сколькими способами можно расставить 4 различные книги на книжной полке

Элементы комбинаторики: перестановки, сочетания и размещения.

сколькими способами можно расставить 4 различные книги на книжной полке

Элементы комбинаторики: перестановки, сочетания и размещения.

Определение: Комбинаторика – это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов .

Слово «комбинаторика» происходит от латинского слова «combinare», что в переводе на русский означает – «сочетать», «соединять». Комбинаторные задачи возникли и в связи с такими играми, как шашки, шахматы, домино, карты, кости и т.д.

Комбинаторные задачи делятся на: задачи на перестановки , задачи на размещение, задачи на сочетание

Определение: Факториал – это произведение всех натуральных чисел от 1 до n.

Пример: 4! = 1 · 2 · 3 · 4 = 24.

Задачи на перестановки

Сколькими способами можно расставить 3 различные книги на книжной полке?

Это задача на перестановки.

Решение: Выбираем одну из 3-х книг и ставим на первое место. Это можно сделать 3-мя способами.

Вторую книгу мы можем выбрать из 2-х оставшихся двумя способами, получаем 3·2 способов.

Третью книгу мы можем выбрать 1 способом.

Получится 3·2·1=6 способов.

Определение: Перестановками из n элементов называются комбинации из n элементов, отличающиеся друг от друга только порядком расположения в них элементов.

Типичная смысловая нагрузка: «Сколькими способами можно переставить n объектов?»

Пример 1. Сколькими способами можно расставить 8 участников финального забега на восьми беговых дорожках?

Решение: P 8 = 8!=1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8 = 40320.

Пример 2. Сколькими способами можно составить расписание на один день, если в этот день предусмотрено 6 уроков по 6 разным предметам?

Решение: P 6 = 6!=1 ∙2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 = 720.

Пример 3. Сколькими различными способами можно разместить на скамейке 10 человек?

Решение: P 8 = 8!=1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8 ∙ 9 ∙ 10 = 3628800.

Пример 4. Сколько слов можно получить, переставляя буквы в слове Гора?

Решение: P 4 = 4!=1 ∙2 ∙ 3 ∙ 4 = 24.

Пример 5. Сколько различных шестизначных чисел, кратных 5, можно составить из цифр 1, 2, 3, 4, 5, 6 при условии, что цифры в числе не повторяются?

Решение: Чтобы число было кратным 5, цифра 5 должна стоять на последнем месте. Остальные цифры могут стоять на оставшихся пяти местах в любом порядке. Следовательно, искомое количество шестизначных чисел, кратных 5, равно числу перестановок из 5 элементов, т.е.

P 5 = 5!=1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120.

Задачи на размещения

Имеется 5 книг и одна полка, такая что на ней вмещается лишь 3 книги.

Сколькими способами можно расставить на полке 3 книги?

Это задача на размещение.

Решение: Выбираем одну из 5-ти книг и ставим на первое место на полке. Это можно сделать 5-ю способами.

Вторую книгу мы можем выбрать 4-мя способами и поставить рядом с одной из 5-ти возможных первых.

Таких пар может быть 5·4.

Третью книгу мы можем выбрать 3-мя способами.

Получится 5·4·3 разнообразных троек. Значит всего способов разместить 3 книги из 5-ти 5·4·3 = 60.

Определение: Размещением из n элементов по k ( k ≤ n ) называется любое множество, состоящее из k элементов, взятых в определённом порядке из данных n элементов.

Типичная смысловая нагрузка: «Сколькими способами можно выбрать k объектов и в каждой выборке переставить их местами?»

Пример 1. Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нём было 4 различных предмета?

Пример 2. Сколько трехзначных чисел можно составить из цифр 2, 4, 6, 7, 9?

Пример 3. В соревнованиях высшей лиги по футболу участвуют 18 команд. Борьба идет за золотые, серебряные и бронзовые медали. Сколькими способами могут быть распределены медали между командами?

Пример 4. Сколькими способами можно опустить 5 писем в 11 почтовых ящиков, если в каждый ящик опускают не более одного письма?

Пример 5. Боря, Дима и Володя сели играть в карты. Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

– способами можно раздать 3 карты игрокам.

Пример 6. В пассажирском поезде 9 вагонов. Сколькими способами можно рассадить в поезде 4 человека, при условии, что все они должны ехать в различных вагонах?

– способами можно рассадить в поезде 4 человека.

Задачи на сочетания

Сколькими способами можно расставить 3 тома на книжной полке, если выбирать их из имеющихся в наличии внешне неразличимых 5 книг?

Это задача на сочетания.

Решение: Книги внешне неразличимы. Но они различаются, и существенно! Эти книги разные по содержанию. Возникает ситуация, когда важен состав элементов выборки, но несущественен порядок их расположения.

123 124 125 134 135 145

Определение: Сочетанием из n элементов по k ( k n ) называется любое множество, составленное из k элементов, выбранных из данных n элементов (не имеет значения, в каком порядке указаны элементы).

Типичная смысловая нагрузка: «Сколькими способами можно выбрать k объектов из n

Пример 1. В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Пример 2. На тренировках занимаются 12 баскетболистов. Сколько может быть организовано тренером разных стартовых пятерок?

Пример 3. В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Пример 4. Сколькими способами из колоды в 36 карт можно выбрать 3 карты?

Пример 5. Для участия в команде тренер отбирает 5 мальчиков из 10. Сколькими способами он может сформировать команду, если 2 определенных мальчика должны войти в команду?

Решение: Т.к. двое мальчиков войдут в команду, то остается отобрать 3 из 8. Для выборки важен только состав (по условию все члены команды не различаются по ролям).

Пример 6. В шахматном турнире принимали участие 15 шахматистов, причем каждый из них сыграл только одну партию с каждым из остальных. Сколько всего партий было сыграно в этом турнире?

Решение: В одной игре участвуют 2 человека, следовательно, нужно вычислить, сколькими способами можно отобрать 2-х человек из 15, причем порядок в таких парах не важен.

Пример 7. Сколько различных дробей можно составить из чисел 3, 5, 7, 11, 13, 17 так, чтобы в каждую дробь входили 2 различных числа? Сколько среди них будет правильных дробей?

Решение: Различных дробей из 6 чисел: 3, 5, 7, 11, 13, 17 можно составить

штук ( способами выбираем два числа из 6, и двумя способами составляем из них дробь, сначала одно число – числитель, другое – знаменатель и наоборот).

Из этих 30 дробей 15 будут правильные.

Пример 8. Боря, Дима и Володя сели играть в карты. Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

Правило сложения комбинаций

Знак «плюс» следует понимать и читать как союз ИЛИ.

Задача. Студенческая группа состоит из 23 человек, среди которых 10 юношей и 13 девушек. Сколькими способами можно выбрать 2-х человек одного пола?

Решение: Условие «выбрать 2-х человек одного пола» подразумевает, что необходимо выбрать двух юношей или двух девушек:

– способами можно выбрать 2-х юношей;

– способами можно выбрать 2-х девушек;

Таким образом, двух человек одного пола (без разницы – юношей или девушек) можно выбрать: способами.

Пример 1. В группе 9 человек. Сколько можно образовать разных подгрупп при условии, что в подгруппу входит не менее 2 человек?

Решение: Не менее 2-х человек, т.е. 2+7 или 3+6 или 4+5 человек (5+4, 6+3, 7+2 – те же самые комбинации).

В каждой выборке важен только состав, т.е. члены подгруппы не различаются по ролям, т.е. выборки – сочетания из n различных элементов по m элементов.

Число выборов из 2-х человек:

Число выборов из 3-х человек:

Число выборов из 4-х человек:

Применяем правило сложения: способов.

Правило умножения комбинаций

Знак «умножить» следует понимать и читать как союз И.

Задача. Студенческая группа состоит из 23 человек, среди которых 10 юношей и 13 девушек. Сколькими способами можно составить пару из юноши и девушки?

– способами можно выбрать 1 юношу;

– способами можно выбрать 1 девушку.

Таким образом, 1-го юношу и 1 девушку можно выбрать: способами.

Пример 1. Предприятие может предоставить работу по одной специальности 4 женщинами, по другой – 6 мужчинам, по третьей – 3 работникам независимо от пола. Сколькими способами можно заполнить вакантные места, если имеются 14 претендентов: 6 женщин и 8 мужчин?

Решение: Имеем 14 претендентов и 13 рабочих мест. Сначала выберем работников на первую специальность, то есть 4 женщин из 6:

Далее выберем мужчин на вторую специальность:

Осталось 2 женщины, 2 мужчин и 3 вакантных места, которые, по условию, могут занять любые из четырех оставшихся человек.

Это может быть сделано 2 вариантами:

1 женщина и 2 мужчин (выбираем женщину способами)

1 мужчина и 2 женщины (выбираем мужчину способами).

В итоге получаем 15 · 28 · (2+2)=1680.

Пример 2. Группу из 20 студентов нужно разделить на 3 бригады, причем в первую бригаду должны входить 3 человека, во вторую – 5 и в третью – 12. Сколькими способами это можно сделать.

Решение: Создавая первую бригаду, отбирают 3 человека из 20, создавая вторую – 5 из оставшихся 17, создавая третью – 12 из оставшихся 12. Для выборок важен только состав (роли членов бригады не различаются).

Создавая сложную выборку (из 3-х бригад), воспользуемся правилом умножения:

Пример 3. Сколькими способами может быть сдана выигрышная комбинация из 2-х карт при игре в «очко»?

Для тех, кто не знает: выигрывает комбинация 10 + ТУЗ (11 очков) = 21 очко и будем считать выигрышной комбинацию из 2-х тузов.

способами может быть сдана десятка и туз («каждая десятка с каждым тузом»);

способами может быть сдана пара тузов.

Итого: выигрышные комбинации.

Пример 4. Сколько существует трёхзначных чисел, которые делятся на 5?

В разряде сотен можно записать любую из цифр.

В разряде десятков можно выбрать любую из 10 цифр:

По условию, число должно делиться на 5. Число делится на 5, если оно заканчивается на 5 либо на 0. Таким образом, в младшем разряде нас устраивают 2 цифры.

Итого, существует: трёхзначных чисел, которые делятся на 5.

Перестановки с повторениями

У мамы 2 яблока и 3 груши. Каждый день в течение 5 дней подряд она выдает по одному фрукту. Сколькими способами это может быть сделано?

Решение:Имеем набор <я, я, г, г, г>. Всего перестановок пятиэлементного множества 5!, но мы не должны учитывать перестановки, в которых объекты одного типа меняются местами несколько раз, поэтому нужно поделить на возможное число таких перестановок: 2! · 3!.

Пример 1: Сколько различных буквосочетаний можно получить перестанов-кой карточек со следующими буквами: К, О, Л, О, К, О, Л, Ь, Ч, И, К?

Решение: Всего: 11 карточек, среди которых буква:

К – повторяется 3 раза;

О – повторяется 3 раза;

Л – повторяется 2 раза;

Ь – повторяется 1 раз;

Ч – повторяется 1 раз;

И – повторяется 1 раз.

По формуле количества перестановок с повторениями:

Пример 2: Сколько слов можно получить, переставляя буквы в слове Институт?

Решение: В слове «институт» 8 букв, из них две буквы «и», три буквы «т» и по одной букве «н», «с» и «у». Поэтому всего можно получить перестановками букв различных слов.

Пример 3: Алексей занимается спортом, причём 4 дня в неделю – лёгкой атлетикой, 2 дня – силовыми упражнениями и 1 день отдыхает. Сколькими способами он может составить себе расписание занятий на неделю?

Решение: По формуле количества перестановок с повторениями:

способами можно составить расписание занятий на неделю.

Пример 4: Сколько чисел, больших 3000000, можно составить из цифр 3, 2, 2, 1, 1, 1, 0.

Решение: На первом месте обязательно должна стоять тройка. Оставшиеся 6 цифр образуют перестановку с повторениями:.

Сочетания с повторениями

В студенческой столовой продают сосиски в тесте, ватрушки и пончики. Сколькими способами можно приобрести пять пирожков?

Решение ( I способ.) :Обратите внимание на критерий сочетаний с повторениями – по условию на выбор предложено не множество объектов как таковое, а различные виды объектов; при этом предполагается, что в продаже есть не менее пяти хот-догов, 5 ватрушек и 5 пончиков.

Что может быть в выборке?

Варианты: 5 хот-догов, 5 ватрушек, 5 пончиков, 3 хот-дога + 2 ватрушки, 1 хот-дог + 2 ватрушки + 2 пончика и т.д. Всего 21 способ.

Типичная смысловая нагрузка: «Для выбора предложено n множеств, каждое из которых состоит из одинаковых объектов. Сколькими способами можно выбрать m объектов?»

Используя формулу количества сочетаний с повторениями, получаем

способом можно приобрести 5 пирожков.

Пример 1: В кошельке находится достаточно большое количество рублей, 2-х, 5-ти и десятирублёвых монет. Сколькими способами можно извлечь три монеты из кошелька?

Решение: Используя формулу количества сочетаний с повторениями, получаем

способами можно выбрать 3 монеты из кошелька.

Пример 2: В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить 12 открыток для поздравлений?

Размещения с повторениями

Сколько существует четырёхзначных пин-кодов?

Решение:Для решения задачи достаточно знаний правил комбинаторики:

способами можно выбрать первую цифру пин-кода и способами – вторую цифру пин кода и столькими же способами – третью и столькими же – четвёртую. Таким образом, по правилу умножения комбинаций, четырёхзначный пин-код можно составить: способами.

Типичная смысловая нагрузка: «Дано множество, состоящее из n объектов, при этом любой объект можно выбирать неоднократно. Сколькими способами можно выбрать m объектов, если важен порядок их расположения в выборке?

В частности, возможен случай, когда из n имеющихся объектов m раз будет выбран какой-то один объект».

Пример 1: Согласно государственному стандарту, автомобильный номерной знак состоит из 3 цифр и 3 букв. При этом недопустим номер с тремя нулями, а буквы выбираются из набора А, В, Е, К, М, Н, О, Р, С, Т, У, Х (используются только те буквы кириллицы, написание которых совпадает с латинскими буквами).

Сколько различных номерных знаков можно составить для региона?

– способами можно составить цифровую комбинацию автомобильного номера, при этом одну из них (000) следует исключить

– способами можно составить буквенную комбинацию автомобильного номера.

По правилу умножения комбинаций, всего можно составить

Пример 2: Человек, пришедший в гости, забыл код, открывающий дверь подъезда, но помнил, что он составлен из нулей и единиц и всего имеет четыре цифры. Сколько вариантов кода в худшем случае ему придётся перебрать, чтобы открыть дверь?

Пример 3: Каких чисел от 1 до 1 000 000 больше: тех, в записи которых встречается единица, или тех, в которых она не встречается?

Решение: Подсчитаем количество чисел от 1 до 999999 в записи которых нет единиц. Каждую цифру можно выбрать 9 способами (любая цифра кроме 1), поэтому все 6 цифр можно выбрать 9 6 способами. При этом один вариант (000000) нужно убрать, так как число 0 не рассматривается. Получаем всего 9 6 −1=531440 чисел. Так как всего чисел 1 000 000, то видно, что чисел без единицы среди чисел от 1 до 1 000 000 больше, чем тех, в записи которых единица есть.

Ответ: чисел без единицы больше.

(разработка + презентация) на тему «Комбинаторика для школьников любого возраста»

Источник

Тест по комбинаторике с ответами

Нет времени или сил пройти тест онлайн? Поможем сдать тест дистанционно для любого учебного заведения: подробности.

Вопрос 1. Сколькими способами могут разместиться 8 человек в салоне автобуса на восьми свободных местах?

Вопрос 2. Комбинаторика отвечает на вопрос

Вопрос 3. Сколько существует вариантов выбора двух чисел из восьми?

Вопрос 4. В партии из 4000 семян пшеницы 50 семян не взошли. Какова вероятность появления невсхожих семян?

Вопрос 5. Выберите из предложенных множеств множество натуральных чисел

Вопрос 6. Множество, состоящее из всех элементов, принадлежащих множеству А и не принадлежащих множеству В называют

Вопрос 9. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5?

Вопрос 10. Сколькими способами из 9 учебных дисциплин можно составить расписание учебного дня из 6 различных уроков.

Сдаем тесты по элементам комбинаторики и теории вероятностей: цены, результаты, отзывы

Вопрос 11. Если объект А можно выбрать х способами, а объект В – у способами, то каким количеством способов можно выбрать объект «А и В»

Вопрос 12. Сколькими способами можно расставить 4 различные книги на книжной полке?

Вопрос 13. В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Вопрос 16. Сколько существует трехзначных чисел, все цифры которых нечетные и различные.

Вопрос 17. Число 14! НЕ делится на:

Вопрос 18. Сколько различных двухзначных чисел можно записать, используя цифры 2, 3, 8, если цифры в этих числах могут повторяться?

Вопрос 20. Сколькими способами могут разместиться 3 человека в четырехместном купе на свободных местах?

Источник

КОМБИНАТОРИКА РАЗБИЕНИЙ. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ.

сколькими способами можно расставить 4 различные книги на книжной полке

КОМБИНАТОРИКА РАЗБИЕНИЙ. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Поскольку в данной формулировке полки не различимы, то речь идет о неупорядоченном разбиении множества книг на три подмножества мощности 2, 3 и 3. Параметры m 1 = 1, m 2 = 2, поэтому число разных способов расставить книги так, как это требуется в условии задачи, равно

Приведенные выше примеры показывают, как важно для решения задачи выбрать наиболее подходящую комбинаторную схему, правильно определить, какие именно комбинаторные операции требуется выполнить над исходным множеством. Иногда формулировка задачи допускает неоднозначное понимание того, какие результаты комбинаторной операции считаются одинаковыми, а какие – разными. В таких случаях нужно самостоятельно сделать необходимые уточнения.[24]

Задача 5.2. одинаковых шариков случайным образом рассыпаются по 4 лункам (в одну лунку может поместиться любое число шаров). Сколько существует различных способов распределения 7 шариков по 4 лункам?[11]

Задача 5.3. Стадион имеет 4 входа. Сколькими способами болельщик может войти на стадион в один вход, а выйти через другой?[12]

Решение. Воспользуемся формулой о разбиениях (3), число способов равно = 12.

Задача 5.4. При игре в домино 4 игрока делят поровну 28 костей. Сколькими способами они могут это сделать? [11]

Решение. Это задача о разделе 28 костей между 4 игроками по 7 костей.

Используя формулу для числа способов такого раздела (3)

Задача 5.5. Сколькими способами можно разместить 4 книги на полке?[16]

Задача 5.6. Сколькими способами можно поставить в ряд 6 человек для выполнения их группового портрета? Сколькими способами можно это сделать, если поставить трех человек в переднем ряду и трех во втором?[12]

Задача 5.7. Сколько различных «слов» можно составить, переставляя буквы слова «лодка»?[12]

Задача 5.8. Сколько различных «слов» можно составить, переставляя буквы слова «математика»?[20]

Решение. Слово «математика» состоит из 10 повторяющихся букв: 3 буквы «а», 2 буквы «м», 2 буквы «т». Значит можно воспользоваться формулой (3), число различных «слов» будет = = 151200.

Задача 5.9. Сколько различных слов можно составить, переставляя буквы слова «комбинаторика»?[11]

Решение. Слово «комбинаторика» состоит из 13 повторяющихся букв: 2 буквы «к», 2 буквы «о», 2 буквы «и», 2 буквы «а». Значит можно воспользоваться формулой (3), число различных «слов» будет = = 389188800.

Задача 5.10. В классе изучают 10 предметов. В понедельник 6 уроков, причем все уроки разные. Сколькими способами можно составить расписание на понедельник?[13]

Задача 5.11. Сколькими способами можно выбрать трех делегатов на студенческую конференцию из группы в 20 человек?[21]

Задача 5.12. Сколькими способами можно расставить 40 различных книг по шести полкам так, чтобы не было пустых полок, если на полку помещаются все 40 книг?

Задача 5.13. Рассеянный почтальон должен разнести
12 писем по 12 адресам. Сколькими способами он может разложить письма по почтовым ящикам так, чтобы

а) ни один адресат не получил адресованное ему письмо;

б) ровно 5 человек получили адресованные им письма;

в) хоть один адресат получил адресованное ему письмо;

г) ровно один адресат получил адресованное ему письмо?

г) Очевидно, что такой ситуации быть не может.

Задача 5.15. Контрольную работу по дискретной математике, содержащую три задачи, писали 105 студентов III курса. Первую задачу решили 70 человек, вторую – 59, а третью – 62. С первой и второй задачами справились – 39 студентов, со второй и третьей – 32, с первой и третьей – 41. Шесть человек не решили ни одной задачи. Сколько студентов полностью справились с контрольной работой?

Задача 5.16. Имеются цветы трех видов: 10 васильков, 15 незабудок, 12 ромашек. Требуется разложить их на 2 букета.[11]

Задача 5.17. Из группы в 15 человек нужно отобрать бригаду, в которую должно входить не менее 5 человек. Сколько имеется вариантов выбора?

Решение. Подсчитаем число неблагоприятных комбинаций выбора, т. е. со ставим варианты бригад из 1, 2, 3, 4 человек. Их количество равно:

А общее количество бригад равно 2 15 – 1. Разность дает число благо приятных комбинаций.[17]

Задача 5.18. Трое мальчиков собрали 40 яблок. Сколько имеется способов раздела яблок между ними?

Решение. Напишем 40 единиц и 2 нуля, выполняющих как и ранее функции раз делителя, и затем начнем их переставлять всеми возможными спосо бами. Каждой перестановке будет соответствовать некоторый способ раздела 40 яблок на 3 кучки. Каждому способу раздела будет соответствовать некоторый код, содержащий 40 единиц и 2 нуля. Поэтому коли чество способов раздела:

Задача 5.19. В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Решение: В задаче речь идёт о выборке из 4 деталей, в которой не имеет значения их «дальнейшая судьба» – грубо говоря, «просто выбрали 4 штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:

сколькими способами можно расставить 4 различные книги на книжной полке

сколькими способами можно расставить 4 различные книги на книжной полке

2365 способами можно взять 4 детали из ящика.

Ответ: 1365 способами

В данном примере множество из восьми книг разбивается на три непересекающихся подмножества мощности 1, 3 и 4. Согласно формуле (3) количество различных вариантов выполнить такое разбиение равно

Источник

Алгебра

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Комбинаторика и ее основные принципы

Очень часто приходится решать задачи, в которых надо посчитать количество возможных вариантов для той или иной ситуации. Например, сколько позиций может возникнуть на шахматной доске после первого хода обоих игроков? Сколько разных паролей длиною в десять символов можно записать, если ни один символ не использовать дважды? Сколько разнообразных комбинаций чисел может выпасть при игре в лотерею «6 из 49»? На все эти вопросы помогает ответить специальный раздел математики, называемый комбинаторикой. Почти всегда комбинаторную задачу можно сформулировать так, чтобы ее вопрос начинался словами «сколькими способами…».

Очевидно, что если в конечном множестве содержится n элементов, то есть ровно n способов выбрать один из них.

Пример. В классе 15 человек. Сколькими способами учитель может назначить одного из них ответственным за чистоту доски?

Ответ. Таких способов ровно 15.

В комбинаторике существует два основных правила. Первое из них называется правилом сложения.

Несмотря на формулировку, по сути это очень простое правило.

Пример. В магазине продается 14 телевизоров Panasonic и 17 телевизоров Sony. Петя хочет купить один телевизор. Сколько у него вариантов покупки?

Решение. По правилу сложения Петя может выбрать один из 14 + 17 = 31 телевизоров.

Ответ: 31 телевизор.

Особое значение имеет второе правило, которое называют правилом умножения.

Проиллюстрируем это правило.

Пример. В секции бадминтона 15 мальчиков и 20 девочек. Тренер должен отправить на соревнования смешанную пару. Сколько вариантов действий у него?

Решение. Тренер может составить 15•20= 300 разнополых пар из своих воспитанников.

Пример. Пете нужно купить технику для компьютера. В магазине продается 20 различных клавиатур, 25 моделей геймпадов и 30 компьютерных мышей. Купить надо по одному экземпляру каждого из этих устройств. Сколько вариантов покупки есть у него?

Решение. Сначала подсчитаем число возможных пар «клавиатура-геймпад». Их количество равно 20•25 = 500. Теперь составим «тройку» из одной из 500 пар и одной из 30 мышей. Число троек равно 500•30 = 15000.

Правила сложения и умножения можно комбинировать.

Пример. Сколько слов не более чем из трех букв можно составить, используя алфавит, содержащий ровно 30 букв?

Решение. Очевидно, что слов из одной буквы можно составить ровно 30. Количество двухбуквенных слов равно количеству пар, которые можно составить из этих букв, то есть 30•30 = 900. Трехбуквенных слов можно составить 30•30•30 = 27000. Всего же слов длиною не более 3 букв будет

30 + 900 + 27000 = 27930

Далее мы изучим основные понятия комбинаторики – перестановки, размещения, сочетания.

Перестановки

Рассмотрим простейшую комбинаторную задачу. На полке расставляют по порядку книги. Их ставят вертикально друг за другом. Сколькими способами можно расставить на полке 2 книги? Очевидно, что двумя:

Либо синяя книжка будет первой слева, либо она будет находиться в конце полки, третьего варианта здесь нет. Здесь условно считается, что варианты, когда между книгами есть зазоры, идентичны вариантам без зазоров:

То есть нас интересует исключительно порядок, в котором стоят книги. Каждый из найденных вариантов называется перестановкой книг. Перестановкой называют любое конечное множество, для элементов которого указан порядок элементов.В комбинаторике перестановки являются одними из основных объектов изучения.

Например, если в забеге на 100 метров стартует 8 спортсменов, то они образуют множество участников забега. После финиша становится известно, кто занял 1-ое место, кто оказался вторым или третьим, а кто стал последним. Результат забега будет перестановкой, ведь он представляет собой список спортсменов с указанием их мест, то есть он определяет порядок между ними.

Вернемся к примеру с книгами. Обозначим количество возможных перестановок n элементов как Рn. Две книжки можно расставить двумя разными способами, поэтому Р2 = 2. Обозначим эти перестановки как АБ и БА. Сколько способов расстановки есть в случае трех книжек? Их все можно получить из вариантов с 2 книжками, добавляя между ними книгами ещё один том:

Видно, что между 2 книгами есть три позиции, на которые можно поставить 3-ий том. Общее количество вариантов равно произведению числа этих позиций и количества вариантов для 2 книг, то есть Р3 = 3•Р2 = 3•2 = 6:

Итак, мы имеем 6 перестановок для 3 книг:

А сколько перестановок существует для 4 книг? Снова-таки, между тремя книгами 4-ый том можно поставить четырьмя способами:

То есть из перестановки трех книг АБВ можно получить 4 перестановки:

Всего существует 6 перестановок для 3 книг (Р3 = 6), и для каждой из них можно построить 4 перестановки из 4 книг. Получается, что общее количество перестановок 4 книг равно

Продолжая подобные рассуждения, можно убедиться, что количество перестановок 5 предметов в 5 раз больше, чем перестановок для 4 объектов:

И вообще, если число перестановок n объектов равно Рn, то количество перестановок (n + 1)объекта равно в (n + 1)раз больше:

При этом отметим, что 1 книгу можно расставить на полке только одним способом:

То есть Р1 = 1. Теперь выпишем значения чисел Р при разном количестве переставляемых предметов, используя формулуРn+1 = (n + 1)Рn

Видно, что количество перестановок n объектов равно произведению всех натуральных чисел от 1 до n. В математике есть специальная функция для вычисления значения этого произведения. Она называется факториалом и обозначается восклицательным знаком.

Например, факториал 6 вычисляется так:

Мы убедились на примере с книгами, что количество перестановок из n различных объектов, которое обозначается как Рn, равно n!.

Относительно факториала надо заметить несколько важных моментов. Во-первых, очевидно, что факториал единицы равен 1:

Во-вторых, иногда в комбинаторных задачах приходится вычислять факториал нуля. По ряду соображений эта величина также принимается равной единице

Объяснить это можно так. Факториал числа можно представить как произведение этого числа и факториала предыдущего числа, например:

5! = 1•2•3•4•5 = (1•2•3•4)•5 = 4!•5

7! = 1•2•3•4•5•6•7 = (1•2•3•4•5•6)•7 = 6!•7

В общем случае формула выглядит так:

Из неё несложно получить, что

Подставив в эту формулу единицу, получим

Пример. Сколькими способами тренер может расставить 4 участников эстафеты 4х400 м по этапам эстафеты?

Решение. Количество таких способов равно числу перестановок 4 различных объектов Р4:

Пример. Вася решил изучать сразу 7 иностранных языков, причем на занятия по каждому из них он собирается выделить ровно один день в неделе. Сколько вариантов расписаний занятий может составить себе Вася?

Решение. В данном случае расписание занятий – это порядок, в котором Вася в течение недели будет изучать иностранные языки, например:

Такое расписание можно описать последовательностью символов:

Создавая расписание, Вася переставляет 7 языков, поэтому общее количество расписаний равно 7!:

Пример. Сколько пятизначных цифр можно записать, используя цифры 0, 1, 2, 3, 4, причем каждую не более одного раза?

Решение. Общее количество перестановок 5 цифр составляет Р5. Однако нельзя начинать запись числа с нуля. Так как, перестановка 12340 – это пятизначное число (двенадцать тысяч триста сорок), а перестановка 03241 – не является пятизначным числом.

Расстановок, начинающихся с нуля, ровно Р4, поэтому общее количество допустимых цифр равно Р5 – Р4:

Р5 – Р4 = 5! – 4! = 120 – 24 = 96

Пример. На полке расставляют 7 книг, однако 3 из них образуют трехтомник. Тома трехтомника должны стоять друг за другом и в определенном порядке. Сколько существует способов расстановки книг?

Решение. Будем считать трехтомник одной книгой. Тогда нам надо расставить 5 книг

Пример. Необходимо расставить 7 книг на полке, но три из них принадлежат одному автору. Их надо поставить друг с другом, но они могут стоять в любом порядке. Сколько возможно перестановок книг.

Решение. Снова будем считать три книги как один трехтомник. Получается, что существует 5! = 120 вариантов. Однако каждому из них соответствует 3! = 6 расстановок книг внутри трехтомника, например:

В итоге на каждую из 120 расстановок приходится 6 вариантов расстановки трехтомника, а общее число расстановок равно, согласно правилу умножения, произведению этих чисел:

Перестановки с повторениями

До этого мы рассматривали случаи, когда все переставляемые объекты были различными. Однако порою некоторые из них не отличаются друг от друга. Пусть на полке надо расставить 3 книги, но две из них одинаковые. Сколько тогда существует перестановок? Общее число перестановок 3 книг составляет 3! = 6:

Здесь одинаковые книги отмечены как А и А1. Очевидно, что 1-ый и 2-ой варианты (А1АБ) и (АА1Б) на самом деле не отличаются друг от друга. В них отличается лишь порядок одинаковых книг А и А1. В первом случае за А1 следует А, а во втором, наоборот, за А следует А1. Тоже самое можно сказать про варианты 3 и 4, 5 и 6. Получается, что все возможные перестановки можно разбить на группы, в которых находятся «перестановки-дубликаты»:

В каждой группе находится ровно по два «дубликата». Почему именно по два? Это число равно количеству перестановок одинаковых книг. Так как одинаковых томов 2, а Р2 = 2, то в каждой группе по 2 «дубликата». Действительно, если бы мы «убрали» с полки все книги, кроме повторяющихся, то там осталось бы только 2 одинаковых тома, которые можно переставить двумя способами.

Для того чтобы найти количество «оригинальных» перестановок, надо их общее количество поделить на число дубликатов в каждой группе.

Пусть теперь надо расставить 4 книги, из которых 3 одинаковы. Обозначим тома как А, А1, А2 и Б. Всего можно записать 4! = 24 перестановки. Однако каждые 6 из них будут дублировать друг друга. То есть их можно разбить на группы, в каждой из которых будет 6 идентичных «дубликатов»:

1-ая группа: БАА1А2, БАА2А1, БА1АА2, БА1А2А, БА2АА1, БА2А1А

2-ая группа: АБА1А2, АБА2А1, А1БАА2, А1БА2А, А2БАА1, А2БА1А

3-ая группа: АА1БА2, АА2БА1, А1АБА2, А1А2БА, А2АБА1, А2А1БА

4-ая группа: АА1А2Б, АА2А1Б, А1АА2Б, А1А2АБ, А2АА1Б, А2А1АБ

И снова для подсчета числа оригинальных перестановок надо из общее число расстановок поделить на количество дубликатов в каждой группе:

Для обозначения перестановок с повторениями используется запись

где n – общее количество объектов, а n1, n2, n3,… nk – количество одинаковых элементов. Например, в задаче с 4 книгами мы искали величину Р4(3, 1), потому что всего книг было 4, но они были разбиты на две группы, в одной из которых находилось 3 одинаковых тома (буквы А, А1, А2), а ещё одна книга (Б) составляла вторую группу. Мы заметили, что для вычисления числа перестановок с повторениями надо общее число перестановок делить на количество дублирующих перестановок. Формула в общем случае выглядит так:

Пример. Вася решил, что ему стоит изучать только два иностранных языка. Он решил 4 дня в неделю тратить на английский, а оставшиеся три дня – на испанский. Сколько расписаний занятий он может себе составить.

Решение. Вася должен расставить 3 урока испанского и 4 урока английского, тогда n1 = 3, а n2 = 4. Общее количество уроков равно 3 + 4 = 7. Тогда

Обратите внимание, что для удобства при делении факториалов мы не вычисляли их сразу, а пытались сократить множители. Так как в ответе любой комбинаторной задачи получается целое число, то весь знаменатель дроби обязательно сократится с какими-нибудь множителями в числителе.

Пример. У мамы есть 3 яблока, 2 банана и 1 апельсин. Эти фрукты она распределяет между 6 детьми. Сколькими способами она может это сделать, если каждый должен получить по фрукту?

Решение. Всего есть три группы фруктов. В первой находится 3 яблока, поэтому n1 = 3. Во второй группе 2 банана, поэтому n2 = 2. В третьей группе только 1 апельсин, поэтому nk = 1. Общее число фруктов равно 6. Используем формулу:

В знаменателе формулы для перестановок с повторениями мы записываем число объектов в каждой группе одинаковых предметов. Так, если переставляются 3 яблока, 2 банана и 1 апельсин, то в знаменателе мы пишем 3!•2!•1!. Но что будет, если в каждой группе будет находиться ровно один уникальный объект? Тогда мы запишем в знаменателе произведение единиц:

В итоге мы получили ту же формулу, что и для перестановок без повторов. Другими словами, перестановки без повтора могут рассматриваться просто как частный случай перестановок с повторами.

Размещения

Пусть в футбольном турнире участвуют 6 команд. Нам предлагают угадать те команды, которые займут призовые места (то есть первые три места). Сколько вариантов таких троек существует?

Сначала запишем ту команду, которая выиграет турнир. Здесь есть шесть вариантов, по количеству участвующих команд. Запишем эти варианты:

Далее выберем один из вариантов и для него укажем серебряного призера соревнований. Здесь есть только 5 вариантов, ведь 1 из 6 команд уже записана на 1-ом месте:

Такую пятерку можно записать для каждого из шести вариантов того, кто станет чемпионом. Получается, что всего есть 6•5 = 30 пар «чемпион – серебряный призер». Наконец, для одной такой пары можно записать 4 варианта того, кто окажется третьим (две команды писать нельзя, так как они уже записаны на первых двух строчках):

Для каждой пары можно записать 4 тройки призеров. Так как число пар «чемпион – вице-чемпион» равно 6•5 = 30, то число троек составит 6•5•4 = 120.

В данном случае из некоторого множества команд мы выбрали несколько и расположили их в каком-то порядке. То есть мы выбрали упорядоченное множество. В комбинаторике оно называется размещением.

Если общее число команд обозначить как n (в этом примере n = 6), а количество упорядочиваемых команд равно k, то количество таких размещений в комбинаторике обозначается как

В примере с командами количество размещений равнялось 120:

Читается эта запись как «число размещений из 6 по 3 равно 120».

Для нахождения этого числа мы перемножили k (3)множителей. Первый из них был равен n(6), так как каждая из n команд могла занять первая место. Второй множитель был равен (n– 1), так как после определения чемпиона мы могли поставить на вторую позицию одну из (n– 1) команд. Третий множитель был равен (n– 2). По этой логике каждый следующий множитель будет меньше предыдущего на единицу. Например, чтобы вычислить число размещений из 7 по 4, надо перемножить 4 множителя, первый из которых равен 7, а каждый следующий меньше на 1:

Однако математически удобнее представлять это произведение как отношение двух факториалов. Для этого умножим количество размещений на дробь 3!/3!, равную единице. Естественно, число размещений из-за умножения на единицу не меняется:

Число 3 в данном случае можно получить, если из 7 вычесть 4. В общем случае из числа n надо вычесть число k. Тогда формула для вычисления количества размещений примет вид:

Пример. В программе 8 «А» класса 12 различных предметов. В понедельник проводится 5 занятий подряд. Сколько существует вариантов расписаний для класса, если в течение понедельника нельзя проводить два одинаковых урока?

Решение. Для составления расписания нужно выбрать 5 предметов и расставить их по порядку. Поэтому нам необходимо найти размещение из 12 по 5:

Пример. В вагоне 10 свободных мест. В него зашло 6 пассажиров. Сколькими способами они могут расположиться в вагоне?

Решение. Из десяти мест надо выбрать шесть и указать для каждого, какому пассажиру оно соответствует. То есть каждый вариант рассадки пассажиров – это размещение из 10 по 6. Найдем их количество:

Заметим, что перестановка – это частный случай размещения, когда k = n. Действительно, если нам надо указать тройку призеров турнира, в котором участвуют 6 команд, то мы указываем размещение из 6 по 3. Но если мы указываем для каждой из 6 команд, какое место она займет в чемпионате, то это размещение из 6 по 6. С другой стороны, это расстановка одновременно является и перестановкой 6 команд. Убедимся, что в этом частном случае формула для подсчета количества размещений покажет тот же результат, что и формула для перестановок

Для примера с 6 командами это будет выглядеть так:

Здесь мы использовали тот факт, что факториал нуля принимается равным единице. Данное рассуждение можно, наоборот, использовать для того, чтобы доказать, что факториал нуля – это единица.

Сочетания

Выбирая размещение, мы должны были выбрать из множества несколько объектов и упорядочить их. В частности, мы выбирали три команды из шести и указывали, какая из них будет первой, какая второй, а какая третьей. Поэтому размещения «Локомотив, Зенит, Краснодар» и «Локомотив, Краснодар, Зенит» отличались друг от друга.

Однако порою этот порядок не имеет значения. Так, существует известная лотерея, где предлагается угадать 7 чисел из 49, которые выпадут во время розыгрыша из барабана. При этом порядок их выпадения не играет никакой роли. Игрок, выбирая эти 7 чисел, с точки зрения математики формирует сочетание из 49 по 7.

Количество возможных сочетаний из n по k обозначается буквой С:

Для вычисления количеств сочетаний из n по k сначала найдем количество аналогичных размещений. Оно вычисляется по формуле:

Однако все они соответствуют только одному сочетании – ЛКЗ. Таким образом, считая количество размещений, мы посчитали каждое сочетание не один, а 3! раз. Поэтому для нахождения количества сочетаний в комбинаторике надо поделить число размещений на число перестановок k элементов:

Эта формула связывает важнейшие понятия комбинаторики – перестановки, сочетания и размещения. Подставим в неё формулы для размещений и перестановок и получим:

Пример. Сколько троек призеров турнира можно составить, выбирая три футбольные команды из шести?

Решение. Посчитаем число сочетаний из 6 по 3:

Пример. Сколько комбинаций чисел может составить игрок, играющий в лотереи «5 из 36», «6 из 45», «7 из 49»?

Решение. В каждом из этих случаев игрок выбирает сочетание нескольких чисел. Посчитаем их число:

Ответ: 376992; 8145060; 85900584

Пример. На плоскости отмечены 8 точек, причем никакие три из них не лежат на одной прямой. Сколько различных прямых можно провести через них? Сколько треугольников и четырехугольников можно построить с вершинами в этих точках?

Решение. Для того чтобы провести прямую, достаточно выбрать любые 2 точки из 8. Общее количество прямых будет равно числу сочетаний из 8 по 2:

Заметим принципиальную важность того условия, что никакие три точки не лежат на одной прямой. Оно гарантирует, что при выборе двух различных точек мы будем получать различные прямые. Если бы, например, точки АВС лежали бы на одной прямой, то при выборе сочетаний АВ, ВС и АС мы получали бы одну и ту же прямую:

Это же условие гарантирует, что, выбрав любые 3 и 8 точек, мы сможем построить треугольник с вершинами в этих точках, а выбрав 4 точки, получим четырехугольник. Поэтому для подсчета количества треугольников и четырехугольников следует искать число сочетаний по 3 и 4:

Ответ: 28 прямых, 56 треугольников и 70 четырехугольников.

Пример. В одной урне находится 10 различных шаров с номерами от 0 до 9, а в другой – 8 различных шаров с первыми восемью буквами алфавита. По условиям лотереи ведущий вытаскивает из первой урны два шара с числами, а из второй – три шара с буквами. Для победы в лотерее надо угадать выпавшие шары. Сколько комбинаций шаров может выпасть в игре?

Решение. Посчитаем отдельно, сколькими способами можно выбрать 2 шара с цифрами из 10 и 3 шара с буквами из 8:

По правилу умножения мы должны перемножить эти числа, чтобы найти общее количество возможных вариантов:

Заметим, что выбирая, например, сочетание из 49 по 7, мы одновременно выбираем и сочетание из 49 по 49 – 7 = 42. Действительно, игрок, обводящий в кружок в лотерейном билете свои 7 счастливых чисел, одновременно и определяет остальные 42 числа, какие числа он НЕ считает счастливыми. Для наглядности запишем число сочетаний в обоих случаях:

Получили одну и ту же дробь, в которой отличается лишь последовательность множителей в знаменателе. Можно показать, что и в общем случае число сочетаний из n по k совпадает с количеством сочетаний из n по (n– k):

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *