написанное на доске четырехзначное число можно заменить на другое прибавив
Написанное на доске четырехзначное число можно заменить на другое прибавив
100 фишек выставлены в ряд. Разрешено менять местами две фишки, стоящие через одну фишку.
Можно ли с помощью таких операций переставить все фишки в обратном порядке?
Из стакана молока три ложки содержимого переливают в стакан с чаем и небрежно помешивают. Затем зачёрпывают три ложки полученной смеси и переливают их обратно в стакан с молоком. Чего теперь больше: чая в стакане с молоком или молока в стакане с чаем?
Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой?
|
|
На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но
а) рубашкой вверх;
б) рубашкой вниз и вверх ногами?
Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 195]
Написанное на доске четырехзначное число можно заменить на другое прибавив
100 фишек выставлены в ряд. Разрешено менять местами две фишки, стоящие через одну фишку.
Можно ли с помощью таких операций переставить все фишки в обратном порядке?
Из стакана молока три ложки содержимого переливают в стакан с чаем и небрежно помешивают. Затем зачёрпывают три ложки полученной смеси и переливают их обратно в стакан с молоком. Чего теперь больше: чая в стакане с молоком или молока в стакане с чаем?
Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой?
|
|
На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но
а) рубашкой вверх;
б) рубашкой вниз и вверх ногами?
Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 195]
Написанное на доске четырехзначное число можно заменить на другое прибавив
Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами?
Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).
Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?
Решение |
|
Решение |
Страница: 1 2 >> [Всего задач: 8]
Написанное на доске четырехзначное число можно заменить на другое прибавив
Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами?
Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).
Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?
Решение |
|
Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]
Написанное на доске четырехзначное число можно заменить на другое прибавив
Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами?
Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).
Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?
Решение |
|
Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56]
- какое расстояние между внутренним и внешним блоком кондиционера
- с какого возраста можно давать ребенку гороховый суп с копчеными ребрышками