определить тип кристаллической решетки металла или сплава можно при помощи

Определить тип кристаллической решетки металла или сплава можно при помощи

Взаимосвязь типа химической связи с видом кристаллической решетки

Вещества и кристаллические решетки

Твердые вещества бывают аморфные или кристаллические (чаще всего имеют кристаллическое строение).

Кристаллическое строение характеризуется правильным расположением частиц в определенных точках пространства. При соединении этих точек воображаемыми прямыми линиями образуется так называемая кристаллическая решетка. Точки, в которых размещены частицы, называются узлами кристаллической решетки.

В узлах кристаллической решетки могут находиться ионы, атомы или молекулы.

В зависимости от вида частиц, расположенных в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток:

определить тип кристаллической решетки металла или сплава можно при помощи

определить тип кристаллической решетки металла или сплава можно при помощи

Эту решетку образуют все вещества с ионным типом связи — соли, щелочи, бинарные соединения активных металлов с активными неметаллами (оксиды, галогениды, сульфиды), алкоголяты, феноляты, соли аммония и аминов. В узлах решетки — ионы, между которыми существует электростатическое притяжение. Ионная связь очень прочная.

· твердые, но хрупкие;

· отличаются высокими температурами плавления;

· нелетучи, не имеют запаха;

· расплавы ионных кристаллов обладают электропроводностью;

· многие растворимы в воде; при растворении в воде диссоциируют на катионы и анионы, и образующиеся растворы проводят электрический ток.

определить тип кристаллической решетки металла или сплава можно при помощи

Характерна для веществ с металлической связью. Реализуется в простых веществах — металлах и их сплавах. В узлах решетки — атомы и катионы металла, при этом электроны металла обобществляются и образуют так называемый электронный газ, который движется между узлами решетки, обеспечивая ее устойчивость. Именно свободно перемещающимися электронами и обусловлены свойства веществ с металлической решеткой:

· тепло- и электропроводность;

· обладают металлическим блеском;

· высокие температуры плавления.

определить тип кристаллической решетки металла или сплава можно при помощи

В узлах решетки — атомы, связанные ковалентными связями. Химическая связь — ковалентная полярная или неполярная. Атомная кристаллическая решетка характерна для углерода (алмаз, графит), бора, кремния, германия, оксида кремния SiO2(кремнезем, кварц, речной песок), карбида кремния SiC (карборунд), нитрида бора BN.

Свойства веществ с атомной решеткой :

· высокие температуры плавления;

определить тип кристаллической решетки металла или сплава можно при помощи

В узлах — молекулы веществ, которые удерживаются в решетке с помощью слабых межмолекулярных сил.

Молекулярное строение имеют:

o все органические вещества (кроме солей);

o вещества — газы и жидкости;

o легкоплавкие и летучие твердые вещества, в молекулах которых ковалентные связи (полярные и неполярные).

Подобные вещества часто имеют запах.

Кристаллические решетки, вид связи и свойства веществ

Виды частиц в узлах решетки

Вид связи между частицами

Физические свойства веществ

Ионная связь — прочная

Соли, галогениды (IA,IIA), оксиды и гидроксиды щелочных и щел.-зем. металлов

Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток

2. Ковалентная полярная связь — очень прочная

Простые вещества: алмаз (C), графит (C), бор (B), кремний (Si)

Сложные вещества: оксид алюминия (Al2O3), оксид кремния (IV) SiO2

Очень твердые, очень тугоплавкие, прочные, нелетучие, нерастворимы в воде

Между молекулами — слабые силы межмолекулярного притяжения, внутри молекул — прочная ковалентная связь

При обычных условиях — газы, жидкости или летучие твердые вещества:

Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую твердость

Металлическая связь — разной прочности

Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

Источник

Определить тип кристаллической решетки металла или сплава можно при помощи

определить тип кристаллической решетки металла или сплава можно при помощи определить тип кристаллической решетки металла или сплава можно при помощиопределить тип кристаллической решетки металла или сплава можно при помощи

1.1. Аморфные и кристаллические тела

В твердых телах атомы могут размещаться в пространстве двумя способами:

Аморфные вещества обладают формальными признаками твердых тел, т.е. они способны сохранять постоянный объем и форму. Однако они не имеют определенной температуры плавления или кристаллизации.

Внешние электронные орбиты атомов сопри­касаются, так что плотность упаковки атомов в кристаллической решетке весьма велика.

В кристаллитах соблюдаются ближний и дальний порядки. Это означает на­личие упорядоченного расположения и стабильности как ок­ружающих данный атом ближайших его соседей (ближний порядок), так и ато­мов, находящихся от него на значительных расстояниях вплоть до границ зерен (дальний порядок ).

определить тип кристаллической решетки металла или сплава можно при помощи

Рис. 1.1. Расположение атомов в кристаллическом (а) и аморфном (б) веществе

Вследствие диффузии отдельные атомы могут по­кидать свои места в узлах кристаллической решетки, однако при этом упорядоченность кристаллического строения в целом не на­рушается.

1.2. Основные типы кристаллических решеток

Все металлы являются кристаллическими телами, имею­щими определенный тип кристаллической решетки, состоящей из малоподвижных положительно заряженных ионов, между которыми движутся свободные электроны (так называемый электронный газ). Такой тип структуры называется металлической связью.

Тип ре­шетки определяется формой элементарного геометриче­ского тела, многократное повторение которого по трем пространственным осям образует решетку данного кристал­лического тела.

определить тип кристаллической решетки металла или сплава можно при помощи

определить тип кристаллической решетки металла или сплава можно при помощи

определить тип кристаллической решетки металла или сплава можно при помощи

объемно-центрированная кубическая (ОЦК)

гранецентрированная кубическая (ГЦК)

гексагональная плотноупакованная (ГП)

(6 атомов на ячейку)

Рис. 1.2. Основные типы кристаллических решеток металлов

Основу ОЦК-решетки составляет элементарная кубиче­ская ячейка (рис. 1.2,б), в которой положительно заряжен­ные ионы металла находятся в вершинах куба, и еще один атом в центре его объема, т. е. на пересечении его диагоналей. Такой тип решетки в определенных диапазонах температур имеют железо, хром, ванадий, вольфрам, молибден и др. металлы.

У ГЦК-решетки (рис. 1.2, в) элементарной ячейкой слу­жит куб с центрированными гранями. Подобную решетку имеют железо, алюминий, медь, никель, свинец и др. металлы.

Третьей распространенной разновидностью плотноупако­ванных решеток является гексагональная плотноупакованная (ГПУ, рис. 1.2, г). ГПУ-ячейка состоит из отстоя­щих друг от друга на параметр с параллельных центриро­ванных гексагональных оснований. Три иона (атома) нахо­дятся на средней плоскости между основаниями.

У гексагональных решеток отношение параметра с/ а всегда больше единицы. Такую решетку имеют маг­ний, цинк, кадмий, берилий, титан и др.

Компактность кристаллической решетки или степень за­полненности ее объема атомами является важной характе­ристикой. Она определяется такими показателями как параметр решетки, число атомов в каждой элементарной ячейке, координационное число и плотность упаковки.

Параметры а кубических решеток металлов находятся в пределах от 0,286 до 0,607 нм. Для металлов с гексагональной решеткой а лежит в пределах 0,228-0,398 нм, а с в пределах 0,357- 0,652 нм.

Пара­метры кристаллических решеток металлов могут быть измерены с по­мощью рентгеноструктурного анализа.

При подсчете числа атомов в каждой элементарной ячейке следует иметь в виду, что каждый атом входит одновременно в несколько яче­ек. Например, для ГЦК-решетки, каждый атом, находящийся в вершине куба, принадлежит 8 ячейкам, а атом, центрирующий грань, двум. И лишь атом, находящийся в центре куба, полностью при­надлежит данной ячейке.

Таким образом, ОЦК- и ГЦК-ячейки содержат соответ­ственно 2 и 4 атома.

Под координационным числом понимается количество ближайших соседей данного атома.

определить тип кристаллической решетки металла или сплава можно при помощи

Рис. 1.3. Координационное число в различных кристаллических решетках для атома А:

В ОЦК решетке (рис. 1.3, а) атом А (в центре) находится на наиболее близ­ком равном расстоянии от восьми атомов, расположенных в вершинах куба, т. е. координационное число этой решетки равно 8 (К8).

В ГЦК решетке (рис. 1.3, б) атом А (на грани куба) находится на наиболее близком равном расстоянии от четырех атомов /, 2, 3, 4, расположенных в вершинах куба, от четырех атомов 5, 6, 7, 8, расположенных на гранях куба, и, кроме того, от четырех атомов 9, 10, 11, 12, принадлежащих располо­женной рядом кристаллической ячейке. Атомы 9, 10, 11, 12 симметричны атомам 5, 6, 7, 8. Таким образом, ГЦК решетки координацион­ное число равно 12 (К12).

В ГПУ решетке при с/а = 1,633 (рис. 1.3, в) атом А в центре шестигранного основания призмы находится на наиболее близком равном расстоянии от шести атомов /, 2, 3, 4, 5, 6, размещенных в вершинах шестигранника, и от трех атомов 7, 8, 9, расположенных в средней плоскости призмы. Кроме того, атом А оказывается на таком же расстоянии еще от трех атомов 10, 11, 12, принадлежащих кристаллической ячейке, лежащей ниже основания. Атомы 10, 11, 12 симметричны атомам 7, 8, 9.

Следовательно, для ГПУ решетки координационное число равно 12 (Г12).

Плотность упаковки представляет собой отношение сум­марного объема, занимаемого собственно атомами в кристал­лической решетке, к ее полному объему. Различные типы кристаллических решеток имеют раз­ную плотность упаковки атомов. В ГЦК решетке атомы занимают 74 % всего объема кристаллической решетки, а межатом­ные промежутки («поры») 26 %. В ОЦК решетке атомы занимают 68 % всего объема, а «поры» 32 %. Компактность решетки за­висит от особенностей электронной структуры металлов и ха­рактера связи между их атомами.

От типа кристаллической решетки сильно зависят свойства металла.

1.3. Кристаллографические направления и плоскости

Упорядоченность кристаллического строения в пространственной решетке позволяет выделить отдельные кри­сталлографические направления и плоскости.

определить тип кристаллической решетки металла или сплава можно при помощи

Кристаллографическими плоскостями являются, напри­мер, плоскости граней кубов (рис. 1.4, б), а также их раз­личные диагональные плоскости вместе с находящимися на них атомами (рис. 1.4, в, г). Для ГПУ-ре­шеток кристаллографическими плоскостями могут быть плоскости оснований (рис. 1.2, г).

Для определения индекса какого-либо направления необ­ходимо найти индекс ближайшего к данной точке отсчета атома, находящегося на данном направлении. На­пример, индекс ближайшего атома вдоль оси ОХ обозначает­ся цифрами 100 (рис. 1.4,а). Эт и цифры представляют собой координаты упомянутого атома относи­тельно точки О, выраженные через количество параметров вдоль осей OX, OY и OZ соответственно.

Индексы направления ОХ и параллельных ему направле­ний обозначаются [100]. Соответственно направления OY и OZ обозначаются [010] и [001]. Кристаллографические направления вдоль диагоналей граней XOZ, XOY и YOZ обозначают [101], [110] и [011]. Пользуясь указанной мето­дикой, можно определить индекс любого направления. На­пример, индекс направления вдоль диагонали куба выразит­ся так: [111].

Индексами плоскостей, параллельных плоскостям XOZ и YOZ, окажутся выражения (010) и (100) (рис. 1.4, б). Индекс вертикальной диагональной плоскости куба выразит­ся через (110), (рис. 1.2, в), а индекс наклонной плоско­сти, пересекающейся со всеми тремя осями координат на уда­лении одного параметра, примет вид (111) (см. рис. 1.4, г).

1.4. Анизотропия в кристаллах

Под анизотропией понимается неодинаковость механиче­ских и других свойств в кристаллических телах вдоль раз­личных кристаллографических направлений. Она является естественным следствием кристаллического строения, так как на различных кристаллографических плоскостях и вдоль различных направлений плотность атомов различна.

Например, в куби­ческих решетках (см. рис. 1.2, б, в) по направлениям вдоль ребер насчитывается меньше атомов, чем вдоль диагоналей куба в ОЦК-решетке или диагоналей граней в ГЦК-решетке. На плоскостях, проходящих через грани ОЦК- и ГЦК-решеток, находится меньше атомов, чем на диагональных плоскостях.

Поскольку механические, физические и химические свойства вдоль различных направлений зависят от плотности находя­щихся на них атомов, то перечисленные свойства вдоль раз­личных направлений в кристаллических телах должны быть неодинаковыми.

Анизотропия проявляется только в пределах одного монокристалла или зерна-кри­сталлита. В поликристаллических телах она не наблюдается из-за усреднения свойств по каждому направлению для огром­ного количества произвольно ориентированных друг относи­тельно друга зерен. Поэто­му реальные металлы являются квазиизотропными телами, т. е. псевдоизотропными.

определить тип кристаллической решетки металла или сплава можно при помощи

Рис. 1.5. Элементарная ячейка решетки ОЦК

Сдвиг в кристалле происходит наиболее легко вдоль атомных плоскостей с наиболее плотной упаковкой атомов. Рассмотрим объемно-центрическую кубическую решетку (ОЦК) (рис. 1.5):

Рис. 1.6. Плоскости решетки ОЦК

1.5. Аллотропия металлов

Некоторые металлы, например, железо, титан, олово и др. способны по достижении определенных темпера­тур изменять кристаллическое строение, т. е. изменять тип элементарной ячейки своей кристаллической решетки. Это явление получило название аллотропии или полиморфизма, а сами переходы от одного кристаллического строения к дру­гому называются аллотропическими или полиморфными.

На рис. 1.7 показано изменение свободной энергии F от температуры t для двух вариантов кристаллического строения же­леза: ОЦК (кривая 1 ) и ГЦК (кривая 2).

В интервале температур 911-1392 о C железо имеет решетку ГЦК, так как при этом его свободная энергия меньше. При t 1392°С, у него должна быть ре­шетка ОЦК, обладающая меньшей свободной энергией.

1.6. Дефекты кристаллической решетки металла

Кристаллическая решетка, в которой отсутствуют нарушения сплошности и все узлы заполнены однородными атомами называется идеальной кристалли­ческой решеткой металла.

В решетке реального металла могут находиться различные дефекты.

Все дефекты кристаллической решетки принято делить на точечные, линейные, поверхностные и объемные.

Точечные дефекты соизмеримы с размерами атомов. К ним относятся вакансии, т. е. незаполненные узлы решет­ки, межузельные атомы данного металла (рис 1.8), примесные атомы замещения, т. е. атомы, по диаметру соизмеримые с атомами данного металла и примесные атомы внедрения, имеющие очень малые размеры и поэтому находящиеся в междоузлиях (рис 1.9). Влияние этих дефектов на прочность металла может быть различным в зависимости от их ко­личества в единице объема и характера.

определить тип кристаллической решетки металла или сплава можно при помощи

Рис. 1.8. Схема образования пары вакансия-внедренный атом

Рис. 1.9. Примесные атомы внедрения и замещения

Линейные дефекты имеют длину, значительно превышаю­щую их поперечные размеры. К ним относятся дислокации, т. е. дефекты, образующиеся в решетке в результате смещений кристаллографических плоскостей.

Дислокации бывают двух видов.

Наиболее характерной является краевая дислокация (рис. 1.10). Она образуется в результате возникновения в решетке так называемой полуплоскости или экстраплоскости.

определить тип кристаллической решетки металла или сплава можно при помощи

Рис. 1.10. Схема краевой дислокации в идеальном кристалле

Нижний ряд экстраплоскости собственно и принято называть дислокацией.

Другим типом дислокации является винтовая дислокация, которая представляет собой некоторую условную ось внутри кристалла, вокруг которой закручены атомные плоскости (рис.1.11).

определить тип кристаллической решетки металла или сплава можно при помощи

Рис. 1.11. Схема винтовой дислокация

В винтовой дислокации, так же как в краевой, существенные искажения кристаллической решетки наблюдаются только вблизи оси, поэтому такой дефект может быть отнесен к линейным.

Дислокации обладают высокой подвижностью, поэтому существенно уменьшают прочность металла, так как облегчают образование сдвигов в зернах-кристаллитах под действием приложенных напряжений.

Дислокационный механизм сдвиговой пластической деформации внутри кристаллов может привести к разрушению изделия. Таким образом, дислокации непосредственно влияют на прочностные характеристики металла.

На рис. 1.12 в виде кривой ABC схематически показана за­висимость прочности металла от плотности дислокаций. Точ­ка А соответствует теоретической прочности металла, обус­ловленной необходимостью одновременного разрыва всех межатомных связей, проходящих через плоскость сдвига, в случае отсутствия дислокаций.

При увеличении количества дислокаций (см. участок АВ) прочность резко снижается, так как на несколько порядков уменьшаются усилия, необходимые для осущест­вления сдвигов в зернах металла при его деформировании и разрушении.

Рис. 1.12. Зависимость предела прочности кристалла от плотности линейных дефектов(дислокаций). Кривая Одинга

При плотности дислокаций 10 6- 10 7 см-2 (точ­ка В на кривой), прочности минимальна, и на участке ВС происходит ее рост. Это объясняется тем, что с ростом плотности дислокаций их передвижение происходит не только по парал­лельным, но и по пересекающимся плоскостям, что существенно затрудняет процесс деформирования зерен.

Поэтому начиная с точки В прочность металла возрастает.

Поверхностные дефекты включают в себя главным образом границы зерен (рис.1.13). На границах кристаллическая решетка сильно искажена. В них скапливаются перемещающиеся изнутри зерен дислокации.

Из практики известно, что мелкозернистый металл прочнее круп­нозернистого. Так как у последнего меньше суммарная про­тяженность (площадь) границ. То можно сделать вывод, что поверхностные дефекты способствуют повышению прочности металла. Поэтому создано несколько технологических способов полу­чения мелкозернистых сплавов.

определить тип кристаллической решетки металла или сплава можно при помощи

Рис.1.13. Структура границы двух соседних кристаллических зерен

Объемные дефекты кристаллической решетки включают трещины и поры. Наличие данных дефектов, уменьшая плотность металла, снижает его прочность.

Кроме того, трещины являются сильными концентратора­ми напряжений, в десятки и более раз повышающими напря­жения создаваемые в металле рабочими нагрузками. По­следнее обстоятельство наиболее существенно влияет на прочность металла.

Контрольные вопросы по лекции №1

В чем состоит существенная разница между строением аморфных и кристаллических тел? Что такое кристаллическая решетка?

Перечислите основные типы ячеек кристаллических решеток металлов. Что такое параметры решеток?

Что понимается под кристаллографическими направлениями и плоскостями и как они обозначаются?

Что такое анизотропия свойств в кристаллах, чем она обусловлена? Привести пример.

Почему поликристаллические тела являются изотропными? Что такое квазиизотропия (псевдоизотропия)?

Что такое аллотропия (полиморфизм) металлов и ка­ково ее практическое значение?

Что представляют собой краевые дислокации, какова их роль в протекании пластической деформации металла и как они влияют на его прочность?

Что такое плотность дислокаций и как она влияет на характер изменения прочности металла?

Источник

Типы кристаллических решёток

Урок 9. Химия 11 класс ФГОС

определить тип кристаллической решетки металла или сплава можно при помощи

определить тип кристаллической решетки металла или сплава можно при помощи

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

определить тип кристаллической решетки металла или сплава можно при помощи

определить тип кристаллической решетки металла или сплава можно при помощи

определить тип кристаллической решетки металла или сплава можно при помощи

Конспект урока «Типы кристаллических решёток»

Для определения типа кристаллической решётки поступают следующим образом. Если связь в соединении ионная, то кристаллическая решётка всегда ионного типа: хлорид калия, нитрат калия, нитрид кальция, карбид кальция, оксид алюминия.

определить тип кристаллической решетки металла или сплава можно при помощи

Если связь металлическая, то и кристаллическая решётка всегда металлическая: латунь, железо, медь, натрий.

определить тип кристаллической решетки металла или сплава можно при помощи

Если связь ковалентная, то решётка может быть, как атомной, так и молекулярной. Веществами с атомной кристаллической решёткой являются: карборунд, оксид кремния четыре, бор, кремний, алмаз, графит, чёрный и красный фосфор.

определить тип кристаллической решетки металла или сплава можно при помощи

У веществ с молекулярной кристаллической решёткой в узлах кристаллической решётки расположены молекулы, прочность данной связи слабая.

определить тип кристаллической решетки металла или сплава можно при помощи

Для веществ с молекулярной кристаллической решёткой характерны низкие температуры плавления, то есть они легкоплавки и летучи, значительная сжимаемость, иногда запах, а также явление сублимации, или возгонки, как для йода и твёрдого углекислого газа.

Для веществ с молекулярной кристаллической решёткой характерна небольшая твёрдость, большинство этих веществ хорошо растворимы в воде. Молекулярную кристаллическую решётку имеют газы и жидкости в твёрдом агрегатном состоянии. Например, кристаллический йод, сера, белый фосфор, углекислый газ, большинство органических соединений.

определить тип кристаллической решетки металла или сплава можно при помощи

У веществ с атомной кристаллической решёткой в узлах расположены атомы. Связь между атомами в кристаллические решёткиковалентная, очень прочная. Для этих веществ характерны высокие температуры кипения и плавления, то есть они тугоплавки и нелетучий, очень твёрдые, практически не растворимы в воде и не имеют запаха.

Примером веществ с таким типом кристаллических решёток являются алмаз и графит.

определить тип кристаллической решетки металла или сплава можно при помощи

Как известно, твёрдость алмаза оценивается по шкале Мооса самым высоким значением – 10. Благодаря высокой твёрдости алмаз используют для изготовления буров, свёрл, шлифовальных инструментов, стеклорезов. Алмаз является камнем ювелиров, они используют отшлифованные алмазы – бриллианты.

Графит также является веществом с атомной кристаллической решёткой, но несмотря на это, он мягкий, так как имеет слоистую структуру. В кристаллической решётке графита атомы углерода, лежащие в одной плоскости, связаны в правильные шестиугольники. Связи между слоями непрочные, за счёт этого графит мягкий. Графит, как и алмаз, тугоплавкий. Из него изготавливают электроды, твёрдые смазки, стержни для карандашей, замедлители нейтронов в ядерных реакторах.

Атомные кристаллические решётки имеют не только простые, но и сложные вещества. Например, все разновидности оксида алюминия. Такие, как наждак, корунд, рубин, сапфир.

определить тип кристаллической решетки металла или сплава можно при помощи

Наиболее распространённое соединение кремния – это оксид кремния четыре, который также имеет атомную кристаллическую решётку. Почти чистым оксидом кремния четыре является минерал кварц.

определить тип кристаллической решетки металла или сплава можно при помощи

У веществ с ионным типом связи в узлах кристаллической решётки расположены ионы, связь между частицами – ионная, она прочная.

определить тип кристаллической решетки металла или сплава можно при помощи

Для веществ с ионным типом связи характерны следующие свойства: высокие температуры плавления и кипения, они тугоплавки и нелетучи, они твёрдые, хрупкие, многие растворимы в воде. Их хрупкость объясняется тем, что если попробовать деформировать такую кристаллическую решётку, то один из её слоёв будет двигаться относительно другого слоя до тех пор, пока одинаково заряженные ионы не будут друг против друга. Эти ионы начнут отталкиваться друг от друга, и кристаллическая решётка разрушиться.

Вещества с ионным типом связи плохо проводят электрический ток и тепло. Но их растворы и расплавы проводят электрический ток. Вещества с ионным типом связи не имеют запаха.

Ионное соединение представляет собой гигантскую ассоциацию ионов, расположенных в пространстве благодаря равновесию сил притяжения и отталкивания.

определить тип кристаллической решетки металла или сплава можно при помощи

Например, кристалл хлорида натрия состоит из катионов натрия и анионов хлора. Каждый катион натрия окружён шестью анионами хлора, а каждый анион хлора – шестью катионами натрия. Наименьшей структурной единицей кристалла является элементарная ячейка. Строение элементарной ячейки зависит от соотношения размеров катиона и аниона.

У веществ с металлическим типом связи в узлах кристаллической решётки расположены атом-ионы, связь между ними металлическая. Связь может быть различной по прочности.

определить тип кристаллической решетки металла или сплава можно при помощи

Металлическая кристаллическая решётка определяет свойства металлов: ковкость, пластичность, электро-и теплопроводность, металлический блеск, способность образовывать сплавы.

Пластичность выражается в способности металлов деформироваться под действием механической нагрузки. Это свойство лежит в основе ковки, прокатки металлов, их способности вытягиваться в проволоку. Пластичность объясняется тем, что под воздействием силы слои перемещаются относительно друг друга без разрыва связи между ними.

определить тип кристаллической решетки металла или сплава можно при помощи

Например, если двумя плоскими стеклянными пластинками поместить несколько капель воды, то пластинки будут свободно скользить относительно друг друга, но вот разъединить их будет достаточно сложно. Таким образом, в данном опыте вода играла роль свободных электронов, которые находятся в металлической кристаллической решётке.

Наиболее пластичными металлами являются золото, серебро и медь. Именно из золота можно сделать самую тонкую фольгу толщиной три тысячных миллиметра. Такую тонкую фольгу использую для золочения. Примером может служить Янтарная комната в Большом Екатерининском дворце.

Высокая электропроводность металлов обусловлена наличием свободных электронов, которые под действием электрического тока приобретают направленное движение.

определить тип кристаллической решетки металла или сплава можно при помощи

Лучшими проводниками электрического ока являются серебро и медь, немного худшим – алюминий. Однако в большинстве случаев в качестве электропроводов используют алюминий, а не медь.

Теплопроводность металлов также объясняется движением свободных электронов, которые сталкиваются с атом-ионами в узлах кристаллической решётки и обмениваются с ними энергией. Благодаря этому свойству металлическая посуда равномерно нагревается.

Вещества с металлическим типом кристаллической решётки имеют металлический блеск из-за отражения световых лучей.

определить тип кристаллической решетки металла или сплава можно при помощи

Высокой светоотражающей способностью обладают ртуть, серебро, палладий и алюминий. Из серебра, палладия и алюминия изготавливают зеркала, прожектора и фары. В порошкообразном состоянии металлы теряют свой блеск, только магний и алюминий сохраняют его.

определить тип кристаллической решетки металла или сплава можно при помощи

Большинство металлов имеет серебристо-белый цвет. Только золото окрашено в жёлтый цвет, а медь в красный.

Металлическая кристаллическая решётка характерна не только для металлов, но и для сплавов. Это отличает металлические сплавы от других сплавов: стекла, фарфора, керамики, базальтов, гранитов, гнейсов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *