при каких условиях можно наблюдать интерференционную картину

Интерференция света

теория по физике 🧲 оптика

Для всех волн характерны явления интерференции и дифракции. Если свет — это волна, то для него также должны быть присущи эти явления. Так рассуждали ученые, которые считали, что свет имеет волновую природу. Первым привел экспериментальные доказательства интерференции и дифракции света Томас Юнг в 1801 году.

Это интересно! Явление интерференции света было описано и объяснено в 1801 году, но само понятие «интерференция света» было введено немного позже — в 1803 году.

Интерференция механических волн

Чтобы лучше понять явление интерференции, сначала объясним его на примере механических волн, за которыми удобней наблюдать. Часто случается, что в среде одновременно распространяется несколько различных волн. К примеру, когда в комнате может одновременно находиться несколько источников звука. Что же происходит, когда волны пересекают друг друга? Объясним это на примере волн, образуемых на поверхности воды.

Если бросить в воду два камешка, образуются две круговые волны. Если наблюдать за их распространением, мы увидим, что каждая волна проходит сквозь другую. Причем она ведет себя так, как будто другой волны не существовало. Точно так же любое количество звуковых волн может одновременно распространяться в воздухе. И они не будут друг другу мешать. Множество музыкальных инструментов в оркестре или голосов в хоре создает звуковые волны, которые улавливаются нами одновременно. При этом звуки не сливаются в шум: наши органы слуха способны легко отличить один звук от другого.

при каких условиях можно наблюдать интерференционную картину

Теперь рассмотрим более подробно процесс, когда волны накладываются одна на другую. Для этого будем наблюдать волны на поверхности воды от двух брошенных в воду камней. При этом мы заметим, что некоторые участки поверхности не возмущены, в других же местах возмущение усилилось. Если два гребня двух волн встречаются в одном месте, то в этом месте возмущение поверхности воды становится более сильным. Если же гребень одной волны встречается с впадиной другой, то поверхность воды в этом месте остается спокойной. Получается, что в каждой точке среды колебания, вызванные двумя волнами, складываются. Результирующее смещение любой частицы среды представляет собой алгебраическую сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.

Интерференция — сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний частиц среды.

Чтобы выяснить, при каких условиях наблюдается интерференция волн, одновременно возбудим две круговые волны в ванночке с помощью двух шариков, прикрепленных к стержням, колеблющимся по гармоническому закону.

при каких условиях можно наблюдать интерференционную картину

Теперь представим явление интерференции схематически. В любой точке М на поверхности воды будут складываться колебания, вызванные двумя волнами от источников O1 и O2 (см. рисунок ниже). Амплитуды колебаний, вызванных в точке М обеими волнами, будут различаться, если волны проходят различные пути d1 и d2. Но если расстояние l между источниками много меньше этих путей, то обе амплитуды можно считать приближенно одинаковыми.

при каких условиях можно наблюдать интерференционную картину

Результат сложения волн, приходящих в точку М зависит от разности фаз между ними. Пройдя различные расстояния d1 и d2, волны имеют разность хода, определяемую формулой:

Когда разность хода равна длине волны λ, то вторая волна запаздывает по сравнению с первой на один период. Так как за период волна проходит путь, равный ее длине волны, то в точке встречи двух волн фазы совпадают. Если в этой точке волны имеют гребни, то совпадают гребни, если впадины — совпадают впадины.

Условие минимумов и максимумов

Когда гребни волн на поверхности волны складываются в одной точке, их амплитуда резко возрастает. В этом случае говорят, что в этой точке образуется интерференционный максимум. Когда впадины волн на поверхности волны складываются в одной точке, их амплитуда резко уменьшается. В этом случае говорят, что в этой точке образуется интерференционный минимум. Интерференционные минимумы и максимумы образуются при соблюдении определенных условий.

Если разность хода волн равна нечетному числу полуволн, то в точке наложения этих волн образуется интерференционный минимум. Амплитуда колебаний в данной точке минимальна.

при каких условиях можно наблюдать интерференционную картину

Если разность хода волн равна целому числу волн, то в точке наложения этих волн образуется интерференционный максимум. Амплитуда колебаний в данной точке максимальна.

при каких условиях можно наблюдать интерференционную картину

Если разность хода ∆d принимает промежуточное значение между λ и λ/2, амплитуда результирующих колебаний принимает некоторое промежуточное значение между удвоенной амплитудой и нулем. Но важной примечательностью является то, что амплитуда колебаний в любой точке с течением времени не меняется. Поэтому на поверхности воды возникает определенное, постоянное во времени распределение амплитуд колебаний, которое называют интерференционной картиной.

при каких условиях можно наблюдать интерференционную картину

Для формирования устойчивой интерференционной картины важно, чтобы источники волн имели одинаковую частоту, и разность фаз их колебаний не менялась с течением времени. Такие источники волн называют когерентными.

Когерентные волны — это волны, имеющие одинаковые частоты, постоянную разность фаз, а колебания происходят в одной плоскости.

Только когерентные волны при сложении формируют устойчивую интерференционную картину. Если же источники волн некогерентные, то в любой точке среды разность фаз колебаний, возбуждаемых двумя волнами, будет с течением времени изменяться. Поэтому амплитуда результирующих колебаний также будет непрерывно изменяться. В результате максимумы и минимумы в пространстве будут иметь неопределенное положение. Поэтому интерференционная картина получается размытой.

Распределение энергии при интерференции

Любая волна переносит энергию без переноса вещества. Но что же с этой энергией происходит при интерференции волн? Если волны встречаются друг с другом, энергия никуда не исчезает и не превращается в другие формы энергии. Она лишь перераспределяется таким образом, что в минимумах он не поступает совсем, поскольку концентрируется в максимумах.

Интерференция света

Ели свет — это поток волн, то должно наблюдаться явление интерференции. Однако получить интерференционную картину, при которой чередуются минимумы и максимумы с помощью двух независимых источников света (к примеру, двух ламп), невозможно. Включение второй лампы лишь увеличивает освещенность поверхности, но не создает картины из минимумов и максимумов. Это объясняется несогласованностью волн друг с другом. Для получения же устойчивой интерференционной картины нужны согласованные, то есть когерентные световые волны. Они должны иметь одинаковые длины волн и постоянную во времени разность фаз в любой точке пространства.

Однако наблюдать интерференцию света все же можно. Вы ее наблюдали, когда пускали мыльные пузыри или рассматривали пленку нефти на поверхности воды.

при каких условиях можно наблюдать интерференционную картину

Томас Юнг — первый из ученых, который предложил объяснить изменение цветов тонких пленок сложением волн. Согласно его предположению, одна волна отражается от наружной поверхности плёнки, а другая — от внутренней. При этом возникает явление, называемой интерференцией световых волн.

Усиление света происходит в том случае, если преломлённая волна запаздывает по сравнению с отражённой волной на целое число длин волн. Здесь действует условие максимумов, о котором мы говорили выше:

Если вторая волна запаздывает по сравнению с первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света. Здесь действует условие минимумов, о котором мы также уже говорили:

Четкая интерференционная картина получается потому, что волны, отраженные от внутренней и внешней оболочки тонкой пленки, являются когерентными. Когерентность этих волн объясняется тем, что они являются частями одного и того же светового луча.

Юнг сделал вывод, что многообразие цветов на мыльной пленке связано с разницей в длине волны. Если плёнка имеет неоднородную толщину, то при освещении её белым светом появляются различные цвета.

Простую интерференционную картину также можно получить, если положить на стеклянную поверхность плоско-выпуклую линзу, сферическая поверхность которой имеет большой радиус кривизны. Интерференционная картина, полученная таким способом, носит название колец Ньютона.

Исаак Ньютон исследовал интерференционную картину, получаемую в тонкой прослойке воздуха между стеклом и линзой, не только в белом свете, но и при освещении линзы монохроматическими лучами. Так он установил, что радиусы колец одного и того же порядкового номера увеличиваются при переходе от фиолетового конца спектра к красному. Так, красные кольца имеют максимальный радиус. Расстояние между соседними кольцами уменьшаются с увеличением их радиусов.

Ньютону удалось получить кольца, но их появление он объяснить не смог. Но это удалось сделать Юнгу. Проведенный им опыт показал, что волна определённой длины падает на плосковыпуклую линзу почти перпендикулярно. Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе сред стекло-воздух, а волна 2 — в результате отражения от пластины на границе сред воздуха- стекло.

при каких условиях можно наблюдать интерференционную картину

Если вторая волна запаздывает по сравнению с первой на целое число длин волн, то при сложении волны усиливают друг друга. Если вторая волна запаздывает по сравнению с первой на нечётное число полуволн, то колебания в точке сложения будут совпадать в противоположных фазах. При этом волны погасят друг друга.

В результате проделанного эксперимента Юнг смог получить картину, которая состоит из чередующихся параллельных полос (темных и светлых)

Интерференция света – это явление сложения двух и более когерентных волн, приводящее к образованию в пространстве устойчивой картины чередующегося максимумом и минимумом интенсивности.

при каких условиях можно наблюдать интерференционную картину

Это интересно! Измеряя радиусы колец Ньютона, можно вычислить длины волн. В ходе измерений было установлено, что для красного света λкр = 8∙10 –7 м, а для фиолетового — λa = 4∙ 10 –7 м.

Пример №1. Будет ли наблюдаться интерференционная картина при освещении мыльной пленки монохроматическим светом? Какой она будет?

Поскольку источник света один и тот же, то отраженные от обеих поверхностей мыльной пленки волны будут когерентными. Поэтому интерференционная картина наблюдаться будет. Она примет вид чередующихся цветных и темных полос. Цвет полос определяется цветом световой волны, который зависит от ее длины волны.

при каких условиях можно наблюдать интерференционную картину

На поверхность тонкой прозрачной плёнки падает по нормали пучок белого света. В отражённом свете плёнка окрашена в зелёный цвет. При использовании плёнки такой же толщины, но с несколько меньшим показателем преломления, её окраска будет

б) находиться ближе к красной области спектра

в) находиться ближе к синей области спектра

Источник

Интерференция света

Урок 31. Физика 11 класс ФГОС

при каких условиях можно наблюдать интерференционную картину

при каких условиях можно наблюдать интерференционную картину

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

при каких условиях можно наблюдать интерференционную картину

при каких условиях можно наблюдать интерференционную картину

при каких условиях можно наблюдать интерференционную картину

Конспект урока «Интерференция света»

На одном из прошлых уроков мы с вами знакомились с историей развития представления о свете. Напомним, что одни учёные полагали, что свет — это поток частиц (корпускул) идущих от источника по всем направлениям. Другие же, напротив, считали, что свет представляет собой упругую волну, распространяющуюся в мировом (светоносном) эфире, заполняющем всё пространство как внутри материальных тел, так и между ними. Но тогда возникает закономерный вопрос: если свет — это поток волн, то должно наблюдаться явление интерференции света.

Давайте с вами вспомним, что интерференцией называется сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний частиц среды.

Наблюдать интерференционную картину с механическими волнами было легко на поверхности воды, например от двух брошенных в воду камней.

при каких условиях можно наблюдать интерференционную картину

При этом мы видели, что если гребень одной волны встречался с гребнем другой волны, то возмущение поверхности воды усиливалось. Если же, напротив, гребень одной волны встречался с впадиной другой, то поверхность воды оставалась невозмущённой.

Однако со светом дела обстоят несколько иначе. Рассмотрим простой опыт с двумя независимыми источниками света, например, электрическими лампочками. Поставим недалеко от светящейся лампочки экран. Что произойдёт, если мы включим вблизи экрана вторую лампочку.

при каких условиях можно наблюдать интерференционную картину

Правильно, это приведёт к увеличению освещённости поверхности экрана, но не создаст на нём чередование максимумов и минимумов освещённости.

Почему так происходит? Давайте вспомним, что при изучении интерференции механических волн мы говорили о том, что волны, идущие от двух источников, должны быть когерентными, то есть при одинаковой длине они должны выходить из центров колебания в одинаковых фазах.

Точного равенства длин волн от двух источников добиться нетрудно. Для этого, например, можно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Но вот осуществить постоянство разности фаз от двух независимых источников невозможно. Дело в том, что атомы источников излучают свет независимо друг от друга и в течение очень короткого промежутка времени (около 10 нс). За такое время атом успевает испустить лишь ограниченный цуг волн (обрывок синусоиды некоторой длины). И вот такие цуги волн от обоих источников налагаются друг на друга. Но так как моменты излучения атомов согласовать невозможно, то и амплитуда колебаний в любой точке пространства хаотично меняется со временем в зависимости от того, как в данный момент времени цуги волн от различных источников сдвинуты относительно друг друга по фазе. Поэтому волны от различных источников света некогерентны (их разность фаз не остаётся постоянной, за исключением квантовых источников света).

Один из первых опытов по обнаружению интерференции света был проведён в середине XVII века итальянским учёным Франческо Мария Гримальди. Закрывшись в тёмной комнате, он проделал в ставнях два небольших отверстия, тем самым получив два конуса световых лучей.

при каких условиях можно наблюдать интерференционную картину

Поместив экран в том месте, где пересекались конусы света, он неожиданно обнаружил, что в некоторых местах освещённость экрана меньше, чем если бы его освещал только один конус света. Тогда Гримальди заключил, что «прибавление света к свету не всегда увеличивает освещённость».

Однако есть и более простые способы наблюдения интерференции света, с которыми знаком практически каждый из вас. Посмотрим на мыльный пузырь — на свету он играет радужными красками. Или вот, тонкая плёнка бензина на поверхности воды — она также переливается всеми цветами радуги. При этом, как было обнаружено ещё Робертом Гуком, изменение толщины мыльной плёнки приводит к изменению её цвета. По мнению учёного это объяснялось тем, что свет является неким колебательным движением (по-простому, волной), распространяющимся в светоносном (или мировом) эфире. Следовательно, световая волна, попадая на мыльную плёнку, отражается от её верхней и нижней поверхностей и, попадая в глаза, производит ощущение различных цветов (это вскоре и было доказано Томасом Юнгом). Однако, из-за того, что Гук не связывал цвет с частотой света или с длиной волны, он не смог разработать точную теорию наблюдаемого явления.

Интерференцию света наблюдал и знаменитый сэр Исаак Ньютон в 1675 году. На плоскую стеклянную пластину учёный поместил плоско-выпуклую линзу от объектива телескопа, выпуклой стороной вниз.

при каких условиях можно наблюдать интерференционную картину

При этом, между нижней — плоской и верхней — выпуклой поверхностями образуется очень тонкий клин воздуха. Если на такую систему в направлении, перпендикулярном плоской поверхности, падает пучок белого света, то световые волны, отражённые от каждой из упомянутых поверхностей, интерферируют между собой. Сформированная таким образом интерференционная картина представляла собой систему радужных колец с тёмным центральным пятном. Если же установку освещать монохроматическим светом, то в центре картины обнаруживалось тёмное пятно, окружённое чередующимися светлыми и тёмными концентрическими кольцами. При этом радиусы колец одного и того же порядкового номера зависели от цвета светового луча.

Напомним, что Ньютон был сторонником корпускулярной теории света, поэтому появление колец он пытался объяснить именно с позиции представления света как о потоке частиц, что, скажем честно, ему совсем не удалось. Оно и понятно, ведь явление интерференции можно объяснить только на основе волновых свойств света, что и показал в 1802 году Томас Юнг. Кстати, именно Юнг и ввёл в обиход термин «интерференция» в 1803 году.

Итак, согласно теории Юнга, кольца Ньютона возникают в отражённом свете в результате того, что лучи света, отражённые от верхней и нижней поверхности воздушной прослойки, интерферируют друг с другом. При этом когерентность волн обеспечена тем, что отражённые от двух поверхностей лучи являются частями одного и того же светового пучка. Юнг понял также, что различие в цвете связано с различием в длине волны (или частоте световых волн).

В настоящее время для получения интерференционной картины пользуются классической интерференционной схемой — схемой Юнга, где пучок света от небольшого отверстия в ширме разделяется на два когерентных пучка с помощью двух небольших отверстий в следующей ширме. Поскольку эти пучки созданы одним и тем же источником, они являются когерентными. Поэтому на экране в области перекрытия пучков наблюдается интерференционная картина чередования максимумов и минимумов интенсивности световой волны.

при каких условиях можно наблюдать интерференционную картину

Объясняется это следующим. При наложении двух когерентных световых волн в пространстве происходит перераспределение энергии по волновому фронту:

при каких условиях можно наблюдать интерференционную картину

при каких условиях можно наблюдать интерференционную картину

Однако среднее значение энергии во всех точках равно сумме энергий, приносимых обеими волнами:

при каких условиях можно наблюдать интерференционную картину

Как видно из формулы, амплитуда результирующего колебания световой волны зависит от разности фаз, которая, в свою очередь, зависит от геометрической разности хода:

при каких условиях можно наблюдать интерференционную картину

Так вот, если эта разность хода будет равна целому числу длин волн, то колебания, возбуждаемые в некоторой точке обеими волнами, будут находиться в одинаковых фазах и, как следствие, усиливать друг друга:

при каких условиях можно наблюдать интерференционную картину

Если же разность хода равна будет равна нечётному числу длин полуволн, то колебания, возбуждаемые в некоторой точке обеими волнами, будут находиться в противофазе и, как следствие, друг друга ослаблять:

при каких условиях можно наблюдать интерференционную картину

Теперь, для закрепления нового материала, решим задачу. Два когерентных источника монохроматического света с длиной волны 0,5 мкм находятся на расстоянии 2 мм друг от друга. Параллельно линии, соединяющей источники, расположен экран на расстоянии 2 м от них. Максимум или минимум освещённости будет наблюдаться в точке А экрана?

при каких условиях можно наблюдать интерференционную картину

В заключение отметим, что открытие явления интерференции света не только показало, что свету присущи волновые свойства, но и позволило определить длины волн светового излучения, что и проделал Томас Юнг. Оказалось, что самая большая длина волны у красного света (760 нм), а самая маленькая — у фиолетового (480 нм).

Отсюда вытекает один интересный факт: оказывается в природе нет никаких красок. Есть лишь электромагнитные волны разных длин волн, которые по-разному отражаются и поглощаются различными телами. Однако об этом мы с вами поговорим в ближайшее время.

Источник

При каких условиях можно наблюдать интерференционную картину

Необходимы более веские доказательства того, что свет при распространении ведет себя как волна. Любому волновому движению присущи явления интерференции и дифракции. Для того чтобы быть уверенным в том, что свет имеет волновую природу, необходимо найти экспериментальные доказательства интерференции и дифракции света.

Сложение волн. Очень часто в среде одновременно распространяется несколько различных волн. Например, когда в комнате беседуют несколько человек, то звуковые волны накладываются друг на друга. Что при этом происходит?

Проще всего проследить за наложением механических волн, наблюдая волны на поверхности воды. Если мы бросим в воду два камня, создав этим две кольцевые волны, то нетрудно заметить, что каждая волна проходит сквозь другую и ведет себя в дальнейшем так, как будто бы другой волны совсем не существовало. Точно так же любое число звуковых волн может одновременно распространяться в воздухе, ничуть не мешая друг другу. Множество музыкальных инструментов в оркестре или голосов в хоре создают звуковые волны, одновременно улавливаемые нашим ухом. Причем ухо в состоянии отличить один звук от другого.

Теперь посмотрим более внимательно, что происходит в местах, где волны накладываются друг на друга. Наблюдая волны на поверхности воды от двух брошенных в воду камней, можно заметить, что некоторые участки поверхности не возмущены, в других же местах возмущение усилилось. Если две волны встречаются в одном месте гребнями, то в этом месте возмущение поверхности воды усиливается.

Если же, напротив, гребень одной волны встречается с впадиной другой, то поверхность воды не будет возмущена.

Вообще же в каждой точке среды колебания, вызванные двумя волнами, просто складываются. Результирующее смещение любой частицы среды представляет собой алгебраическую (т. е. с учетом их знаков) сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.

Интерференция. Сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний, называется интерференцией.

Выясним, при каких условиях имеет место интерференция волн. Для этого рассмотрим более подробно сложение волн, образуемых на поверхности воды.

при каких условиях можно наблюдать интерференционную картину

Результат сложения волн, приходящих в точку M, зависит от разности фаз между ними. Пройдя различные расстояния d1 и d2, волны имеют разность хода Δd = d2—d1. Если разность хода равна длине волны λ, то вторая волна запаздывает по сравнению с первой ровно на один период (как раз за период волна проходит путь, равный длине волны). Следовательно, в этом случае гребни (как и впадины) обеих волн совпадают.

при каких условиях можно наблюдать интерференционную картину

Амплитуда колебаний среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн:

при каких условиях можно наблюдать интерференционную картину

Условие минимумов. Пусть теперь на отрезке Δd укладывается половина длины волны. Очевидно, что при этом вторая волна отстает от первой на половину периода. Разность фаз оказывается равной п, т. е. колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующего колебания равна нулю, т. е. в рассматриваемой точке колебаний нет (рис. 121). То же самое произойдет, если на отрезке укладывается любое нечетное число полуволн.

Амплитуда колебаний среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн:

при каких условиях можно наблюдать интерференционную картину

Когерентные волны. Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз их колебаний была постоянной.

Источники, удовлетворяющие этим условиям, называются когерентными. Когерентными называют и созданные ими волны. Только при сложении когерентных волн образуется устойчивая интерференционная картина.

Если же разность фаз колебаний источников не остается постоянной, то в любой точке среды разность фаз колебаний, возбуждаемых двумя волнами, будет меняться. Поэтому амплитуда результирующих колебаний с течением времени изменяется. В результате максимумы и минимумы перемещаются в пространстве и интерференционная картина размывается.

при каких условиях можно наблюдать интерференционную картину

Распределение энергии при интерференции. Волны несут энергию. Что же с этой энергией происходит при гашении волн друг другом? Может быть, она превращается в другие формы и в минимумах интерференционной картины выделяется тепло? Ничего подобного. Наличие минимума в данной точке интерференционной картины означает, что энергия сюда не поступает совсем. Вследствие интерференции происходит перераспределение энергии в пространстве. Она не распределяется равномерно по всем частицам среды, а концентрируется в максимумах за счет того, что в минимумы не поступает совсем.

ИНТЕРФЕРЕНЦИЯ СВЕТОВЫХ ВОЛН

Если свет представляет собой поток волн, то должно наблюдаться явление интерференции света. Однако получить интерференционную картину (чередование максимумов и минимумов освещенности) с помощью двух независимых источников света, например двух электрических лампочек, невозможно. Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.

Выясним, в чем причина этого и при каких условиях можно наблюдать интерференцию света.

Условие когерентности световых волн. Причина состоит в том, что световые волны, излучаемые различными источниками, не согласованы друг с другом. Для получения же устойчивой интерференционной картины нужны согласованные волны. Они должны иметь одинаковые длины волн и постоянную разность фаз в любой точке пространства. Напомним, что такие согласованные волны с одинаковыми длинами волн и постоянной разностью фаз называются когерентными.

Почти точного равенства длин волн от двух источников добиться нетрудно. Для этого достаточно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Но невозможно осуществить Постоянство разности фаз от двух независимых источников. Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн, имеющими длину около метра. И такие цуги волн от обоих источников налагаются друг на друга. В результате амплитуда колебаний в любой точке пространства хаотически меняется со временем в зависимости от того, как в данный момент времени цуги волн от различных источников сдвинуты друг относительно друга по фазе. Волны от различных источников света некогерентны из-за того, что разность фаз волн не остается постоянной. Никакой устойчивой картины с определенным распределением максимумов и минимумов освещенности в пространстве не наблюдается.

Интерференция в тонких пленках. Тем не менее интерференцию света удается наблюдать. Курьез состоит в том, что ее наблюдали очень давно, но только не отдавали себе в этом отчета.

Вы тоже много раз видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина или нефти на поверхности воды. «Мыльный пузырь, витая в воздухе. зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы» (Марк Твен). Именно интерференция света делает мыльный пузырь столь достойным восхищения.

при каких условиях можно наблюдать интерференционную картину

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн 1 и 2 (рис. 123), одна из которых (1) отражается от наружной поверхности пленки, а вторая (2) —от внутренней. При этом происходит интерференция световых волн — сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат интерференции (усиление или ослабление результирующих колебаний) зависит от угла падения света на пленку, ее толщины и длины волны. Усиление света произойдет в том случае, если преломленная волна 2 отстанет от отраженной волны 1 на целое число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

при каких условиях можно наблюдать интерференционную картину

Когерентность волн, отраженных от наружной и внутренней поверхностей пленки, обеспечивается тем, что они являются частями одного и того же светового пучка. Цуг волн от каждого излучающего атома разделяется пленкой на два, а затем эти части сводятся вместе и интерферируют.

Юнг также понял, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым пучкам различного цвета соответствуют волны различной длины. Для взаимного усиления волн, отличающихся друг от друга длиной (углы падения предполагаются одинаковыми), требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

Кольца Ньютона. Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плоско-выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. Эта интерференционная картина имеет вид концентрических колец, получивших название кольца Ньютона.

при каких условиях можно наблюдать интерференционную картину

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда волна определенной длины падает почти перпендикулярно на плоско-выпуклую линзу (рис. 124). Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны: они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга. Вызываемые ими колебания происходят в одной фазе.

при каких условиях можно наблюдать интерференционную картину

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Ведь линии постоянной толщины воздушной прослойки представляют собой окружности. Измерив радиусы колец, можно вычислить длины волн.

Явление интерференции не только доказывает наличие у света волновых свойств, но и позволяет измерить длину волны. Подобно тому как высота звука определяется его частотой, цвет света определяется частотой колебаний или длиной волны.

При переходе света из одной среды в другую длина волны изменяется. Это можно обнаружить так. Заполним водой или другой прозрачной жидкостью с показателем преломления п воздушную прослойку между линзой и пластиной. Радиусы интерференционных колец уменьшатся.

Почему это происходит? Мы знаем, что при переходе света из вакуума в какую-нибудь среду скорость света уменьшается в n раз. Так как v = λv, то при этом должна уменьшиться в n раз либо частота, либо длина волны. Но радиусы колец зависят от длины волны. Следовательно, когда свет входит в среду, изменяется в n раз именно длина волны, а не частота.

Интерференция электромагнитных волн. На опытах с генератором СВЧ можно наблюдать интерференцию электромагнитных (радио) волн.

Генератор и приемник располагают друг против друга (рис. 125). Затем подводят снизу металлическую пластину в горизонтальном положении. Постепенно поднимая пластину, обнаруживают поочередное ослабление и усиление звука.

Явление объясняется следующим образом. Часть волны из рупора генератора непосредственно попадает в приемный рупор. Другая же ее часть отражается от металлической пластины. Меняя расположение пластины, мы изменяем разность хода прямой и отраженной волн. Вследствие этого волны либо усиливают, либо ослабляют друг друга в зависимости от того, равна ли разность хода целому числу длин волн или нечетному числу полуволн.

при каких условиях можно наблюдать интерференционную картину

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *