температурных колебаний.

Теплопроводность.

Теплопроводность бетона играет существенное значение при определении его строительно-физических качеств. Уровень теплопроводности зависит от структуры составляющих бетона и его строения в целом. Да значение данной характеристики оказывает влияние несколько факторов, среди которых наибольшее значение имеют влажность бетона и его температура. Чем большее количество влаги будет содержаться в бетоне и чем до большей температуры он будет нагрет, тем большей теплопроводностью он будет обладать. При проведении практических расчетов во внимание также принимается значение интегральной пористости. Смысл этого показателя состоит в определении объемного веса бетона при температуре +25С в высушенном до неизменяемого веса состоянии (рис. 1).

Кроме того, в строительной практике также может быть использована для расчета теплопроводности формула Б. Н. Кауфмана:

где под корнем стоит фиксированный коэффициент при указанных выше условиях: +25С и полная просушка. Измеряется это значение в ккал/м-ч-град, для высушенного бетона объемный вес выражается в т/м3.

Между тем, приведенная формула не может быть признана единственно верным способом расчета теплопроводности бетона, т.к. в ней не учитываются показатели пористости бетона, т.е. данные о распределении пор по типоразмеру, о степени сообщаемости или замкнутости. Поэтому с помощью данной формулы наиболее близкие к фактической действительности данные можно получить лишь в том случае, когда на стройке используются бетоны одинакового строения и созданные на заполнителях идентичного строения. Приводить здесь и использовать на практике универсальную и наиболее точную формулу для вычисления фактического уровня теплопроводности бетона не имеет смысла, поскольку она учитывает абсолютно все характеристики бетона. Получить подобные данные в условиях индивидуального жилищного строительства весьма проблематично, да и бессмысленно, т.к. при малых масштабах стройки и небольших конструкционных нагрузках небольшая ошибка в значении теплопроводности бетона особой роли не играет.

Коэффициент температурного расширения и теплоемкость бетона.

Под коэффициентом температурного расширения бетона в строительной практике принято понимать величину отклонения физических размеров бетона при изменении его температуры. Если упростить определение, то коэффициент расширения помогает определить, насколько увеличатся длина и ширина бетонного блока, если температура воздуха повысится на сколько-то градусов. Непринятие в расчет этого показателя моет привести к разрушениям возведенных из бетона конструкций при сезонных колебаниях температур.

Тепловое расширение способно привести к растрескиванию

Показатели коэффициентов температурного расширения бетона и стали приблизительно одинаковы, что широко используется при создании железобетонных конструкций высокой прочности.

Керамический

Удельная теплоемкость бетона 880 дж кг 0с что это значит

Исходя из технологии производства, кирпич классифицируется на керамическую и силикатную группы. При этом оба вида имеют значительные отличия по плотности материала, удельной теплоемкости и коэффициенту теплопроводности. Сырьем для изготовления керамического кирпича, еще его называют красным, выступает глина, в которую добавляют ряд компонентов. Сформированные сырые заготовки подвергаются обжигу в специальных печах. Показатель удельной теплоемкости может колебаться в пределах 0,7-0,9 кДж/(кг·K). Что касается средней плотности, то она обычно находится на уровне 1400 кг/м3.

Среди сильных сторон керамического кирпича можно выделить:

1. Гладкость поверхность. Это повышает его внешнюю эстетичность и удобство укладки. 2. Стойкость к морозу и влаге. В обычных условиях стены не нуждаются в дополнительной влаго- и термоизоляции. 3. Способность переносить высокие температуры. Это позволяет использовать керамический кирпич для возведения печей, мангалов, жаропрочных перегородок. 4. Плотность 700-2100 кг/м3. На эту характеристику непосредственно влияет наличие внутренних пор. По мере увеличения пористости материала уменьшается его плотность, и возрастают теплоизоляционные характеристики.

Нестационарные виды нагрузок

Из всех видов нестационарных нагрузок: непосредственно на узел (элемент) можно задать только изменяемый во времени тепловой поток на узел. Все остальные виды нестационарных нагрузок можно задать, только используя диалоговое окно «Формирование динамических загружений из статических».

Изменяемый во времени Тепловой поток

1.1. На узел

Есть три вида изменяемой во времени нагрузки на узел (аналогично прочностной задаче):

Величина задаваемой нагрузки определяется аналогично стационарному тепловому потоку, то есть значение чистого теплового потока умножается на площадь, через которую проходит этот поток.

1.2. На ребро пластины или на грань объемного КЭ

Чтобы задать нестационарный тепловой поток на ребро пластины или на грань объемного КЭ нужно задать стационарный тепловой поток в любом Загружении, кроме Загружения 4. Поскольку, Загружение 4 предназначено для задания демпфирующих нагрузок.

После этого, в окне «Динамика во времени из статических загружений» нужно сформировать Нестационарное загружение из соответствующего стационарного, путем задания закона изменения нагрузки во времени.

Для формирования теплового потока можно использовать следующие законы преобразования:

2. Изменяемый во времени Конвективный теплообмен.

Использовать такой тип нагрузки можно, если температура движущейся среды (к примеру, воздуха) может значительно изменяться во времени.

Как было сказано выше, задание нестационарного конвективного теплообмена происходит так же, как и задание теплового потока на ребро или на грань (то есть, через формирование динамических нагрузок из статических).

3. Изменяемый во времени Лучистый теплообмен

(или радиационный теплообмен)

Когда внешняя нагрузка равна:

– коэффициент поглощения (степень черноты поверхности конструкции)

– коэффициент излучения (степень излучения источника)

– постоянная Стефана Больцмана (равна 5,67*10-8Вт/м2К4)

Угловой коэффициент Ф обычно принимается равным 1, он учитывает расположение источника излучения по отношению к поглотителю.

Можно подвести итоги. Тепло — это энергия, которая возникает за счет движения частиц, из которых состоит тело (атомов или молекул). Всего существует три основных вида передачи тепла: теплопроводность, конвекция и лучистый теплообмен.

1. Теплопроводность – когда тело проводит тепло путём хаотического движения частиц, от более нагретой части тела к менее нагретой.

2. Конвекция – вид теплообмена, который происходит за счет движения текучей среды (жидкости или газа) в окружении тела.

3. Лучистый теплообмен – когда тепло передается через электромагнитные волны.

Определение и формула теплоемкости

Каждое вещество в той или иной степени способно поглощать, запасать и удерживать тепловую энергию. Для описания этого процесса введено понятие теплоемкости, которая является свойством материала поглощать тепловую энергию при нагревании окружающего воздуха.

Условно приняв, что масса вещества равна 1 кг, а ΔТ = 1°C, можно получить, что с = Q (ккал). Это означает, что удельная теплоемкость равна количеству тепловой энергии, которая расходуется на нагревание материала массой 1 кг на 1°C.

Вернуться к оглавлению

Теплоемкость строительных материалов

Какими же должны быть стены частного дома, чтобы соответствовать строительным нормам? Ответ на этот вопрос имеет несколько нюансов. Чтобы с ними разобраться, будет приведен пример теплоемкости 2-х наиболее популярных строительных материалов: бетона и дерева. Теплоемкость бетона имеет значение 0,84 кДж/(кг*°C), а дерева — 2,3 кДж/(кг*°C).

На первый взгляд можно решить, что дерево — более теплоемкий материал, нежели бетон. Это действительно так, ведь древесина содержит практически в 3 раза больше тепловой энергии, нежели бетон. Для нагрева 1 кг дерева нужно потратить 2,3 кДж тепловой энергии, но при остывании оно также отдаст в пространство 2,3 кДж. При этом 1 кг бетонной конструкции способен аккумулировать и, соответственно, отдать только 0,84 кДж.

Но не стоит спешить с выводами. Например, нужно узнать, какую теплоемкость будет иметь 1 м2 бетонной и деревянной стены толщиной 30 см. Для этого сначала нужно посчитать вес таких конструкций. 1 м2 данной бетонной стены будет весить: 2300 кг/м3*0,3 м3 = 690 кг. 1 м2 деревянной стены будет весить: 500 кг/м3*0,3 м3 = 150 кг.

Таблица сравнения теплопроводности бревна с кирпичной кладкой.

Далее нужно посчитать, какое количество тепловой энергии будет содержаться в этих стенах при температуре 22°C. Для этого нужно теплоемкость умножить на температуру и вес материала:

Из полученного результата можно сделать вывод, что 1 м3 древесины будет практически в 2 раза меньше аккумулировать тепло, чем бетон. Промежуточным материалом по теплоемкости между бетоном и деревом является кирпичная кладка, в единице объема которой при тех же условиях будет содержаться 9199 кДж тепловой энергии. При этом газобетон, как строительный материал, будет содержать только 3326 кДж, что будет значительно меньше дерева. Однако на практике толщина деревянной конструкции может быть 15-20 см, когда газобетон можно уложить в несколько рядов, значительно увеличивая удельную теплоемкость стены.

Теплоаккумулирующая способность материалов

Способность материала удерживать тепло оценивается его удельной теплоемкостью, т.е. количеством тепла (в кДж), необходимым для повышения температуры одного килограмма материала на один градус. Например, вода имеет удельную теплоемкость, равную 4,19 кДж/(кг*K). Это значит, например, что для повышения температуры 1 кг воды на 1°K требуется 4,19 кДж.
Таблица 1. Сравнение некоторых теплоаккумулирующих материалов

Ма­те­ри­алПлот­ность, кг/м 3Теп­ло­ем­кость, кДж/(кг*K)Ко­эф­фи­ци­ент те­пло­про­вод­нос­ти, Вт/(м*K)Мас­са ТАМ для те­пло­ак­ку­му­ли­ро­ва­ния 1 ГДж те­пло­ты при Δ= 20 K, кгОт­но­си­тель­ная мас­са ТАМ по от­но­ше­нию к мас­се во­ды, кг/кгОбъем ТАМ для те­пло­ак­ку­му­ли­ро­ва­ния 1 ГДж те­пло­ты при Δ= 20 K, м 3От­но­си­тель­ный объем ТАМ по от­но­ше­нию к объему во­ды, м 3 /м 3
Гранит, галька16000,840,4559500549,6*4,2
Вода10004,20,611900111,91
Глауберова соль (декагидрат сульфата натрия)*14600 т 1300 ж1,92 т 3,26 ж1,85 т 1,714 ж33000,282,260,19
Парафин*786 т2,89 т0,498 т37500,324,770,4

Плотность аккумулирования теплоты в значительной степени зависит от метода аккумулирования и рода теплоаккумулирующего материала. Она может быть аккумулирована в химически связанном виде в топливе. При этом плотность аккумулирования соответствует теплоте сгорания, кВт*ч/кг:

При термохимическом аккумулировании теплоты в цеолите (процессы адсорбции — десорбции) может аккумулироваться 286 Вт*ч/кг теплоты при разности температур 55°C. Плотность аккумулирования теплоты в твердых материалах (скальная порода, галька, гранит, бетон, кирпич) при разности температур 60°C составляет 14 17 Вт*ч/кг, а в воде — 70 Вт*ч/кг. При фазовых переходах вещества (плавление — затвердевание) плотность аккумулирования значительно выше, Вт*ч/кг:

Таблица 2. Сравнение удельной теплоемкости и плотности различных материалов на основе равных объемов

МатериалУдельная теплоемкость, кДж/(кг*K)Плотность, кг/м 3Теплоемкость, кДж/(м 3 *K)
Вода4,1910004187
Металлоконструкции0,4678333437
Бетон1,1322422375
Кирпич0,8422421750
Магнетит, железная руда0,6851253312
Базальт, каменная порода0,8228802250
Мрамор0,8628802375

К сожалению, лучший из приведенных в таблице 2 строительных материалов — бетон, удельная теплоемкость которого составляет 1,1 кДж/(кг*K), удерживает лишь ¼ того количества тепла, которое хранит вода того же веса. Однако плотность бетона (кг/м 3 ) значительно превышает плотность воды. Во втором столбце таблицы 2 приведены плотности этих материалов. Умножив удельную теплоемкость на плотность материала, получим теплоемкость на кубический метр. Эти величины приведены в третьем столбце таблицы 2. Следует отметить, что вода, несмотря на то, что обладает наименьшей плотностью из всех приведенных материалов, имеет теплоемкость на 1 м 3 выше (2328,8 кДж/м 3 ), чем остальные материалы таблицы, в силу ее значительно большей удельной теплоемкости. Низкая удельная теплоемкость бетона в значительной степени компенсируется его большой массой, благодаря которой он удерживает значительное количество тепла (1415,9 кДж/м 3 ).

Сводные таблицы теплоемкостей

ВеществоАгрегатное состояниеУдельная теплоемкость, Дж/(кг·К)
Золототвердое129
Свинецтвердое130
Иридийтвердое134
Вольфрамтвердое134
Платинатвердое134
Ртутьжидкое139
Оловотвердое218
Серебротвердое234
Цинктвердое380
Латуньтвердое380
Медьтвердое385
Константантвердое410
Железотвердое444
Стальтвердое460
Высоколегированная стальтвердое480
Чугунтвердое500
Никельтвердое500
Алмазтвердое502
Флинт (стекло)твердое503
Кронглас (стекло)твердое670
Кварцевое стеклотвердое703
Сера ромбическаятвердое710
Кварцтвердое750
Граниттвердое770
Фарфортвердое800
Цементтвердое800
Кальциттвердое800
Базальттвердое820
Песоктвердое835
Графиттвердое840
Кирпичтвердое840
Оконное стеклотвердое840
Асбесттвердое840
Кокс (0…100°С)твердое840
Известьтвердое840
Волокно минеральноетвердое840
Земля (сухая)твердое840
Мрамортвердое840
Соль повареннаятвердое880
Слюдатвердое880
Нефтьжидкое880
Глинатвердое900
Соль каменнаятвердое920
Асфальттвердое920
Кислородгазообразное920
Алюминийтвердое930
Трихлорэтиленжидкое930
Абсоцементтвердое960
Силикатный кирпичтвердое1000
Полихлорвинилтвердое1000
Хлороформжидкое1000
Воздух (сухой)газообразное1005
Азотгазообразное1042
Гипствердое1090
Бетонтвердое1130
Сахар-песок1250
Хлопоктвердое1300
Каменный угольтвердое1300
Бумага (сухая)твердое1340
Серная кислота (100%)жидкое1340
Сухой лед (твердый CO2)твердое1380
Полистиролтвердое1380
Полиуретантвердое1380
Резина (твердая)твердое1420
Бензолжидкое1420
Текстолиттвердое1470
Солидолтвердое1470
Целлюлозатвердое1500
Кожатвердое1510
Бакелиттвердое1590
Шерстьтвердое1700
Машинное масложидкое1670
Пробкатвердое1680
Толуолтвердое1720
Винилпласттвердое1760
Скипидаржидкое1800
Бериллийтвердое1824
Керосин бытовойжидкое1880
Пластмассатвердое1900
Соляная кислота (17%)жидкое1930
Земля (влажная)твердое2000
Вода (пар при 100°C)газообразное2020
Бензинжидкое2050
Вода (лед при 0°C)твердое2060
Сгущенное молоко2061
Деготь каменноугольныйжидкое2090
Ацетонжидкое2160
Сало2175
Парафинжидкое2200
Древесноволокнистая плитатвердое2300
Этиленгликольжидкое2300
Этанол (спирт)жидкое2390
Дерево (дуб)твердое2400
Глицеринжидкое2430
Метиловый спиртжидкое2470
Говядина жирная2510
Патока2650
Масло сливочное2680
Дерево (пихта)твердое2700
Свинина, баранина2845
Печень3010
Азотная кислота (100%)жидкое3100
Яичный белок (куриный)3140
Сыр3140
Говядина постная3220
Мясо птицы3300
Картофель3430
Тело человека3470
Сметана3550
Литийтвердое3582
Яблоки3600
Колбаса3600
Рыба постная3600
Апельсины, лимоны3670
Сусло пивноежидкое3927
Вода морская (6% соли)жидкое3780
Грибы3900
Вода морская (3% соли)жидкое3930
Вода морская (0,5% соли)жидкое4100
Водажидкое4183
Нашатырный спиртжидкое4730
Столярный клейжидкое4190
Гелийгазообразное5190
Водородгазообразное14300
Название материалаНазвание материалаC, ккал/кг*С
ABSАБС, сополимер акрилонитрила, бутадиена и стирола0,34
POMПолиоксиметилен0,35
PMMAПолиметилметакрилат0,35
IonomerИономеры0,55
PA6/6.6/6.10Полиамид 6/6.6/6.100,4
PA 11Полиамид 110,58
PA 12Полиамид 120,28
PCПоликарбонат0,28
PUПолиуретан0,45
PBTПолибутилентерефталат0,3–0,5
PEПолиэтилен0,55
PETПолиэтилентерефталат0,3–0,5
PPOПолифениленоксид0,4
PIКарбоксиметилцеллюлоза, полианионовая целлюлоза0,27
PPПолипропилен0,46
PS (GP)Полистирол0,28
PSUПолисульфон0,31
PCVПолихлорвинил0,2
SAN (AS)Смолы, сополимеры на основе стирола и акрилонитрита0,32

Виды кирпича

Для того чтобы ответить на вопрос: «как построить теплый дом из кирпича?», нужно выяснить какой лучше всего использовать его вид. Так как современный рынок предлагает огромный выбор данного строительного материала. Рассмотрим наиболее распространенные виды.

Силикатный

Наиболее высокую популярность и широкое распространение в строительстве на территории России имеют силикатные кирпичи. Данный вид изготавливается путем смешения извести и песка. Высокую распространённость этот материал получил благодаря широкой области применения в быту, а также из-за того, что цена на него довольно не высока.

Однако если обратиться к физическим величинам этого изделия, то тут не все так гладко.

Рассмотрим двойной силикатный кирпич М 150. Марка М 150 говорит о высокой прочности, так что он даже приближается к природному камню. Размеры составляют 250х120х138 мм.

Теплопроводность данного типа в среднем составляет 0,7 Вт/(м оС). Это достаточно низкий показатель, по сравнению с другими материалами. Поэтому теплые стены из кирпича такого типа скорей всего не получатся.

Немаловажным достоинством такого кирпича по сравнению с керамическим, являются звукоизоляционные свойства, которые очень благоприятно сказываются на строительстве стен ограждающих квартиры или разделяющих комнаты.

Керамический

Второе место по популярности строительных кирпичей обоснованно отдано керамическим. Для их производства различные смеси глин подвергают обжигу.

Данный вид делится на два типа:

Строительный кирпич используется для возведения фундаментов, стен домов, печей и т.д., а облицовочный для отделки зданий и помещений. Такой материал больше подходит для строительства своими руками, так как он значительно легче силикатного.

Теплопроводность керамического блока определяется коэффициентом теплопроводности и численно равна:

Средняя теплоемкость кирпича составляет около 0,92 кДж.

Теплая керамика

Теплый кирпич — относительно новый строительный материал. В принципе, он является усовершенствованием обычного керамического блока.

Данный вид изделия значительно больше обычного, его размеры могут быть в 14 раз больше стандартных. Но это не очень сильно сказывается на общей массе конструкции.

Теплоизоляционные свойства практически в 2 раза лучше, по сравнению с керамическим кирпичом. Коэффициент теплопроводности приблизительно равен 0,15 Вт/м* оС.

Блок теплой керамики имеет много мелких пустот в виде вертикальных каналов. А как говорилось выше, чем больше воздуха в материале, тем выше теплоизоляционные свойства данного строй-материала. Теплопотери могут возникать в основном на внутренних перегородках или же в швах кладки.

Использование различных материалов в строительстве

Дерево

Для комфортного проживания в доме очень важно, чтобы материал обладал высокой теплоемкостью и низкой теплопроводностью.

В этом отношении древесина является оптимальным вариантом для домов не только постоянного, но и временного проживания. Деревянное здание, не отапливаемое длительное время, будет хорошо воспринимать изменение температуры воздуха. Поэтому обогрев такого здания будет происходить быстро и качественно.

В основном в строительстве используют хвойные породы: сосну, ель, кедр, пихту. По соотношению цены и качества наилучшим вариантом является сосна. Что бы вы ни выбрали для конструирования деревянного дома, нужно учитывать следующее правило: чем толще будут стены, тем лучше. Однако здесь также нужно учитывать ваши финансовые возможности, так как с увеличением толщины бруса значительно возрастет его стоимость.

Кирпич

Данный стройматериал всегда был символом стабильности и прочности. Кирпич имеет хорошую прочность и сопротивляемость негативным воздействиям внешней среды. Однако если принимать в расчет тот факт, что кирпичные стены в основном конструируются толщиной 51 и 64 см, то для создания хорошей теплоизоляции их дополнительно нужно покрывать слоем теплоизоляционного материала. Кирпичные дома отлично подходят для постоянного проживания. Нагревшись, такие конструкции способны долгое время отдавать в пространство накопившееся в них тепло.

Выбирая материал для строительства дома, следует учитывать не только его теплопроводность и теплоемкость, но и то, как часто в таком доме будут проживать люди. Правильный выбор позволит поддерживать уют и комфорт в вашем доме на протяжении всего года.

Возможно вас заинтересует: в калуге бурение скважины на воду: стоимость приемлемая

Зависимость от температуры использования

На технические показатели кирпича большое влияние оказывает температурный режим:

Динасовый. Эксплуатация в режиме повышенной температуры от +20 до +1500 и плотности 1500-1900 кг/м3 подразумевает последовательное возрастание теплоемкости от 0,842 до 1,243 кДж/(кг·K).

Карборундовый. По мере нагревания от +20 до +100 градусов материал плотностью 1000-1300 кг/м3 постепенно увеличивает свою теплоемкость от 0,7 до 0,841 кДж/(кг·K). Однако, если нагревание карборундового кирпича продолжить далее, то его теплоемкость начинает уменьшаться. При температуре +1000 градусов она будет равняться 0,779 кДж/(кг·K).

Магнезитовый. Материал плотностью 2700 кг/м3 при повышении температуры от +100 до +1500 градусов постепенно увеличивает свою теплоемкость 0,93-1,239 кДж/(кг·K).

Хромитовый. Нагревание изделия плотностью 3050 кг/м3 от +100 до +1000 градусов провоцирует постепенное возрастание его теплоемкости от 0,712 до 0,912 кДж/(кг·K).

Шамотный. Обладает плотностью 1850 кг/м3. При нагревании от +100 до +1500 градусов происходит увеличение теплоемкости материала с 0,833 до 1,251 кДж/(кг·K).

Подбирайте кирпичи правильно, в зависимости от поставленных задач на стройке.

Пример. Решение стационарной задачи теплопроводности

Рассмотрим пример расчёта теплопроводности внешней стены кирпичного дома.

Создаем задачу в 15м признаке схемы, который существует специально для решения задач теплопроводности. Рассмотрим участок стены, длиной 1 метр.

ШАГ 2. Создание элементов КОНВЕКЦИИ

Чтобы задать температуру воздуха, добавляем стержневые элементы на внутренней и внешней поверхности стены, и меняем их тип на КЭ №1555.

ШАГ 3. Характеристики материалов

Зададим соответствующие коэффициенты теплопроводности K для слоёв стены. Значения коэффициента теплопоглощения C и удельного веса R в статическом расчете не учитываются, поэтому можно их задать равными единицам.

Для элементов конвекции тоже создаём жесткость, и задаем там коэффициенты конвекции внутреннего и внешнего слоя:

ШАГ 4. Внешняя нагрузка

Через внешнюю нагрузку мы задаем температуру воздуха для элементов конвекции. Для этого, в разделе Нагрузки открываем конвективный теплообмен и задаём температуру внутри и снаружи стены.

Теплоемкость и теплопроводность материалов

Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.

Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.

Песок считается самым распространенным материалом

, который используется во всех сферах жизнедеятельности человека особенно в строительстве. Вряд ли найдется современное здание, где бы ни применялся песок, как составляющий материал. Его используют для бетонной смеси или обычного раствора для кладки кирпичной стены.

Плотность горных пород и минералов

В таблице даны значения плотности горных пород и минералов при комнатной температуре в размерности кг/м3.

Представлены значения плотности следующих минералов и пород: агат алебастр (карбонатный и сульфатный), алмаз, альбит, андезит, анортит, асбест, асбестовый сланец, базальт, берилл, бештаунит, газовый уголь, галенит, гематит, гипс, глина, гранат, гранит, доломит, известняк, известь гашеная, кальцит, кварц (плавленый, прозрачный, непрозрачный), кокс, корунд, кремень, магнетит, малахит, мел, мергель, мрамор, наждак, опал, пемза, песчаник, пирит, полевой шпат, порфир, роговая обманка, серпантин, сланец, слюда (белая, обычная, черная), соль каменная, тальк, топаз, торф сухой, торианит, торит, трогерит, турмалин, туф лавовый, уголь (антрацит, битуминозный), уранит (кальциевый, медный), флюорит.

Плотность горных пород лежит в диапазоне от 500 до 9325 кг/м3. Следует отметить, что средняя плотность горных пород составляет величину около 3,3 кг/м3. Наиболее плотным из представленных в таблице горных пород является минерал торианит — его средняя плотность равна 9325 кг/м3. К породам с наименьшей плотностью относятся торф и пемза — их средняя плотность равна 500 кг/м3.

Примечание: Будьте внимательны! Плотность горных пород и минералов в таблице указана в степени 10-3. Не забудьте умножить на 1000. Например, плотность алмаза равна 3010-3520 кг/м3.

Виды материалов и их характеристики

Кирпич, выпускаемый на сегодняшний день во множестве видов, применяется при строительстве повсеместно. Ни один объект – крупный промышленный корпус, жилой многоквартирный или небольшой частный дом, не возводится без кирпичного основания. Строительство коттеджей, популярное и сравнительно недорогое, базируется исключительно на кирпичной кладке. Кирпич давно стал основным строительным материалом.

Это произошло благодаря его универсальным свойствам:

Выделяют следующие разновидности кирпича.

Красный. Изготавливается из обожженной глины и добавок. Отличается надежностью, долговечностью и морозостойкостью. Подходит для возведения стен и строительства фундамента. Обычно кладется в один или два ряда. Теплопроводность зависит от наличия зазоров в изделии.

Бывает полнотелый керамический брикет, огнеупорный и щелевой, с пустотами. Коэффициент проводимости тепла зависит от веса кирпича, вида и количества щелей в нем. Теплая керамика внешне красива, к тому же внутри имеет множество тонких зазоров, что делает ее очень теплой и потому идеальной для строительства. Если в керамическом изделии имеются также поры, снижающие вес, кирпич называется поризованным.

Удельная теплоемкость бетона 880 дж кг 0с что это значит

К недостаткам такого кирпича следует отнести то, что отдельные единицы малого размера и хрупкие. Поэтому теплая керамика подходит не для всех конструкций. К тому же это дорогостоящий материал.

Что касается огнеупорной керамики, то это так называемый шамотный кирпич – жженый брусок из глины с высоким показателем теплопроводности, почти таким же, как у обыкновенного полнотелого материала. Вместе с тем огнеупорность – ценное свойство, которое всегда учитывают при строительстве.

Удельная теплоемкость бетона 880 дж кг 0с что это значит

Из такого «печного» кирпича сооружают камины, он обладает эстетичным внешним видом, сохраняет тепло в доме благодаря высоким показателям теплопроводности, морозоустойчив, не поддается воздействию кислот и щелочей.

Теплоемкость удельная – это энергия, которая расходуется для нагревания одного килограмма материала на один градус. Этот показатель нужен для определения устойчивости к теплу стен здания, в особенности при низких температурах.

Удельная теплоемкость бетона 880 дж кг 0с что это значит

Свойства и описание материала

Бетон неспроста настолько популярен как в частном строительстве, так и в масштабном. Все дело в сочетании в нем практически всех фундаментальных свойств материала, так необходимых для качественной постройки.

К основным физико-техническим характеристикам этого стройматериала относятся:

Это лишь основные свойства бетонной смеси, которые позволяют ей удерживать лидерство на рынке строительных материалов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *