объект чтобы его можно было считать системой должен обладать такими свойствами как

5rik.ru

Материалы для учебы и работы

Понятие системы

Понятие логистической системы является одним из базовых понятий логистики. Существуют разнообразные системы, обе­спечивающие функционирование экономического механизма. В этом множестве необходимо уметь выделять логистические системы с целью их анализа и совершенствования.

Понятие логистической системы является частным по от­ношению к общему понятию системы. Поэтому дадим вначале определение общему понятию системы, а затем определим, какие системы относят к классу логистических.

Данное определение хорошо отражает наши интуитивные представления о системах, однако целям анализа и синтеза логистических систем оно не удовлетворяет. Для более точного определения понятия «система» воспользуемся следующим приемом. Перечислим свойства, которыми должна обладать система. Тогда, если удастся доказать, что какой-либо объект обладает этой совокупностью свойств, можно утверждать, что данный объект является системой.

Существуют четыре свойства, которыми должен обладать объект, чтобы его можно было считать системой.

Первое свойство (целостность и членимость). Система есть целостная совокупность элементов, взаимодействующих друг с другоm (следует иметь в виду, что элементы существуют лишь в системе, вне системы — это лишь объекты, обладающие потенциальной возможностью образования системы). Элементы системы могут быть разнокачественными, но при этом должны быть совместимыми.

Второе свойство (связи). Между элементами системы имеются существенные связи, которые с закономерной необходимостью определяют интегративные качества этой системы. Связи могут быть вещественные, информационные, прямые, обратные и т.д. Связи между элементами внутри системы должны быть более мощными, чем связи отдельных элементов с внешней сре­дой, так как в противном случае система не сможет существовать.

Третье свойство (организация). Наличие системоформирующих факторов у элементов системы лишь предполагает возможность ее создания. Для появления системы необходимо сформировать упорядоченные связи, т. е. определенную струк­туру, организацию системы.

Четвертое свойство (интегративные качества). Нали­чие у системы интегративных качеств, т. е. качеств, присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности.

Можно привести множество примеров систем. Возьмем обыкновенную шариковую ручку и посмотрим, имеет ли она четыре признака системы. Первое: ручка состоит из отдельных элементов — корпус, колпачок, стержень, пружина и т. д. Второе: между элементами имеются связи — ручка не рассыпается, она является единым целым. Третье: связи определенным образом упорядочены. Все части разобранной ручки можно было бы связать ниткой. Они тоже были бы взаимосвязаны, но связи не были бы упорядочены и ручка не имела бы нужных нам качеств. Четвертое: ручка имеет интегративные (суммарные) качества, которыми не обладает ни один из составляющих ее элементов — ручкой можно удобно пользоваться: писать, носить.

Точно так же можно доказать, что такие объекты, как автомобиль, студенческая группа, распределительный склад розничной торговой сети, настоящая книга и многие другие окружающие нас объекты, тоже являются системами.

Источник

Основные признаки систем

объект чтобы его можно было считать системой должен обладать такими свойствами как объект чтобы его можно было считать системой должен обладать такими свойствами как объект чтобы его можно было считать системой должен обладать такими свойствами как объект чтобы его можно было считать системой должен обладать такими свойствами как

объект чтобы его можно было считать системой должен обладать такими свойствами как

объект чтобы его можно было считать системой должен обладать такими свойствами как

Каждый объект, чтобы его можно было считать системой, должен обладать четырьмя основными свойствами или признаками (целостностью и делимостью, наличием устойчивых связей, организацией и эмерджентностью).

3. Организация. Это свойство характеризуется наличием определенной организации, что проявляется в снижении энтропии (степени неопределенности) системы H (S) по сравнению с энтропией системоформирующих факторов H (F), определяющих возможность создания системы.

4. Эмерджентность. Эмерджентность предполагает наличие таких качеств (свойств), которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности.

Наличие интегрированных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью.

Отсюда можно сделать выводы:

1) система не сводится к простой совокупности элементов;

2) расчленяя систему на отдельные части, изучая каждую из них отдельности, нельзя познать все свойства системы в целом.

Любой объект, который обладает всеми рассматриваемыми свойствами можно называть системой. Одни и те же элементы (в зависимости от принципа, используемого для их объединения в систему) могут образовывать различные по свойствам системы. Поэтому характеристики системы в целом определяются не только и не столько характеристиками составляющих ее элементов, сколько характеристиками связей между ними. Наличие взаимосвязей (взаимодействия) между элементами определяет особое свойство сложных систем — организованную сложность. Добавление элементов в систему не только вводит новые связи, но и изменяет характеристики многих или всех прежних взаимосвязей, приводит к исключению некоторых из них или появлению новых.

Источник

Имитационное моделирование

объект чтобы его можно было считать системой должен обладать такими свойствами как

Рассмотрены базовые понятия, виды и инструментальные средства моделирования, этапы разработки компьютерных моделей сложных систем. Основное внимание уделено многоподходному инструменту моделирования объектов и процессов реального мира AnyLogic 7.3.6 и технологиям построения имитационных моделей в среде AnyLogic. Предназначено для бакалавров, обучающихся по направлению подготовки 27.03.05 «Инноватика», и может быть рекомендовано для бакалавров направления 11.03.01 «Радиотехника», магистров направлений 27.04.05 «Инноватика» и 11.04.01 «Радиотехника», а также аспирантов, научных работников и инженеров, специализирующихся в области математического моделирования сложных систем.

Оглавление

Приведённый ознакомительный фрагмент книги Имитационное моделирование предоставлен нашим книжным партнёром — компанией ЛитРес.

Методологические основы имитационного моделирования

1.1. Моделирование как научный метод

Моделирование является одним из способов решения практических задач. Зачастую решение проблемы нельзя найти путем проведения натурных экспериментов: строить новые объекты, разрушать или вносить изменения в уже имеющуюся инфраструктуру может быть слишком дорого, опасно или просто невозможно. В таких случаях целесообразно построить модель реальной системы, т. е. описать ее на языке моделирования. Данный процесс подразумевает переход на определенный уровень абстракции, опуская несущественные детали, с учетом только того, что считаем важным. Система в реальном мире всегда сложнее своей модели (рис. 1.1) [6].

объект чтобы его можно было считать системой должен обладать такими свойствами как

Рис. 1.1. Моделирование реальных систем

Все этапы разработки модели — проекция реального мира в мир моделей, выбор уровня абстракции и выбор языка моделирования менее стандартизированы, чем процесс использования моделей для решения задач. Моделирование до сих пор больше искусство, чем наука.

После создания модели — а иногда и в процессе разработки — мы начинаем исследовать структуру и понимать поведение системы, проверять, как она ведет себя при определенных условиях, сравнивать различные сценарии и оптимизировать ее. Когда оптимальное решение будет найдено, мы сможем применить его в реальном мире.

В сущности, моделирование является поиском решения задачи в защищенном от риска мире моделей, в котором мы можем ошибаться, отменять операции, возвращаться в прошлое и начинать все сначала [6].

Моделирование дает предположительную информацию о неком фрагменте реальности. После определенных проверок она может оказаться истинной или ложной и потребовать построения новых моделей [1].

В науке, наряду с наблюдением, измерением, экспериментом и сравнением, эта процедура выступает как один из общенаучных методов. Однако моделирование можно рассматривать как особый интегрирующий метод. Его эффективность и универсализм возрастают по мере развития информационных технологий. В силу разных причин объект может быть недоступен (слишком мал или велик, далеко расположен, дорог, прекратил существование, например в результате аварии). Исключительная польза моделирования заключается в том, что можно экспериментировать не с самой системой, а с ее аналогом — моделью.

Моделирование — процесс отражения свойств одного объекта (оригинала) в другом объекте (модели). Это могут быть объекты «как есть» в целом и (или) их отдельные сущности — процессы и явления. Явления — например, поведение животного, состояния погоды — рассматриваются как сложные процессы.

В основу моделирования заложена процедура формализации — перевод свойств объекта на язык понятий предметной области, алгоритмов и математики.

Подобие модели объекту. Объект и модель находятся в отношении сходства, т. е. модель по каким-то признакам должна быть подобна изучаемому объекту. Это явление называют изоморфизмом (от греч. isos — равный и morphe — форма). Различают три вида подобия.

Первый вид подобия — подобное масштабирование. Примеры такого подобия: модели автомобилей, самолетов, кораблей, сооружений и т. д.

Второй вид подобия — косвенное подобие (математическая аналогия). Удачный математический аналог из других областей знаний может сильно упростить построение модели и ее анализ. Так, очень многие физические процессы могут быть описаны уравнениями, общий вид которых q = — Θ grad x (рис. 1.2).

объект чтобы его можно было считать системой должен обладать такими свойствами как

Рис. 1.2. Тройная аналогия процессов переноса

Аналогичны законы Кулона и всемирного тяготения. Примером также может служить подобие электрических и механических явлений:

• колебание физического маятника:

объект чтобы его можно было считать системой должен обладать такими свойствами как

объект чтобы его можно было считать системой должен обладать такими свойствами как

объект чтобы его можно было считать системой должен обладать такими свойствами как

объект чтобы его можно было считать системой должен обладать такими свойствами как

Рис. 1.3. Когнитивная модель потребления промышленной продукции (энергии, металлов и т. п.): «+» — положительные связи (влияния); «–» — отрицательные связи (влияния)

Третий вид подобия — условное подобие, или подобие по соглашению. Примерами являются когнитивные модели (рис. 1.3), географические карты, масштабированные чертежи сооружений, зданий, структурные схемы (модели системного анализа). При этом внешне сходство объекта и модели может не соблюдаться.

Таким образом, объект моделирования и модель могут быть любой природы — материальными или абстрактными. Например, макет самолета — это материальная модель. Cхема производства — абстрактная модель. Уравнения физики — это описание абстракций разных явлений материального мира. Модели могут быть и абстракциями других моделей. Наследование (создание одних классов на базе других) в объектно-ориентированном программировании — наиболее характерный пример таких построений [1].

Адекватность моделей. Вид и свойства будущей модели определяются целями исследователя, использующего этот инструмент. В модели отражаются свойства объекта, соответствующие этим целям, которые определяют и уровни детализации модели. В первую очередь должны быть определены существенные свойства оригинала, характеризующие его как некую проблему, которую нужно решить с помощью модели [1].

При этом стоит помнить, что знать все свойства предмета вашего исследования нельзя. К тому же не будем забывать, метод — это инструмент, а универсальных инструментов не бывает. Означает ли это, что моделирование — ненадежный помощник? Нет. Во-первых, существует принцип множественности моделей. В соответствии с ним можно, а иногда — необходимо построить несколько моделей, позволяющих рассмотреть объект как проблему с различных позиций. К соответствующим решениям (моделям) можно идти, используя разные подходы. Например, создание модели поведения человека будет зависеть от разработки разных целей [1]:

1) добиться антропоморфной кинематики компьютерной модели тела человека;

2) получить модель характерных психических реакций человека;

3) смоделировать реакции различных социальных групп людей.

Во-вторых, существуют специальные процедуры проверки того, является ли модель точным представлением реальной системы, т. е. адекватна ли модель системе.

При верификации, т. е. проверке достоверности модели, определяется, правильно ли концептуальная модель (модельные допущения) преобразована в компьютерную программу [1].

Валидация — это процесс, позволяющий установить, является ли модель точным представлением системы для конкретных целей исследования. Определяющим моментом в этих процедурах является положение: «модель и ее результаты достоверны, если руководители проекта признают их правильными» [16]. В итоге, если модель «адекватна», ее можно использовать для принятия решений относительно системы, которую она представляет, как если бы они принимались на основании экспериментов с реальной системой.

В-третьих, итоговый результат (т. е. «хорошая» или «плохая» модель получится) зависит от личности разработчика. Моделирование как метод научного познания предполагает творческий подход к объекту и целям исследования.

В этом виде научного производства не обойтись без развитого воображения, умения анализировать и делать обобщения. Хорошие модели — это «мини-теории», и их создание требует нестандартного мышления [1].

1.2. Исходные понятия и определения

Теория основ математического и компьютерного моделирования предполагает содержательное и формальное определение категорий, дефиниций и понятий с целью построения математических моделей сложных систем [2].

Основными методологическими категориями теоретических основ моделирования являются понятия «объект», «класс», «отношение (связь)», «система», «элемент», «структура».

Определение понятия «объект» имеет различное толкование в зависимости от области рассмотрения. Если мы изучаем область имитационного моделирования, то в стратегии объектно-ориентированного подхода объект является первым важным понятием. Объект — это некоторая сущность в виртуальном пространстве, обладающая определенным состоянием и поведением, имеющая заданные значения свойств (атрибутов) и операций над ними.

Следующим важным понятием объектно-ориентированного подхода является «класс». Родственные по определенным характеристикам, поведению объекты объединяются в классы. В зависимости от характеристик одни и те же объекты могут быть в различных классах.

В одном из разделов современной математики «теории категорий» объект используется как термин для обозначения элементов произвольной категории, играющих роль множеств, групп, топологических пространств и т. п. Здесь также вводится понятие класса объектов и проводится изучение свойств отношений между математическими объектами, не зависящих от внутренней структуры объектов.

Понятие «отношение» определяет взаимное положение объектов, связи между объектами в виде иерархических, ассоциативных, алгоритмических, табличных и других структур.

Понятие «система» является основополагающим в теории математического моделирования. Существует несколько десятков различных определений понятия «система», используемых в зависимости от контекста, области знаний и целей исследования. Изучением систем занимаются такие научные дисциплины, как системология, кибернетика, системный анализ, теория систем, системная динамика и др. [2].

Система — это 1) целое, созданное из частей и элементов целенаправленной деятельности и обладающее новыми свойствами, отсутствующими у элементов и частей, его образующих; 2) объективная часть мироздания, включающая схожие и совместимые элементы, образующие особое целое, которое взаимодействует с внешней средой; 3) объективное единство закономерно связанных друг с другом предметов, явлений, сведений, а также знаний о природе, обществе и т. п. Допустимы и многие другие определения. Общим в них является то, что система есть некоторое правильное сочетание наиболее важных, существенных свойств изучаемого объекта. Каждый объект, чтобы его можно было считать системой, должен обладать четырьмя основными свойствами или признаками (целостностью и делимостью, наличием устойчивых связей, организацией и эмерджентностью).

Элемент — это простейшая неделимая часть системы, а ее свойства определяются конкретной задачей. Элемент всегда связан с самой системой. Элемент сложной системы может быть, в свою очередь, сложной системой в другой задаче.

Подсистема — компонент системы — объединение элементов, но по масштабу меньше, чем система в целом.

Система может включать большой перечень элементов, и ее целесообразно разделить на ряд подсистем [2].

Признаками системы являются множество составляющих ее элементов, единство главной цели для всех элементов, наличие связей между ними, целостность и единство элементов, наличие структуры и иерархичности, относительная самостоятельность и наличие управления этими элементами. Термин «организация» в одном из своих лексических значений означает также систему, но не любую, а в определенной мере упорядоченную, организованную.

Понятие «подсистема» выработано для анализа сложноорганизованных, саморазвивающихся систем, когда между элементами и системой имеются «промежуточные» комплексы, более сложные, чем элементы, но менее сложные, чем сама система. Они объединяют в себе разные части (элементы) системы, в своей совокупности способные к выполнению единой (частной) программы системы. Будучи элементом системы, подсистема, в свою очередь, оказывается системой по отношению к элементам, ее составляющим. Аналогично обстоит дело с отношениями между понятиями «система» и «элемент»: они переходят друг в друга. Иначе говоря, система и элемент относительны. С этой точки зрения вся материя представляется как бесконечная система систем. «Системами» могут быть системы отношений, детерминаций и т. п. [2].

Наряду с представлением об элементах в понятие о любой системе входит и представление о ее структуре.

Структура — это совокупность устойчивых отношений и связей между элементами. Сюда включается общая организация элементов, их пространственное расположение, связи между этапами развития и т. п.

По своей значимости для системы связи элементов (даже устойчивые) неодинаковы: одни малосущественны, другие существенны, закономерны. Структура прежде всего — это закономерные связи элементов. Среди закономерных наиболее значимы интегрирующие связи (или интегрирующие структуры). Они обусловливают интегрированность сторон объекта. В системе производственных отношений, например, имеются связи трех родов: относящиеся к формам собственности, к обмену деятельностью и к распределению. Все они существенны и закономерны. Но интегрирующую роль в этих отношениях играют отношения собственности (иначе — формы собственности). Интегрирующая структура является ведущей основой системы [2].

Существует ряд подходов к выделению систем по сложности и масштабу. Например, для систем управления удобно пользоваться классификацией по числу (количеству) элементов:

• малые (10–10 3 элементов);

• сложные (10 4 –10 7 элементов);

• ультрасложные (10 8 –10 30 элементов);

• суперсистемы (10 30 –10 200 элементов).

Большая система — это всегда совокупность материальных и энергетических ресурсов, средств получения, передачи и обработки информации, людей, которые принимают решение на разных уровнях иерархии. В настоящее время для понятий «сложная система» и «большая система» используют такие определения:

• cложная система — упорядоченное множество структурно взаимосвязанных и функционально взаимодействующих разнотипных систем, которые объединены структурно в целостный объект функционально разнородными взаимосвязями для достижения заданных целей в определенных условиях;

Источник

Существует четыре свойства, которыми должен обладать объект, чтобы его можно было считать системой.

Первое свойство (целостность и членимость). Система есть целостная совокупность элементов, взаимодействующих друг с другом. Следует иметь в виду, что элементы существуют лишь в системе. Вне системы это лишь объекты, обладающие потенциальной способностью образования системы. Элементы системы могут быть разнокачественными, но одновременно совместимыми.

Второе свойство (связи). Между элементами системы имеются существенные связи, которые с закономерной необходимостью определяют интегративные качества этой системы. Связи могут быть вещественные, информационные, прямые, обратные и т. д. Связи между элементами внутри системы должны быть более мощными, чем связи отдельных элементов с внешней средой, так как в противном случае система не сможет существовать.

Третье свойство (организация).Наличие системоформирующих факторов у элементов системы лишь предполагает возможность ее создания. Для появления системы необходимо сформировать упорядоченные связи, т. е. определенную структуру, организацию системы.

Четвертое свойство (интегративные качества).Наличие у системы интегративных качеств, т. е. качеств, присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности.

Можно привести множество примеров систем. Возьмем обыкновенную шариковую ручку и посмотрим, имеет ли она четыре признака системы. Первое: ручка состоит из отдельных элементов – корпус, колпачок, стержень, пружина и т. д. Второе: между элементами имеются связи – ручка не рассыпается, она является единым целым. Третье: связи определенным образом упорядочены. Все части разобранной ручки можно было бы связать ниткой. Они тоже были бы взаимосвязаны, но связи не были бы упорядочены и ручка не имела бы нужных нам качеств. Четвертое: ручка имеет интегративные (суммарные) качества, которыми не обладает ни один из составляющих ее элементов – ручкой можно удобно пользоваться: писать, переносить.

Точно так же можно доказать, что такие объекты, как ав­томобиль, студенческая группа, оптовая база, совокупность вза­имосвязанных предприятий, настоящая книга и многие другие привычные, окружающие нас объекты тоже являются системами. Из всего множества разнообразных систем логистические системы выделяются составом элементов, характером связей между ними, организацией и интегративными свойствами. Отличительные признаки логистической системы:

наличие потокового процесса;

определенная системная целостность.

Охарактеризуем свойства логистических систем в разрезе каждого из четырех свойств, присущих любой системе, рассмотренных в предыдущем параграфе.

Первое свойство: логистическая система есть целостная совокупность элементов, взаимодействующих друг с другом. Выделяют следующие элементы логистических систем:

ЗАКУПКА – подсистема, которая обеспечивает поступление материального потока в логистическую систему.

СКЛАДЫ – здания, сооружения, устройства и т. п., где временно размещаются и хранятся материальные запасы, преобразуются материальные потоки.

ЗАПАСЫ – запасы материалов, которые позволяют данной системе быстро реагировать на изменение спроса, обеспечивают равномерность работы транспорта, а также помогают решать ряд других задач в логистических системах.

ТРАНСПОРТ– этот элемент, как и остальные, сам является сложной системой. Он включает в себя материально-техническую базу, с помощью которой транспортируются грузы, а также инфраструктуру, обеспечивающую ее функционирование.

ИНФОРМАЦИЯ– подсистема, которая обеспечивает информационную связь между другими элементами логистической системы, контролирует выполнение логистических операций, а также решает ряд других задач.

КАДРЫ – организованный персонал, занятый выполнением логистических операций.

СБЫТ – подсистема, которая обеспечивает выбытие материального потока из логистической системы.

В производственных логистических системах выделяют также элемент «ОБСЛУЖИВАНИЕ ПРОИЗВОДСТВА», под которым понимаются подразделения логистики, занятые обслуживанием процесса производства.

Как видим, элементы логистических систем разнокачественные, но одновременно совместимые. Совместимость обеспечивается единством цели, которой подчинено функционирование логистических систем.

Второе свойство: между элементами логистической системы имеются существенные связи, которые с закономерной необходимостью определяют интегративные качества системы.

Третье свойство: связи между элементами логистической системы определенным образом упорядочены, т. е. логистическая система имеет организацию.

Логистическую систему, способную ответить на возникающий спрос быстрой поставкой нужного товара, можно сравнить с живым организмом. Мускулы этого организма – подъемно-транспортная техника, центральная нервная система – сеть компьютеров на рабочих местах участников логистического процесса, организованная в единую информационную систему. По размерам этот организм может занимать территорию завода или оптовой базы, а может охватывать регион или выходить за пределы государства. Он способен адаптироваться, приспосабливаться к возмущениям внешней среды, реагировать на нее в том же темпе, в котором происходят события.

Общепринятое определение логистической системы гласит: Логистическая система – это адаптивная система с обратной связью, выполняющая те или иные логистические функции. Она, как правило, состоит из нескольких подсистем и имеет развитые связи с внешней средой.В качестве логистической системы можно рассматривать промышленное предприятие, территориально-производственный комплекс, торговое предприятие и т. д. Цель логистической системы – доставка товаров и изделий в заданное место, в нужном количестве и ассортименте в максимально возможной степени подготовленных к производственному или личному потреблению при заданном уровне издержек.

Границы логистической системы определяются циклом обращения средств производства (рис.137). Вначале закупаются средства производства. Они, в виде материального потока, поступают в логистическую систему, складируются, обрабатываются, вновь хранятся и затем уходят из логистической системы в потребление в обмен на поступающие в логистическую систему финансовые ресурсы.

объект чтобы его можно было считать системой должен обладать такими свойствами как

Рис. 13. Выделение границ логистической системы на основе цикла обращения средств производства

Выделение границ логистической системы на базе цикла обращения средств производства получило название принципа «уплаты денег – получения денег» (рис. 14).

объект чтобы его можно было считать системой должен обладать такими свойствами как

Рис. 14. Взаимосвязь логистической системы с окружающей средой. Принцип «уплата денег – получение денег»

Вопрос 112. Виды логистических систем.Логистические системы делят на макро- и микрологистические системы.

Макрологистическая система – это крупная система управления материальными потоками, охватывающая предприятия и организации промышленности, посреднические, торговые и транспортные организации различных ведомств, расположенных в разных регионах страны или в разных странах. Магкрологистическая система представляет собой определенную инфраструктуру экономики региона, страны или группы стран.

При формировании макрологистической системы, охватывающей разные страны, необходимо преодолеть трудности, связанные с правовыми и экономическими особенностями международных экономических отношений, с неодинаковыми условиями поставки товаров, различиями в транспортном законодательстве стран, а также ряд других барьеров.

Формирование макрологистических систем в межгосударственных программах требует создания единого экономического пространства, единого рынка без внутренних гранил, таможенных препятствий транспортировке товаров, капиталов, информации, трудовых ресурсов.

Микрологистические системы являются подсистемами, структурными составляющими макрологистических систем. К ним относят различные производственные и торговые предприятия, территориально-производственные комплексы. Микрологистические системы представляют собой класс внутрипроизводственных логистических систем, в состав кото­рых входят технологически связанные производства, объединенные единой инфраструктурой.

В рамках макрологистики связи между отдельными микрологистическими системами устанавливаются на базе товарно-денежных отношений. Внутри микрологистической системы также функционируют подсистемы. Однако основа их взаимодействия бестоварная. Это отдельные подразделения внутри фирмы, объединения, либо другой хозяйственной системы, работающие на единый экономический результат.

Принципиальная схема планово-организованной совокупности подразделений предприятия, образующих микрологистическую систему, изображена на рис. 15.

объект чтобы его можно было считать системой должен обладать такими свойствами как

Рис. 15. Принципиальная схема планово-организованной совокупности подразделений предприятия, образующих микрологистическую систему

На уровне макрологистики выделяют три вида логистических систем.

Логистические системы с прямыми связями.В этих логистических системах материальный поток проходит непосредственно от производителя продукции к ее потребителю, минуя посредников.

Эшелонированные логистические системы. В таких системах на пути материального потока есть хотя бы один посредник.

Гибкие логистические системы. Здесь движение материального потока от производителя продукции к ее потребителю может осуществляться как напрямую, так и через посредников.

объект чтобы его можно было считать системой должен обладать такими свойствами как

Рис. 16. Три вида логистических систем

Вопрос 113. Шесть правил логистики. Деятельность в области логистики имеет конечную цель, которая получила название «шесть правил логистики»:

1. Груз – нужный товар.

2. Качество – необходимого качества.

3. Количество – в необходимом количестве.

4. Время – должен быть доставлен в нужное время.

5. Место – в нужное место.

6. Затраты – с минимальными затратами.

Цель логистической деятельности считается достигнутой, если эти шесть условий выполнены, т. е. нужный товар, необходимого качества, в необходимом количестве доставлен в нужное время в нужное место с минимальными затратами.

Дата добавления: 2016-06-13 ; просмотров: 6481 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *