по картине магнитных линий можно судить
По картине магнитных линий можно судить
42. Магнитное поле и его графическое изображение
1. Чем порождается магнитное поле?
2. Чем создается магнитное поле постоянного магнита?
Согласно гипотезе Ампера в атомах и молекулах вещества в результате движения электронов возникают элементарные кольцевые токи.
В магнитах эти элементарные кольцевые токи ориентированы одинаково.
Магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления.
Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.
3. Что такое магнитные линии?
Для наглядного представления магнитного поля пользуются магнитными линиями (иначе линиями магнитного поля).
Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.
Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле.
Магнитные линии являются замкнутыми.
Картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.
4. Как располагаются магнитные стрелки в магнитном поле, линии которого прямолинейны? криволинейны?
Магнитная линия (как прямолинейная, так и криволинейная) проводится так, чтобы в любой точке этой линии касательная к ней совпадала с осью магнитной стрелки, помещенной в эту точку.
5. Что принимают за направление магнитной линии в какой-либо ее точке?
За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку.
6. Как с помощью магнитных линий можно показать, что в одной области пространства поле сильнее, чем в другой?
В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее.
7. О чем можно судить по картине линий магнитного поля?
По картине магнитных линии можно судить не только о направлении, но и о величине магнитного поля, т. е. о том, в каких точках пространства поле действует на магнитную стрелку с большей силой, а в каких — с меньшей.
Вопросы § 34
Физика А.В. Перышкин
1.Что является источником магнитного поля?
Магнитное поле порождается электрическим током (направленным движением заряженных частиц).
2. Чем создаётся магнитное поле постоянного магнита?
Магнитное поле постоянного магнита создается за счет того, что внутренние кольцевые токи в нем ориентированы одинаково и усиливают друг друга.
3. Что такое магнитные линии? Что принимают за их направление в какой-либо её точке?
Магнитные линии или линии магнитного поля — используемые для наглядности воображаемые линии — направление которых в каждой точке совпадает с направлением маленькой магнитной стрелки, помещенной в магнитное поле.
4. Как располагаются магнитные стрелки в магнитном поле, линии которого прямолинейны; криволинейны?
В магнитном поле с прямолинейными и криволинейными линиями стрелки будут располагаться по касательной к магнитным линиям.
5. О чём можно судить по картине линий магнитного поля?
О направлении и величине магнитного поля.
6. Какое магнитное поле — однородное или неоднородное — образуется вокруг полосового магнита; вокруг прямолинейного проводника с током; внутри соленоида, длина которого значительно больше его диаметра?
Неоднородное магнитное поле: вокруг полосового магнита и прямолинейного проводника с током. Однородное магнитное поле: внутри соляноида.
7. Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля; однородного магнитного поля?
Сила, действующая на магнитную стрелку в однородном поле, в разных точках имеет одинаковый модуль и направление. В неоднородном поле они различны.
8. Чем отличается расположение магнитных линий в неоднородном и однородном магнитных полях?
В однородном поле магнитные линии расположены параллельно друг другу и с одинаковой густотой. В неоднородном магнитном поле их густота и их направления могут отличаются, однако они никогда не пересекаются.
По картине магнитных линий можно судить
На рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью железных опилок. Каким полюсам полосовых магнитов, судя по расположению магнитной стрелки, соответствуют области 1 и 2?
1 северному полюсу; 2 южному
1 – южному; 2 – северному полюсу
и 1, и 2 северному полюсу
и 1, и 2 южному полюсу
Это задание ещё не решено, приводим решение прототипа.
На рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?
1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу
Поскольку магнитные линии не замкнуты, оба полюса являются либо одновременно южными, либо одновременно северными. Буква N (North) обозначает северный полюс, S (South) — южный. Северный полюс притягивается к южному. Следовательно, области 1 и 2 соответствуют южному полюсу.
Магнитное поле. Линии
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током.
Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.
Взаимодействие магнитов
На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.
• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.
• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.
• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).
Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.
По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.
Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.
Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.
Линии магнитного поля
Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.
1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии.
2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.
3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства.
Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.
Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).
Рис. 1. Поле постоянного магнита
Опыт Эрстеда
Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.
Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.
Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.
Рис. 2. Опыт Эрстеда
Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.
Магнитное поле прямого провода с током
Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).
Рис. 3. Поле прямого провода с током
Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.
Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.
Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).
Магнитное поле витка с током
Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).
Рис. 4. Поле витка с током
Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.
Правило часовой стрелки. Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки.
Правило винта. Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока.
Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.
Магнитное поле катушки с током
Рис. 5. Катушка (соленоид)
Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).
Рис. 6. поле катушки с током
На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец — к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.
1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля — параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.
2. Вне катушки поле близко к нулю. Чем больше витков в катушке — тем слабее поле снаружи неё.
Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.
Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.
Гипотеза Ампера. Элементарные токи
Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита — полюса всегда присутствуют в магните парами.
Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.
Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него.
Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.
Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.
Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).
Рис. 7. Элементарные токи магнита
Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).
Гипотеза Ампера оказалась справедливой — это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке — почти через сто лет после гениальной догадки Ампера.
По картине магнитных линий можно судить
По лёгкой проводящей рамке, расположенной между полюсами подковообразного магнита, пропустили электрический ток, направление которого указано на рисунке стрелками.
Магнитное поле будет направлено от северного полюса магнита к южному (перпендикулярно стороне АБ рамки). На стороны рамки с током действует сила Ампера, направление которой определяется по правилу левой руки, а величина равна где — сила тока в рамке, — величина магнитной индукции поля магнита, — длина соответствующей стороны рамки, — синус угла между вектором магнитной индукции и направлением тока. Таким образом, на АБ сторону рамки и сторону параллельную ей будут действовать силы, равные по величине, но противоположные по направлению: на левую сторону «от нас», а на правую «на нас». На остальные стороны силы действовать не будут, поскольку ток в них течет параллельно силовым линиям поля. Таким образом рамка начнёт вращаться по часовой стрелке, если смотреть сверху.
По мере поворота направление силы будет меняться и в тот момент, когда рамка повернётся на 90° вращающий момент сменит направление, таким образом, рамка не будет проворачиваться дальше. Некоторое время рамка будет колебаться в таком положении, а затем окажется в положении, указанном на рисунке 4.