по каким действиям можно судить о работе электрического тока

Действия электрического тока: тепловое, химическое, магнитное, световое и механическое

по каким действиям можно судить о работе электрического токаЭлектрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает — ток есть. Если типичное сопутствующее току явление наблюдается — ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.

по каким действиям можно судить о работе электрического тока

по каким действиям можно судить о работе электрического тока

по каким действиям можно судить о работе электрического тока

по каким действиям можно судить о работе электрического тока

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания (Закон Джоуля — Ленца).

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока подвергаются электролизу — это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

по каким действиям можно судить о работе электрического тока

по каким действиям можно судить о работе электрического тока

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом — отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности — это нанесение гальванических покрытий и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

по каким действиям можно судить о работе электрического тока

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Магнитное действие электрического тока

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.

по каким действиям можно судить о работе электрического тока

по каким действиям можно судить о работе электрического тока

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах ( например, в промышленных).

Световое действие электрического тока

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет — до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему ультрафиолетовое излучение от электрического разряда в парах ртути или в инертном газе типа неона.

по каким действиям можно судить о работе электрического тока

Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Механическое действие электрического тока

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя магнитное поле. Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.

по каким действиям можно судить о работе электрического тока

Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана работа электродвигателей, где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

По каким действиям можно судить о работе электрического тока

Тепловое действие тока.

— электрический ток вызывает разогревание металлических проводников вплоть до свечения.

Химическое действие тока.

— при прохождении электрического тока через электролит возможно выделение веществ, содержащихся в растворе, на электродах.
— наблюдается в жидких проводниках.

Магнитное действие тока.

— проводник с током приобретает магнитные свойства.
— наблюдается при наличии электрического тока в любых проводниках (твердых, жидких, газообразных).

А СМОЖЕШЬ ЛИ ТЫ СООБРАЗИТЬ

Открытие физика Араго в 1820 г. заключалось в следующем: когда тонкая медная проволока, соединенная с источником тока, погружалась в железные опилки, то они приставали к ней.
Объясните это явление.
В коробке перемешаны медные винты и железные шурупы.
Каким образом можно быстро рассортировать их, имея аккумулятор, достаточно длинный медный изолированный провод и железный стержень?

ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА НА ОРГАНИЗМ ЧЕЛОВЕКА.

Физиологическое действие тока на ранней стадии развития науки об электричестве было единственным, о котором было известно ученым, и было основано на собственных ощущениях экспериментаторов.

по каким действиям можно судить о работе электрического тока

Постоянный ток менее опасен, чем переменный в электросети, который даже под напряжением 220В может вызвать очень тяжелое поражение организма. Действие электрического тока на человека усиливается при наличии промокшей обуви, мокрых рук, которым свойственна повышенная электропроводность.
___

При поражении молнией на теле пострадавшего возникает древовидный рисунок синюшного цвета. Принято говорить, что молния оставила свое изображение.
В действительности при поражении молнией происходит паралич подкожных сосудов.

Работая с электроприборами, будь осторожен!

по каким действиям можно судить о работе электрического тока

Любознательным

По ковру ходить опасно!

Иногда вас может «ударить током», если вы просто пройдетесь по ковру или поерзаете на сиденьи автомобиля. Очевидно, при этом каким-то образом накапливается заряд. Можете ли вы более подробно объяснить, что именно происходит? Почему, например, вас «бьет током», когда вы идете по ковру, но ничего не случается, если вы стоите на нем? Почему эти эффекты зависят от времени года?

Оказывается.
Когда два материала (скажем, подошвы туфель и ковер) соприкасаются, электроны из одного из них туннелируют через поверхностный энергетический барьер в другой. Поскольку ни тот, ни другой из этих материалов не является хорошим проводником, электроны могут переходить с одной поверхности на другую лишь в тех точках, где материалы плотно соприкасаются. Таким образом, чем больше поверхность контакта между материалами, тем больше будет переходить электронов. При трении одной поверхности о другую площадь контакта значительно возрастает, благодаря чему достигается переход большого числа электронов. Материал, который теряет электроны, заряжается положительно, материал, который принимает их, заряжается отрицательно. Если воздух влажный, избыточный заряд быстро переходит с материала на взвешенные в воздухе капельки воды. Уменьшению заряда могут способствовать также частицы дыма. Если же такого разряда не происходит, то при обычном контакте двух материалов может возникнуть весьма значительная разность потенциалов.
Если, например, перед тем как выйти из машины, вы поерзаете на сиденье, то потенциал вашего тела может оказаться на 15 кВ выше потенциала земли.

Источник

Действия электрического тока

Различают шесть действий электрического тока:

Тепловое действие тока

Электрический ток в твёрдых проводниках представляет из себя упорядоченное движение электронов. Каждый твёрдый проводник имеет кристаллическое строение, в узлах которой находятся положительные ионы. Поначалу проводник состоит из атомов химического элемента (состав проводника). Если пустить электрическое поле, от этих атомов будут отделяться электроны с внешней электронной оболочки, и атомы превращаются в положительные ионы, которые находятся в узлах кристаллической решётки. Электрический ток распространяется в проводниках с огромной скоростью, приближающейся к скорости света (299 792 458 м/с), но сами электроны движутся гораздо медленнее (в проводах их скорость составляет несколько миллиметров в секунду). Если выключить электрическое поле, электроны присоединяются к положительным ионам, находящимися поблизости и эти ионы превращаются снова в атомы. Электрический ток также, например, в лампочке нагревает её спираль.

Химическое действие тока

В электролитах движутся ионы (катионы и анионы). При взаимодействии электролита с молекулами воды, диполи воды своими кончиками присоединяются к катионам металла. В последствие у электролита разрушается кристаллическая решётка, что ведёт к образованию гидратов, то есть освобождаются гидратированные ионы.

Магнитное действие тока

Электрический ток создает магнитное поле, которое можно обнаружить по его действию на постоянный магнит. Например, если к проводнику по которому протекает электрический ток, поднести компас, стрелка компаса, представляющая собой постоянный магнит, придет в движение. Если изначально стрелка компаса была расположена вдоль силовых линий магнитного поля земли, то после приближения к проводнику с электричсеим током, стрелка соориентируется вдоль силовых линий магнитного поля проводника.

Катушка, состоящая из намотанного провода и сердечника, притягивает к себе частички металлов. Поскольку и катушка, и сердечник состоят из разных проводников, электроны переходят на разные проводники.

Полезное

Смотреть что такое «Действия электрического тока» в других словарях:

Предельная коммутационная способность циклического действия электрического реле — 117. Предельная коммутационная способность циклического действия электрического реле D. Schaltvermögen bei Schaltspielen E. Limiting cyclic capacity F. Pouvoir limite de manoeuvre Наибольшее значение тока, которое выходная цепь электрического… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 19350-74: Электрооборудование электрического подвижного состава. Термины и определения — Терминология ГОСТ 19350 74: Электрооборудование электрического подвижного состава. Термины и определения оригинал документа: 48. Активное статическое нажатие токоприемника Нажатие токоприемника на контактный провод при медленном увеличении его… … Словарь-справочник терминов нормативно-технической документации

Химический источник тока — (аббр. ХИТ) источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию. Содержание 1 История создания 2 Принцип действия … Википедия

ГОСТ Р 52726-2007: Разъединители и заземлители переменного тока на напряжение свыше 1 кВ и приводы к ним. Общие технические условия — Терминология ГОСТ Р 52726 2007: Разъединители и заземлители переменного тока на напряжение свыше 1 кВ и приводы к ним. Общие технические условия оригинал документа: 3.1 IP код: Система кодирования, характеризующая степени защиты, обеспечиваемые… … Словарь-справочник терминов нормативно-технической документации

Генератор переменного тока — Эта страница требует существенной переработки. Возможно, её необходимо викифицировать, дополнить или переписать. Пояснение причин и обсуждение на странице Википедия:К улучшению/23 октября 2012. Дата постановки к улучшению 23 октября 2012 … Википедия

Источники тока — устройства, преобразующие различные виды энергии в электрическую. По виду преобразуемой энергии И. т. условно можно разделить на химические и физические. Сведения о первых химических И. т. (гальванических элементах и аккумуляторах)… … Большая советская энциклопедия

Потенциал действия (action potential) — П. д. это самораспространяющаяся волна изменения мембранного потенциала, к рая последовательно проводится но аксону нейрона, перенося информ. от клеточного тела нейрона до самого конца его аксона. При нормальной передаче информ. в нервных сетях П … Психологическая энциклопедия

ПОДВИЖНОСТЬ НОСИТЕЛЕЙ ТОКА — величина, характеризующая электрические свойства (см.) и полупроводников (см.), равная отношению средней установившейся скорости движения носителей тока (электронов, уст ионов, дырок) в направлении действия электрического поля к напряжённости Е… … Большая политехническая энциклопедия

Аэротермические электростанции циклонного действия — Изобретение аэротермических электростанций связано с наблюдениями за тепловыми воздушными потоками, поднимающимися в атмосфере. Идеально видеть их ламинарными, но это трудно осуществимая задача, они всегда буду подвержены турбулентности, причем… … Википедия

Источник

Действия электрического тока

Мы не обладаем возможностью увидеть электроны, бегущие по проводнику. Как же тогда можно обнаружить ток в проводнике? Наличие электрического тока можно обнаружить по косвенным признакам. Так как, ток, протекая по проводнику, оказывает воздействие на него.

Вот некоторые из признаков:

Тепловое действие тока

Благодаря такому действию тока мы можем освещать помещения с помощью ламп накаливания. А, так же, используем различные нагревательные электроприборы – конвекторы, электроплиты, утюги (рис. 1).

по каким действиям можно судить о работе электрического тока

Используя метровый кусок никелиновой проволоки (рис. 2), можно продемонстрировать нагревание проводника при протекании по нему электрического тока. Для заметного провисания нагретой проволоки из-за теплового увеличения длины и наблюдения красноватого ее свечения будет достаточно тока в 2 — 3 Ампера.

по каким действиям можно судить о работе электрического тока

Кусок провода нагревается, когда по нему протекает электрический ток. Чем больше ток в проводнике, тем больше он нагреется. Длина нагретого проводника увеличивается.

Подробнее о выделившемся количестве теплоты можно прочитать в статье о законе Джоуля-Ленца (ссылка).

Примечание: Нихром, никелин, константан – сплавы металлов, обладающие большим удельным сопротивлением (ссылка). Проволоки, изготовленные из таких сплавов, используются в различных нагревательных электроприборах.

Химическое действие тока

Электрический ток, проходя через растворы некоторых кислот, щелочей или солей, вызывает выделение из них вещества. Это вещество осаждается на электродах – пластинках, опущенных в раствор и подключенных к источнику тока.

Такое действие тока используют в гальванопластике – покрытии металлом некоторых поверхностей. Применяют никелирование, омеднение, хромирование, а, так же, серебрение и золочение поверхностей.

С помощью раствора медного купороса можно продемонстрировать выделение вещества под действием тока. Водный раствор этой соли имеет голубоватый оттенок. Пропуская электрический ток (ссылка) через раствор, можно обнаружить выделение меди на одном из электродов (рис. 3).

по каким действиям можно судить о работе электрического тока

На каком электроде будет выделяться медь

Медь в растворе купороса присутствует в виде положительных ионов. Тела, имеющие разноименные заряды, притягиваются. Поэтому, ионы меди будут притягиваться к пластинке, имеющей заряд со знаком «минус». То есть, пластинке, подключенной к отрицательному выводу источника тока. Такую пластинку называют отрицательным электродом, или катодом.

Вторую пластинку, подключенную к положительному выводу батареи, называют анодом.

Примечание: Медный купорос можно найти в хозяйственном магазине. Его химическая формула \(\large CuSO_<4>\). Он используется в сельском хозяйстве для опрыскивания листвы плодовых деревьев, кустарников и овощных культур – к примеру, томатов, картофеля. Входит в составы различных растворов, применяемых в борьбе с болезнями растений и насекомыми-вредителями.

Применение химического действия тока в медицине

Химическое действие тока применяют не только в гальванопластике.

Пропускание электрического тока через растворы вызывает в них движение заряженных частиц вещества – положительных и отрицательных ионов. Человеческое тело содержит жидкости, в которых растворены некоторые вещества. А значит, в таких жидкостях присутствуют ионы.

Прикладывая специальные электроды, смоченные растворами лекарств на отдельные участки тела, и пропуская через них маленькие токи, можно вводить в организм некоторые лекарственные препараты (рис. 4).

по каким действиям можно судить о работе электрического тока

Такое введение лекарств называют электрофорезом и используется в физиопроцедурных кабинетах поликлиник и санаториев.

Магнитное действие тока

Медь сама по себе не притягивается к магниту. В этом можно убедиться с помощью небольшого магнита и кусочка медного провода (рис. 5а).

На рисунке 5 кусок медного провода подвешен к двум штативам с помощью тонких нитей, не проводящих электрический ток.

Однако, во время протекания электрического тока, медный проводник начинает взаимодействовать с магнитом — притягиваться, или отталкиваться от него (рис. 5б).

по каким действиям можно судить о работе электрического тока

С магнитом взаимодействует не сам медный проводник, а ток, протекающий по этому проводнику.

Почему проводок с током взаимодействует с магнитом

Электрический ток — это большое количество электронов, бегущих по проводку от одного его края к другому краю. Электроны обладают зарядом.

Вокруг движущихся зарядов возникает магнитное поле. Благодаря этому проводок с током превращается в маленький магнитик. И начинает взаимодействовать с магнитом, притягиваясь к нему, или отталкиваясь от него.

При этом, проводок, как более легкий предмет, будет двигаться. А магнит продолжит оставаться на месте. Из-за того, что его масса значительно больше массы кусочка провода.

Направление движения проводка зависит от полярности его подключения к батарейке и, от того, как располагаются полюса магнита.

На магнитном действии тока основано действие электромагнита.

Самодельный электромагнит

Его легко изготовить из куска гибкой изолированной медной проволоки и железного гвоздя.

Гвоздь нужно обернуть кусочком бумаги – гильзой (рис. 6). Затем на гильзу нужно намотать 200 – 300 витков тонкого медного провода в изоляции. К выводам полученной катушки нужно подключить батарейку от карманного электрического фонаря.

по каким действиям можно судить о работе электрического тока

Во время протекания тока, к гвоздю притягиваются различные мелкие железные предметы – скрепки, кнопки, гвоздики, железные стружки, опилки и т. п.

Отсоединив батарейку, увидим, что как только ток прекращается, гвоздь перестает притягивать к себе железные предметы.

Рамка с током и подковообразный магнит

Провод, обладающий достаточной жесткостью, можно изогнуть в виде плоской фигуры – прямоугольника, квадрата, окружности. Эластичные же провода навивают на жесткий каркас, изготовленный из подходящего материала – фанеры, картона, пластмассы и т. д. Такой изогнутый провод образует рамку. Проволочную рамку часто называют контуром.

Проволочная рамка, по которой течет электрический ток, может ориентироваться в магнитном поле.

Чтобы убедиться в этом, проведем такой эксперимент. Используем для него подковообразный магнит и проводник, изогнутый в виде прямоугольной рамки. Подвесим рамку к лапке штатива с помощью нити. Размеры рамки нужно выбрать так, чтобы она поместилась между полюсами магнита.

Сначала используем только подвешенную рамку (рис. 7а), без магнита. Подключим к рамке источник тока. Можно убедиться, что после подключения тока рамка продолжает висеть неподвижно. Отключим источник тока.

по каким действиям можно судить о работе электрического тока

Теперь поместим магнит так, чтобы рамка находилась между его полюсами (рис. 7б) и, пропустим по цепи электрический ток. Легко заметить, что во время протекания тока рамка поворачивается и ориентируется по магнитному полю. А когда цепь размыкается, рамка возвращается в первоначальное положение.

Примечание: Если изменить полярность подключения источника к рамке, то она будет поворачиваться в противоположную сторону.

Замечательное свойство рамки с током поворачиваться в магнитном поле, используют в различных измерительных приборах. Один из таких приборов – гальванометр.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

по каким действиям можно судить о работе электрического тока

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Угол поворота отмечают по делениям шкалы.

по каким действиям можно судить о работе электрического тока

Кто такой Луиджи Гальвани

Гальвани был одним из основателей учения об электричестве.

Обнаружил, что в местах контакта различных видов металлов возникает электрическое напряжение.

Проводил опыты с использованием железного ключа и серебряной монеты.

Изучал сокращения мышц под воздействием электричества и пришел к выводу, что мышцы управляются электрическими импульсами, поступающими по нервным волокнам из мозга.

В итальянском городе Болонья неподалеку от здания Болонского университета находится памятник Гальвани. Он находится на площади Piazza Luigi Galvani, носящей имя ученого.

В его честь, так же, назвали один из кратеров на обратной стороне Луны.

А Болонский лицей назван именем Гальвани еще с 1860-го года.

О приборах магнитоэлектрической системы

Такие приборы, содержащие проводящую рамку и небольшой магнит, называют приборами магнитоэлектрической системы. Они получили широкое распространение из-за своего сравнительно простого устройства.

Шкалы приборов можно градуировать в различных единицах измерения, в зависимости от измеряемых физических величин. На основе таких приборов изготавливают вольтметры, амперметры, омметры и т. п.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *