около какой трапеции можно описать окружность

Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции

Признаки равнобедренной трапеции

∠ABC = ∠BCD и ∠BAD = ∠ADC

∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC

∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

Стороны равнобедренной трапеции

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

3. Формулы длины основ через площадь, высоту и другую основу:

a =2S— b b =2S— a
hh

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

с =S
m sin α

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

с =2S
( a + b ) sin α

Средняя линия равнобедренной трапеции

Формулы длины средней линии равнобедренной трапеции:

2. Формула средней линии трапеции через площадь и сторону:

m =S
c sin α

Высота равнобедренной трапеции

Формулы определения длины высоты равнобедренной трапеции:

Диагонали равнобедренной трапеции

Формулы длины диагоналей равнобедренной трапеции:

4. Формула длины диагонали через высоту и основания:

d 1 =1√ 4 h 2 + ( a + b ) 2
2

Площадь равнобедренной трапеции

Формулы площади равнобедренной трапеции:

2. Формула площади через стороны и угол:

3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:

S =4 r 2=4 r 2
sin αsin β

4. Формула площади через основания и угол между основой и боковой стороной:

S =ab=ab
sin αsin β

5. Формула площади ранобедренной трапеции в которую можно вписать окружность:

S = ( a + b ) · r = √ ab ·c = √ ab ·m

6. Формула площади через диагонали и угол между ними:

S =d 1 2· sin γ=d 1 2· sin δ
22

7. Формула площади через среднюю линию, боковую сторону и угол при основании:

S = mc sin α = mc sin β

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Около какой трапеции можно описать окружность

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.<2>^<○>$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

около какой трапеции можно описать окружность

$$ 4.<3>^<○>$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.<4>^<○>$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.<5>^<○>$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.<6>^<○>$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

около какой трапеции можно описать окружность

$$ 4.<7>^<○>$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.<8>^<○>$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

около какой трапеции можно описать окружность

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.<10>^<○>$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.<11>^<○>$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«|\|«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

около какой трапеции можно описать окружность

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

около какой трапеции можно описать окружность

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

около какой трапеции можно описать окружность

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

около какой трапеции можно описать окружность

Найти радиус окружности, описанной около этой трапеции.

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.<12>^<○>$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

Источник

Трапеция

Трапеция — это четырехугольник, у которого только две стороны параллельны,
а две другие стороны нет.

Элементы трапеции

около какой трапеции можно описать окружность

На рисунке 1 изображена трапеция MNPQ, с боковыми сторонами MN и PQ, с основаниями NP и MQ, а также со средней линией DF.

В трапеции две параллельные стороны называются основаниями. 0дна из параллельных сторон называется верхним основанием, а другая параллельная сторона называется нижним основанием. Но как определить, какая из параллельных сторон нижнее основание, а какая верхнее основание? Существует несколько способов это определить. Во-первых, как вы уже наверно догадались, нижнее основание расположено внизу трапеции, а верхнее основание расположено вверху трапеции. Во-вторых, верхнее основание меньше чем нижнее основание, и наоборот нижнее основание больше верхнего основания. C помощью этих двух способов вы можете
легко определить какое основание нижнее а какое верхнее. NP || MQ, NP — верхнее основание, MQ — нижнее основание.

Кроме оснований в трапеции, есть еще две не параллельные стороны. В трапеции эти две не параллельные стороны называются боковыми сторонами. Боковые стороны расположены сбоку от верхнего и нижнего оснований. MN и PQ — боковые стороны.

Отрезок, соединяющий середины боковых сторон называется средней линией трапеции. С средней линией трапеции связано несколько важных формул. Например, достаточно знать длину средней трапеции и одну из сторон основания, чтобы найти другое основание. Средняя линия делит две боковые стороны трапеции на две равных части. DF — средняя линия трапеции, MD = DN, QF = FP.

Центром симметрии трапеции называется середина средней линии трапеции. Центр симметрии
является центром вписанной, и центром описанной окружностей.

Виды трапеции

Также существует несколько видов трапеции. Это равнобедренная и прямоугольная трапеции.

около какой трапеции можно описать окружность

На рисунке 2 изображена равнобедренная трапеция KLMN, с боковыми сторонами KL и MN, с основаниями LM и KN, а также со средней линией HF.

В равнобедренной трапеции боковые стороны равны, углы при основаниях равны. KL = MN, ∠LKN = ∠MNK, ∠KLM = ∠NML.
Чтобы найти среднюю линию в равнобедренной трапеции достаточно знать только одну из боковых сторон.

около какой трапеции можно описать окружность

В прямоугольной трапеции у одной из боковых сторон есть прямой угол, или же по другом сказать — только одна боковая сторона перпендикулярна одному из оснований.
∠NMP — прямой угол.

Источник

Трапеция

Трапеция — это четырехугольник, имеющий две параллельные стороны, являющиеся основаниями и две не параллельные стороны, являющиеся боковыми сторонами.

Содержание

Виды трапеций

Равнобедренная трапеция — это вид трапеции с равными боковыми сторонами.

Также встречаются такие названия, как равнобокая или равнобочная.

около какой трапеции можно описать окружность

Прямоугольная трапеция — это трапеция, у которой углы при боковой стороне прямые.

около какой трапеции можно описать окружность

Элементы трапеции

около какой трапеции можно описать окружность

a, b — основания трапеции ( a параллельно b ),

m, n — боковые стороны трапеции,

h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),

MN — средняя линия (отрезок, соединяющий середины боковых сторон).

Площадь трапеции

около какой трапеции можно описать окружность

Свойства трапеции

Средняя линия трапеции

Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:

MN || a, MN || b, MN = \frac

около какой трапеции можно описать окружность

Сумма углов трапеции

Сумма углов трапеции, прилежащих к каждой боковой стороне, равна 180^ <\circ>:

около какой трапеции можно описать окружность

Равновеликие треугольники трапеции

около какой трапеции можно описать окружность

Подобие образованных треугольников трапеции

\triangle AOD \sim \triangle COB

Коэффициент подобия k находится по формуле:

Причем отношение площадей этих треугольников равно k^ <2>.

около какой трапеции можно описать окружность

Отношение длин отрезков и оснований

Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:

Это будет являться справедливым и для высоты с самими диагоналями.

около какой трапеции можно описать окружность

Описанная около трапеции окружность

Каждая равнобокая трапеция может содержать описанную окружность. Только равнобокую трапецию возможно вписать в окружность.

около какой трапеции можно описать окружность

Вписанная в трапецию окружность

Опущенные на гипотенузы, высоты этих треугольников, тождественны радиусу вписанной окружности, а высота трапеции тождественна диаметру вписанной окружности.

Источник

Трапеция. Иллюстрированный гид

Перед тобой лучший гид по трапеции! Только то, что нужно. Без воды.

Основные определения, формулы и свойства.

Помни о своей цели!

Тебе нужно подготовиться к ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!

Трапеция — коротко о главном

Что такое трапеция:

Трапеция – четырёхугольник, у которого две стороны параллельны (они называются основания), а две другие – нет (это боковые стороны).

Сумма углов при каждой боковой стороне трапеции равна 180°

\( \displaystyle \angle 1+\angle 2=180<>^\circ \) и \( \displaystyle \angle 3+\angle 4=180<>^\circ \)

около какой трапеции можно описать окружность

Средняя линия трапеции:

Средняя линия трапеции (\( \displaystyle MN\)) – отрезок, соединяющий середины боковых сторон: \( \displaystyle AM=MB,\ \ CN=ND\).

Средняя линия параллельна основаниям: \( \displaystyle MN\parallel BC\parallel AD\).

Длина средней линии трапеции равна полусумме длин оснований: \( \displaystyle MN=\frac<2>\).

около какой трапеции можно описать окружность

Диагонали трапеции:

Диагонали любой трапеции пересекаются в точке О.

Треугольники, образованные основаниями трапеции и отрезками диагоналей
(\( \displaystyle BOC\) и \( \displaystyle AOD\)) подобны по двум углам с коэффициентом подобия равным отношению оснований: \( \displaystyle k=\frac\).

Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны: \( \displaystyle <_<\Delta AOB>>=<_<\Delta COD>>\).

около какой трапеции можно описать окружность

Равнобедренная (равнобокая трапеция)

Равнобедренная (равнобокая) трапеция – это трапеция, у которой боковые стороны равны: \( \displaystyle AB=CD\).

Свойства равнобедренной трапеции:

Углы при основании равны: \( \displaystyle \angle A=\angle D,\text< >\angle B=\angle C\);

Сумма противолежащих углов равна \( \displaystyle 180<>^\circ \): \( \displaystyle \angle A+\angle C=\angle B+\angle D=180<>^\circ \).

Стороны и диагональ равнобокой трапеции связаны соотношением: \( \displaystyle A<^<2>>=B<^<2>>=AD\cdot BC+A<^<2>>\).

около какой трапеции можно описать окружность

Если трапецию можно вписать в окружность…

Если трапецию можно вписать в окружность, то она – равнобокая.

около какой трапеции можно описать окружность

Площадь трапеции

Площадь трапеции равна полусумме оснований, умноженной на высоту: \( \displaystyle <_>=\frac<2>\cdot h\).

Для справки: В нашем учебнике для подготовки к ЕГЭ по математике есть все темы планиметрии и стереометрии (да и алгебры тоже есть).

Что такое трапеция?

Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.

около какой трапеции можно описать окружность

Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.

около какой трапеции можно описать окружность

Оказывается, трапеция (как и треугольник) бывает равнобедренная.

Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).

около какой трапеции можно описать окружность

И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?

А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)

Свойства трапеции

Итак, что ты должен знать о свойствах трапеции…

Сумма углов при каждой боковой стороне трапеции равна 180°. (у нас на рисунке \( \displaystyle \angle 1+\angle 2=180<>^\circ \) и \( \displaystyle \angle 3+\angle 4=180<>^\circ \))

около какой трапеции можно описать окружность

Ну, конечно, просто потому, что основания – параллельны, а боковая сторона – секущая.

Вот и получается, что \( \displaystyle \angle 1\) и \( \displaystyle \angle 2\) – внутренние односторонние углы при параллельных \( \displaystyle AD\) и \( \displaystyle BC\) и секущей \( \displaystyle AB\).

Поэтому \( \displaystyle \angle 1+\angle 2=180<>^\circ \).

И точно так же \( \displaystyle \angle 3\) и \( \displaystyle \angle 4\) – внутренние односторонние углы при тех же параллельных \( \displaystyle AD\) и \( \displaystyle BC\), но секущая теперь – \( \displaystyle CD\).

Видишь: главное, что играет роль – это параллельность оснований. Давай разберем еще некоторые свойства трапеции.

Как у всякого четырехугольника, у трапеции есть диагонали. Их две – посмотри на рисунки:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *