почему можно ходить по чистой воде

Почему можно ходить по чистой воде

почему можно ходить по чистой воде

почему можно ходить по чистой воде

почему можно ходить по чистой воде

почему можно ходить по чистой воде

почему можно ходить по чистой воде

МОЖНО ЛИ ХОДИТЬ ПО ВОДЕ?

почему можно ходить по чистой воде

Автор работы награжден дипломом победителя III степени

Летом мне очень нравится проводить время на берегу реки Оскол. Красоту воды нельзя передать словами. Около воды всегда свежо, можно пускать кораблики и бросать камушки. А какое удовольствие посидеть на берегу.

Я подошел поближе к воде и увидел, что у самого берега по поверхности воды бегают или даже прыгают насекомые. Папа сказал, что это водомерки. Они ходят по воде. Восхищенно наблюдая за насекомыми, я задумался, как им это удается? Почему водомерка не тонет?

Я решил найти объяснение этому явлению и написать исследование.

Цель исследования: Выяснить, что позволяет объектам держаться на воде?

Задачи исследования:

1. Изучить литературу по интересующей теме

2. Проанализировать информацию о том, что позволяет объектам держаться на поверхности воды.

3. Провести опыты, объясняющие возможность тел держаться на воде.

Гипотеза: некоторые насекомые и животные могут ходить по воде, ачеловек не может ходить по воде.

Веками люди вынашивают идею о том, что в один прекрасный день мы сможем ходить по воде. В 15 веке Леонардо да Винчи изобрел обувь наподобие понтона, предназначенную для этой цели, а в 1988 году француз Реми Брика переплыл Атлантический океан на специальных лыжах.

Может быть, появлению подобных мыслей у человека мы обязаны природе? Более 1200 видов животных и насекомых могут ходить по воде. Более мелкие, такие как, к примеру, жуки водомерки, используют при передвижении силу поверхностного натяжения, которая удерживает молекулы воды вместе, тем самым жуки могут удержать свой вес на воде. Водомерка очень свободно чувствует себя на поверхности воды, оставаясь на плаву. Его лапки покрыты тысячами крошечных волосинок, которые практически не намокают. И это очень важно чтобы удержаться на плаву: ведь если бы лапки намокли, то они тянули бы вниз, да и вытянуть их из воды было бы трудно. Вода отвечает давлением, обращенным изнутри наружу.

1.1Поверхностное натяжение

Наличие силы поверхностного натяженияводы мы сами можем наблюдать на опыте.

Цель: пронаблюдать наличие поверхностного натяжения.

Оборудование: сосуд с водой, иголка, скрепки.

Я уложил на воду металлическую иголку и канцелярскиескрепки. Они, как и водомерка, удерживаются на ее поверхности.

Вывод: водомерке удержаться на воде помогает сила поверхностного натяжения. Вес насекомого уравновешивается поверхностным натяжением, сила которого превышает вес тела водомерки.

1.2Выталкивающая сила

Цель: подтвердить зависимость выталкивающей силы от объема тела.

Оборудование: сосуд с водой, 2 одинаковых куска пластилина разной формы.

Вывод: кораблик не тонет, потому что его корпус заполнен воздухом. Воздух значительно менее плотное вещество, чем вода (1,29 кг/м 3 ). У кораблика образуется, как бы общая, суммарная плотность воздуха и пластилина. В результате этого средняя плотность кораблика вместе с большим объемом воздуха в его корпусе становится меньше плотности воды. Потому- то и не тонут тяжелые корабли.

1.3 Плотность тела

Продолжая работать с литературой, я выяснил, что определяющим положение тела в воде является не вес, а плотность тела. Плотность – это масса вещества, заключенная в определенном объеме.

Цель: определить плотность собственного тела.

Оборудование: ванна с водой, маркер, сосуд известного объема, напольные весы.

Плотность тела я вычислил с помощью учителя, разделив массу моего тела на объем.

m=25кг; V=23,8 л=0,0238 м 3 плотность=25кг:0,0238 м 3 = 1049 кг/м 3

Вывод: плотность моего тела больше плотности воды. Следовательно, без каких-либо вспомогательных средств человек не может находиться на поверхности воды.

Я много раз видел на озерах, как плавают утки. Они легко удерживаются на плаву.

Это потому что их перья полые и они очень плотно прилегают друг к другу, создавая воздушную прослойку. Также перья птицы имеют смазку, защищающую их от намокания. Их тело вырабатывает жир. При помощи клюва птица постоянно смазывает свое оперение жиром, который отталкивает воду. Вода не может намочить перья, что помогает птице сохранять тепло и держаться на воде.

А что может помочь человеку удерживаться на поверхности?

Опыт с шариком, наполненным воздухом, показал мне один из способов удержания на поверхности воды.

Цель: показать, что использование воздушной подушки является одним из вспомогательных способов удержаться на поверхности воды.

Оборудование: сосуд с водой, шарик для пинг- понга.

Вывод: Опыт с шариком показал мне, что тела заполненные воздухом, способны помочь человеку держаться на поверхности воды.

Так же действует спасательные средства: жилет или круг, одетый на человека. С их помощью удается удержаться на плаву.

Учеными было установлено, что человек, чтобы передвигаться по воде также быстро как ящерица василиска, должен бежать по воде со скоростью 108 км/ч, почти также быстро, как гепард. Самый быстрый бегун в мире – это спортсмен из Ямайки Усэйн Болт бегает со скоростью 37,8 км/ч. Для того, чтобы бегать с такой скоростью человеку нужно в 15 раз больше энергии, чем его организм способен расходовать.

Но физические пределы способностей человеческого тела не ограничивают нас в мечтаниях. За последние 40 лет люди запатентовали более 50 устройств, пригодных для хождения по воде.

Заключение

Из проделанных опытов и изученной литературы можно сделать вывод:

очень немногие существа способны на такое биомеханическое чудо: ходить по воде;

некоторые обитатели живой природы могут ходить по воде;

при выполнении некоторых условий, использовании вспомогательных средств, человек сможет ходить по воде.

Это во многом изменит наше отношение к бескрайним водным просторам. Крайне интересным мне видится направление по исследованию свойств воды, секреты которой еще во многом спрятаны от нас. Нет ничего невозможного! Нужно только захотеть! И я буду к этому стремиться.

Данная работа может быть использована на уроках окружающего мира и во внеурочной деятельности в начальной школе, она расширит и углубит знания детей.

Список литературы

Большая иллюстрированная энциклопедия живой природы. Москва «Махаон» 2007.

Детская энциклопедия. Я познаю мир. М.: АСТ 2009

Мультипликационный фильм «Коля, Оля и Архимед».

Научно-популярный фильм «Живая вода».

Перышкин А.В. Физика 7, М.: Дрофа. 2015

Хочу все знать. Справочник для детей. Москва 2003.

Источник

Почему можно ходить по чистой воде

почему можно ходить по чистой воде

почему можно ходить по чистой воде

почему можно ходить по чистой воде

почему можно ходить по чистой воде
почему можно ходить по чистой водеО компании
почему можно ходить по чистой водеО воде
почему можно ходить по чистой водеКаталог продукции
почему можно ходить по чистой водеАкции
почему можно ходить по чистой водеСервис
почему можно ходить по чистой водеБаза знаний
почему можно ходить по чистой водеНовости индустрии
почему можно ходить по чистой водеСоветы
почему можно ходить по чистой водеФакты
почему можно ходить по чистой воде
почему можно ходить по чистой водеВсё для офиса
почему можно ходить по чистой воде
почему можно ходить по чистой воде
почему можно ходить по чистой водеЕвгений
почему можно ходить по чистой воде+375-25-7433591
почему можно ходить по чистой воде
Новости
Май 7, 2021
График доставки воды на майские праздники!
Уважаемые Клиенты, в праздничные и предпраздничные дни изменен график приема заказов и доставки питьевой воды Графская 9 мая- 11 мая.
Март 6, 2021
График работы 8 марта!
Дорогие друзья, в связи с международным женским днем 8 марта изменился график доставки питьевой воды.
Все новости
почему можно ходить по чистой воде
почему можно ходить по чистой воде
Январь 26, 2014
почему можно ходить по чистой водеС научной точки зрения ходить по воде невозможно, но… это лишь в том случае, если речь не идет о неньютоновской жидкости. Что это за жидкость и почему по ней можно ходить?

Итак, ни ходить, ни бегать по воде невозможно — это знает каждый. Однако, некоторые утверждают, что, разогнавшись до определенной скорости, пробежать по поверхности воды все-таки можно. Так ли это?

Еще в конце 17-го века великий физик Ньютон обратил внимание на то, что грести веслами быстро гораздо тяжелее, нежели делать это медленно. И тогда он сформулировал закон: «Вязкость жидкости усиливается пропорционально силе воздействия на нее». То есть, если максимально увеличить силу воздействия на воду, то ее вязкость и сила сопротивления увеличатся настолько, что вода сможет удержать бегущего человека на поверхности. Но какой же должна быть при этом его скорость? Для человека массой 70 кг и 42-м размером обуви — порядка 150 км/ч. Однако человек не может развить такую скорость, поэтому о «хождении по воде» можно забыть.

Тем не менее, жидкость способна выдержать на своей поверхности вес человека!

Для этого нужно всего лишь немного изменить состав воды. Жидкости, которые не подчиняются закону Ньютона, справедливо называют «неньютоновскими». Их вязкость растет намного быстрее, чем увеличивается сила воздействия.

Изготовим неньютоновскую жидкость самостоятельно.

Для этого достаточно смешать обычную воду с крахмалом в пропорции 1:1 до получения сметанообразной субстанции. При быстром и частом погружении в нее палец останется сухим. Если же палец опустить медленно, то он полностью погрузится в жидкость, которая ничем не будет отличаться от обычного киселя.

Эксперименты с неньютоновской жидкостью.

ЭКСПЕРИМЕНТ 1. Нальем неньютоновскую жидкость в таз, положим на ее поверхность деревянный брусок и попробуем вбить в него гвоздь. Получилось. Да! Жидкость при ударе мгновенно твердеет. Поэтому брусок остается на поверхности, а гвоздь легко входит в дерево.

В воде же забить гвоздь в брусок практически невозможно.

ЭКСПЕРИМЕНТ 2. В полиэтиленовый пакет наливаем воду и кладем сырое яйцо. Завязываем пакет и бросаем с определенной высоты. В результате — пакет рвется, вода вытекает, яйцо разбивается — чего и следовало ожидать.

Теперь проделываем то же самое, но с неньютоновской жидкостью. Что в итоге? Пакет разорвался, жидкость вытекла, а яйцо… целое.

ЭКСПЕРИМЕНТ 3. Готовим большое количество неньютоновской жидкости (300 литров воды на 300 кг крахмала) и переливаем ее бассейн размером 2х3 метра. Для начала бросим в бассейн 5-килограммовый шар для боулинга. Шар катится как по твердой поверхности и у противоположного края тонет.

Сможет ли человек удержаться на поверхности подобно шару? Настает момент истины… Оказывается — сможет! Для этого достаточно прыгать, бегать или даже танцевать; главное — не останавливаться!

Источник

Можно ли ходить по воде?

почему можно ходить по чистой воде

почему можно ходить по чистой воде

В издательстве «Альпина нон-фикшн» вышла увлекательная книга, которая простым — но исключительно научным! — языком объясняет многие неочевидные вещи. В духе вопросов, которые задают любознательные дети. Книга Генриха Эрлиха и Сергея Комарова «Легко ли плыть в сиропе: Откуда берутся странные научные открытия» — коллекция потрясающих фактов, которые читаются на одном дыхании.

почему можно ходить по чистой воде

Вопрос интересный, хотя большая часть людей уверена, что знает ответ на него. “Конечно можно”, — скажут они и в подтверждение своих слов сошлются на широко известный исторический прецедент, описанный в одной из самых авторитетных в мире книг. Но ученые не склонны принимать что-либо на веру и не признают авторитетов, они норовят все проверять, причем экспериментально. Именно это сделала группа исследователей во главе с Юрием Иваненко из римского Института госпитализации и научного ухода за пациентами, которые стали лауреатами Игнобелевской премии по физике за 2013 год. Допускаем, что двигало ими не только любопытство, но и чувство обиды. В самом деле, какие-то ничтожные водомерки легко скользят по водной глади. Да что там водомерки, вполне себе увесистая ящерица василиск умеет бегать по воде, а человек — царь природы, как кажется, — лишен такой возможности, в чем может убедиться каждый на собственном опыте.

Но не будем раньше времени посыпать голову пеплом. Давайте лучше разберемся в физике явления. Вода может удерживать на поверхности бегущее тело за счет двух сил. Первая — сила поверхностного натяжения. Именно ее используют водомерки, которые не только прекрасно скользят по водной глади, но и могут застывать на месте. Эта сила применима к существам легчайшим. Другая сила гораздо сложнее, она существует только в динамике — с ее помощью на воде не постоишь. А порождает ее вязкость, которая препятствует телу погружаться в жидкость. Величина этой силы зависит от множества факторов, но главнейший из них — скорость, с которой движется тело. Чем больше скорость, тем труднее телу утонуть. Посмотрим на василиска. Эта ящерица, весящая десятки граммов, не тонет потому, что отважно семенит задними лапками с частотой 7 Гц — семь движений в секунду. Молодые ящерицы так пробегают 300–400 м, а чем старше и, стало быть, тяжелее ящерица, тем менее уверенно она это делает. Приведем еще пример: западноамериканская поганка, крупная (полтора килограмма) птица, пробегает по воде сравнительно небольшую дистанцию — десяток-другой метров, причем исполняет сей трюк в качестве брачного танца.

Во-вторых, мы относительно тяжелые, что в сочетании с маленькой площадью опоры порождает большое давление на поверхность воды. И, наконец, мы слишком медленно семеним ногами, хотя это дело индивидуальное и к тому же зависит от тренировки.

Источник

Ходить бы по воде, аки посуху!

почему можно ходить по чистой водеПо воде пытались ходить многие. И, не считая одного исключительного случая в Галилее (около двух тысячелетий назад), ни у кого это не получилось. Всякие фокусы, построенные на обмане зрения, мы тут учитывать не будем. А вот чтобы и в самом деле.. Ну, как Иисус Христос… Нет, это нам слабо!

Тим Берри, к примеру, уже через пять секунд рухнул и погрузился в неспокойную воду озера. Дэйв Хенсон, другой участник, создавший для своих ног т.н. «Пару гробов», сначала продвигался более или менее спокойно, но потом ноги его разъехались на шпагат, и он тоже рухнул. Чуть подольше продержалась Джанет Саммер, хотя, согласно задумке, должна была «летать» на своей «Пористой форели» и по воде, и под водой: она тоже вдруг вскрикнула и нырнула носом в воду. Ян Александер и его «Могущественный плавник» оказались на редкость плавучими – благодаря конструкции из полистирола и лёгкого дерева. Однако и у «Плавника» вскоре обнаружился роковой недостаток: руль отвалился, появился опасный крен и, конечно, в итоге мистер Александер тоже искупался.

Решимость решимостью, а до ходьбы по воде тут, согласитесь, далеко. А между тем (если оставить в покое Иисуса Христа) в природе есть немало живых существ, которые делают это без труда. Если бы насекомые умели смеяться, некоторые из них уж точно ухохатывались бы, глядя на состязания этих неуклюжих Homo sapiens. Смеялась бы, к примеру, та же водомерка, проявляющая на воде чудеса ловкости, проворства и сноровки. Водомерки – это такие жучки. Выводятся в воде, но живут на поверхности. И они отлично ходят, прыгают и бегают по воде, причём не тонут и даже не ныряют!

И что интересно: уэтих скороходов есть как бы два вида походки. Скольжение запросто переносит их вперёд на длину корпуса, а прыжок толкает в воздух и – вверх вперёд. Резвясь на поверхности, они могут совершать прыжки в четыре длины своего корпуса, а то и в пять. Вес насекомого уравновешивается поверхностным натяжением воды, сила которого в десять раз превышает массу тела водомерки (при длине 1см масса водомерки обычно составляет порядка 10 дин).

Типичная водомерка примерно 1см длиной перемещается со скоростью 150см в секунду. Такая скорость, конечно же, просто завораживает. Это как если бы человек ростом 1,8м плыл со скоростью 644км в час, то есть быстрее многих реактивных самолётов! Известно, что эти надводные обитатели водоёмов иной раз бесстрашно отправляются в долгое путешествие и покрывают гигантские расстояния в сотни километров по поверхности тропических морей. Их лапки вполне для этого приспособлены. У водомерки три пары конечностей. Ведущими, т.е. гребущими, являются средние – ими она пользуется, как парой вёсел. Задние конечности служат рулём и тормозом. А передними водомерка хватает добычу. Вот такой расклад.

Но всё-таки: за счёт чего это насекомое не тонет? Не только ведь благодаря ворсистым лапкам? Ясно же, что любой объект, движущийся в неком направлении, должен воздействовать на поверхность, по которой идёт, бежит, ползёт и т.д. Если это водная поверхность, лапы (ноги) и прочие части тела должны погружаться в воду. На какую глубину? В зависимости от массы движущегося существа и скорости его движения. При этом, по меньшей мере, возникают волны. Всё это понятно, но не относится к водомерке. Точнее, относится, но в малой степени. Это живое существо, похоже, умудряется попирать некоторые законы физики. И ладно бы этим отличались только крошечные, почти невесомые водомерки. Но нет. Взрослые особи тоже движутся по поверхности воды, как если бы это была твердь, суша. И – никогда не погружаются в воду! Если бы водомерка оказалась под водой, ей пришлось бы применить силу, в сто раз превышающую массу собственного тела, чтобы вынырнуть на поверхность. Проще говоря, она бы утонула. Но такой опасности, по сути, нет. И эта загадка давно интриговала учёных.

Есть и ещё одна загадка.

Долгое время учёные считали, что водомерка движется благодаря создаваемым ею волнам. Поверхностные волны посылают импульсы в направлении, противоположном движению. Что и происходит. Затем, по 3-му закону Ньютона (о том, что на каждое действие есть равное ему противодействие) сила противодействия этих волн толкает насекомое вперёд. Однако для создания таких волн лапка насекомого должна двигаться со скоростью, превышающей 25см в секунду – это минимальная скорость поверхностной волны. Превышение этой скорости – вовсе не проблема для такого насекомого, как водомерка с её длинными ногами. Но если бы так оно и было, то малыши-водомерки, у которых лапки намного короче и слабее, не могли бы угнаться за родителями. То есть они вообще не должны бы бегать по воде! Однако никаких проблем у малышей нет. Вот эта «нестыковка», это несоответствие между теорией и практикой стало известно с 1993 года как «парадокс Денни». Биолог из Стэнфордского университета Марк В. Денни указывал тогда, что – теоретически – крошечные водомерки не могут ходить по воде, поскольку их лапки ещё не достаточно быстры, чтобы создавать волну. Фактически же и новорожденные перемещаются по поверхности воды столь же успешно, как и взрослые особи. Малыши водомерки могут быть даже и 1мм длиной, но отлично передвигаются.

По-английски водомерка называется «уотер страйдер», дословно – «шагающая по воде». Созданного в MIT робота назвали – по аналогии – «робострайдер». Задача состояла в том, чтобы самодвижущееся устройство было достаточно лёгким, – настолько, чтобы его вес могла удерживать сила поверхностного натяжения воды. Однако вес прибора тем больше, чем механизм сложнее. А потому нужно было сделать что-то до предела простое. Итак, робострайдер в своём «развитии» прошёл как бы три фазы.

Первый механизм представлял собой простенькое проволочное подобие водомерки. Он должен был всего лишь продемонстрировать, что металлический объект тяжелее воды может удерживаться на ней силой её поверхностного натяжения. Если робострайдер-1 не мог бы держаться на поверхности, вопрос о действующей модели сразу бы отпал.

Робострайдер-2 был уже близок к искомому варианту. Он приводился в движение простеньким пускателем – тонкую эластичную ленту намотали на шкив, соединённый с гребущими средними «конечностями». Для упрощения опыта робострайдер-2 передвигался не на тоненьких ножках, а на поплавках из пенопласта.

Окончательный вариант робострайдера похож на живое насекомое, но, конечно, существенно превосходит типичную водомерку по размеру и уступает ей по сноровке. Это механизм длиной 9см, он имеет пару средних движимых «конечностей» плюс две пары поддерживающих – как это бывает и у настоящих водомерок. Сама конструкция – алюминиевая, «конечности» – из нержавеющей стали. За пять «шагов» такой механизм проходил путь в 20-30см.

Искусственная водомерка, которую создали исследователи из MIT, перемещается, конечно, не столь быстро, изящно и грациозно, как настоящая. Однако гидродинамика, лежащая в основе движения этих насекомых, была прежде не совсем понятна, как говорит профессор математики из MIT Джон У.М. Буш, автор этого исследования. Теперь же, используя математические расчёты, высокоскоростную видео-съёмку, массу других методов изучения водного потока, Буш и два аспиранта – математик Дэвид Л. Хью и инженер-механик Брайан Чан – окончательно установили, каким же образом движется по поверхности водомерка.

Проектируя искусственную водомерку, Чан, не особо мудрствуя, взял пустую жестяную банку из-под прохладительного напитка «7-Up», кусок стальной проволоки, эластичный бинт, которым он примотал ведущий шкив к паре искусственных «ног». Вот и всё.

В этих экспериментах механическая водомерка перемещалась с каждым гребком лишь на половину длины своего корпуса. Однако принцип движения сохранялся тот же, что и у живого насекомого. Кстати, Хью пишет на эту тему свою докторскую диссертацию, и он намерен подобным же образом изучить несколько других живых существ, перемещающихся по поверхности воды. Это, например, жучки под общим названием Microvelia, болотные насекомые типа Mesovelia, улитка Physidae, живущая на прудах. Пресноводный паук Dolomedes тоже шныряет по поверхности воды, оставляя завихрения позади каждой из своих четырёх лап. Или, например, василиск Basiliscus vittatus, способный бегать по воде, почти к ней не прикасаясь, – не случайно же его называют «Иисусовой ящерицей». Принцип движения у каждого насекомого или животного разный, но с инженерной точки зрения интересны все. Кто-то движется наподобие наших судов на воздушной подушке, кто-то отталкивается от крошечных неровностей водной поверхности, а то и пользуется совсем особой формой взаимодействия воды, воздуха и твёрдой поверхности, что позволяет двигаться и по воде, и посуху.

Но, спрашивается, какой нам прок от всех этих знаний? Не надумал ли и человек «гулять по воде»?

Возвращаясь (всё же!) к Иисусу Христу, надо бы упомянуть, что учёные и в самом деле пытаются решить эту многовековую загадку. Ведь не бывает же дыма без огня! Значит, и в самом деле кто-то такое видел. Помните, в Библии описано, как Иисус стоял на берегу, а лодка с учениками «была уже на средине моря, и её било волнами», а потом вдруг «пошёл к ним Иисус, идя по морю. И ученики, увидев Его идущего по морю, встревожились и говорили: это призрак; и от страха вскричали» (Мф 14:24-26).

Но как, за счёт чего Иисус ходил по воде, если и в самом деле ходил?

На этот счёт есть разные предположения. Но интересно, что (как о том рассказывалось в нашем документальном фильме «Живая вода») в лаборатории российского профессора Павла Госькова удалось получить небольшой столбик по-настоящему очищенной воды (обычно вода содержит массу всяких примесей, и в чистом виде в природе не встречается). Так вот. Диаметр этого лабораторного столбика чистой воды был всего лишь 2,5см, а вот сцепление молекул в ней оказалось настолько мощным, что для разрыва столбика потребовалось приложить силу в 900кг! По озеру или морю такой воды можно было бы не только ходить, а, как говорится в фильме, даже и кататься на коньках! Если при этом учесть, что (и это уже доказано. ) вода меняет свою структуру и очищается под воздействием, скажем, доброго слова, хорошей музыки, молитвы и вообще проявлений высокой духовности, то кто его знает, что мог проделывать с водой Иисус! Может, под его воздействием вода очищалась, успокаивалась и становилась подобна той, полученной в лаборатории? По такой воде Он мог и ходить. Так что тут вряд ли стоит проводить какое-то сопоставление с водомеркой. Кесарю – кесарево, а Богу – Богово! И, похоже, мы ещё слишком мало знаем, чтобы не верить в чудеса…

Марк Соколов, «НГН»

Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен

Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *