на какой максимальной высоте можно дышать
Эверест: покорить или умереть?
29 мая исполняется ровно 66 лет с момента первого восхождения на высочайшую гору мира – Эверест. После множества попыток разных экспедиций в 1953 году новозеландец Эдмунд Хиллари и непальский шерпа Тенцинг Норгей достигли мировой вершины – 8848 метров над уровнем моря.
На сегодняшний день Эверест покорили уже более девяти тысяч человек, при этом более 300 – погибли при восхождении. Будет ли человек разворачиваться за 150 метров до покорения вершины и спускаться вниз, если другому альпинисту стало плохо, и можно ли подняться на Эверест без кислорода – в нашем материале.
Фото: ТАСС/Анатолий Семехин
Покорить вершину или спасти чужую жизнь
Конечно, в экстремальном туризме сейчас много коммерции, это отмечают и альпинисты с многолетним опытом. Если раньше очередь на восхождение на Эверест приходилось ждать годами, то теперь получить разрешение на ближайший сезон не проблема. Только на эту весну Непал продал 381 лицензию на подъем. Из-за чего на подходах к вершине горы образовались многочасовые очереди из туристов, и это на высотах, критических для жизни. Бывают ситуации, когда заканчивается кислород или не хватает физических ресурсов организма для пребывания в таких условиях, и люди больше не могут идти, кто-то умирает. В случаях, когда одному из членов группы стало плохо, у остальных возникает вопрос: оставить его и продолжить путь для достижения цели, к которой они готовились всю жизнь, или развернуться и пойти на спуск, сохранив жизнь другого человека?
По словам альпиниста Николая Тотмянина, совершившего более 200 восхождений (из них пять подъемов на восьмитысячники и 53 подъема на семитысячники), в русских группах в горных экспедициях не принято оставлять человека, который не может идти дальше. Если кому-то стало плохо и есть большие риски для здоровья, то вся группа разворачивается и идет вниз. Такое не раз случалось в его практике: бывало, что приходилось разворачивать всю экспедицию за 150 метров до цели (кстати, сам Николай поднимался на вершину Эвереста два раза без кислородного баллона).
При этом Тотмянин отмечает, что на Эвересте бывает по-разному, так как там собраны коммерческие группы из разных стран: «У других, например у японцев, нет таких принципов. Там каждый за себя и осознает меру ответственности, что он может там остаться навсегда». Еще один важный момент: у непрофессиональных альпинистов отсутствует чувство опасности, они ее не видят. И, находясь в экстремальной ситуации, когда мало кислорода, у организма ограничивается любая деятельность, в том числе и умственная. «В такой ситуации люди принимают неадекватные решения, поэтому доверить человеку решение по поводу того, продолжать движение или нет, нельзя. Это должен делать руководитель группы или экспедиции», – резюмирует Тотмянин.
Кислородное голодание
Фото: AP/ТАСС/David Azia
Что же происходит с человеком на такой высоте? Представим, что сами решили покорить вершину. Из-за того, что мы привыкаем к высокому атмосферному давлению, живя в городе практически на плоскогорье (для Москвы это в среднем 156 метров над уровнем моря), попадая в горную местность наш организм испытывает стресс.
Все потому, что горный климат – это, прежде всего, пониженное атмосферное давление и более разреженный, чем на уровне моря, воздух. Вопреки распространенному мнению, количество кислорода в воздухе с высотой не меняется, снижается лишь его парциальное давление (напряжение).
То есть, когда мы вдыхаем разреженный воздух, кислород не усваивается так же хорошо, как на низких высотах. В результате количество кислорода, поступающего в организм, снижается – у человека возникает кислородное голодание.
Вот почему приезжая в горы, часто вместо радости от переполняющего легкие чистого воздуха, мы получаем головную боль, тошноту, одышку и сильную усталость даже во время небольшой прогулки.
И чем выше и быстрее мы поднимаемся, тем тяжелее могут быть последствия для здоровья. На серьезных высотах возникает риск развития высотной болезни.
На Эверест без кислорода
Фото: depositphotos/ prudek
Самая высокая вершина мира – мечта многих альпинистов. Осознание непокоренной громады высотой 8848 метров будоражила умы с начала прошлого века. Однако впервые люди оказались на ее вершине лишь в середине ХХ века – 29 мая 1953 года гора, наконец, покорилась новозеландцу Эдмунду Хиллари и непальскому шерпе Тенцингу Норгею.
Летом 1980 года человек преодолел еще одну преграду – знаменитый итальянский альпинист Райнхольд Мэсснер поднялся на Эверест без вспомогательного кислорода в специальных баллонах, которым пользуются на восхождениях.
Многие профессиональные альпинисты, а также медики обращают внимание на разницу в ощущениях двух восходителей – Норгея и Мэсснера, когда они оказались на вершине.
По воспоминаниям Тенцинга Норгея «сияло солнце, а небо – за всю жизнь я не видел неба синее! Я глядел вниз и узнавал места, памятные по прошлым экспедициям… Со всех сторон вокруг нас были великие Гималаи… Никогда еще я не видел такого зрелища и никогда не увижу больше – дикое, прекрасное и ужасное».
А вот воспоминания Мэсснера о той же вершине. «Опускаюсь на снег, от усталости тяжелый, как камень… Но здесь не отдыхают. Я выработан и опустошен до предела… Еще полчаса – и мне конец… Пора уходить. Никакого ощущения величия происходящего. Для этого я слишком утомлен».
Чем же вызвана такая значительная разница в описании своего триумфального восхождения двух альпинистов? Ответ прост – Райнхольд Мэсснер, в отличие от Норгея и Хиллари не дышал кислородом.
Вдох на вершине Эвереста принесет мозгу в три раза меньше кислорода, чем на уровне моря. Именно поэтому большинство альпинистов предпочитают покорять вершины, используя кислородные баллоны.
Фото: Zuma/ТАСС/Velar Gran
На восьмитысячниках (вершинах выше 8000 метров) существует так называемая зона смерти – высота, на которой из-за холода и недостатка кислорода человек долго находиться не может.
Многие восходители отмечают, что делать самые простые вещи: завязать ботинки, вскипятить воду или одеться, – становится необычайно сложно.
Больше всего во время кислородного голодания страдает наш мозг. Он использует в 10 раз больше кислорода, чем все остальные части тела вместе взятые. Выше 7500 метров человек получает так мало кислорода, что может произойти нарушение кровотока мозга и его отек.
На высоте более 6000 метров мозг страдает настолько, что могут случиться временные приступы помешательства. Замедленная реакция может сменяться возбуждением и даже неадекватным поведением.
Several high altitude tourists, Sherpas ascending/descending at death zone of Mt #Everest on 22 May, 2019. https://t.co/LzeFw6AErk #Everest2019 pic.twitter.com/sNoXQsj00o
Например, опытнейший американский гид и альпинист Скотт Фишер, скорее всего, получив отек мозга, на высоте более 7000 метров просил вызвать ему вертолет для эвакуации. Хотя в нормальном состоянии любой, даже не очень опытный восходитель прекрасно знает, что вертолеты на такую высоту не летают. Этот случай произошел во время печально известного восхождения на Эверест в 1996 году, когда во время шторма на спуске погибли восемь альпинистов.
Трагедия на Эвересте 11 мая 1996 года
Эта трагедия получила широкую известность из-за большого количества погибших альпинистов. Жертвами восхождения 11 мая 1996 года стали 8 человек, в том числе двое гидов. В тот день на вершину одновременно поднимались несколько коммерческих экспедиций. Участники таких экспедиций платят деньги гидам, а те в свою очередь обеспечивают максимальную безопасность и бытовой комфорт своим клиентам на маршруте.
Большинство участников восхождения 1996 года не были профессиональными альпинистами и сильно зависели от вспомогательного кислорода в баллонах. По различным свидетельствам в тот день на штурм вершины одновременно вышли 34 человека, что значительно затянуло время подъема. В итоге последний альпинист поднялся на вершину после 16:00. Критическим временем подъема считается 13:00, после этого времени гиды обязаны повернуть клиентов назад, чтобы успеть спуститься пока светло. 20 лет назад ни один из двух гидов не дал вовремя такого распоряжения.
Из-за позднего подъема у многих участников не осталось кислорода на спуск, во время которого на гору обрушился сильнейший ураган. В итоге после полуночи многие альпинисты все еще оставались на склоне горы. Без кислорода и из-за плохой видимости они не могли найти дорогу до лагеря. Некоторых из них в одиночку спас профессиональный альпинист Анатолий Букреев. Восемь человек умерли на горе из-за переохлаждения и отсутствия кислорода.
О горном воздухе и акклиматизации
Фото: depositphotos/ blasbike
И все-таки наш организм может приспособиться к очень непростым условиям, в том числе и к высокогорью. Для того чтобы находиться на высоте больше 2500-3000 метров без серьезных последствий, обычному человеку требуется от одного до четырех дней акклиматизации.
Что касается высот больше 5000 метров, то нормально приспособиться к ним практически невозможно, поэтому находиться на них можно лишь ограниченное время. Организм на таких высотах не способен отдыхать и восстанавливаться.
Можно ли снизить риск для здоровья при нахождении на высоте и как это сделать? Как правило, все проблемы со здоровьем в горах начинаются из-за недостаточной или неправильной подготовки организма, а именно недостатка акклиматизации.
Многие медики и альпинисты считают, что лучше всего приспособиться к высоте можно, если набирать высоту постепенно – делать несколько подъемов, достигая все большей высоты, а затем спускаться и отдыхать как можно ниже.
Представим себе ситуацию: путешественник, решивший покорить Эльбрус – самую высокую вершину в Европе, начинает свое путешествие из Москвы со 156 метров над уровнем моря. И за четыре дня оказывается на 5642 метров.
И хотя адаптация к высоте заложена в нас генетически, такому нерадивому альпинисту грозит несколько дней учащенного сердцебиения, бессонницы и головных болей. А вот у альпиниста, который заложит на восхождение хотя бы неделю, эти проблемы сведутся к минимуму.
В то время как у жителя горных районов Кабардино-Балкарии их не будет вообще. В крови горцев от рождения больше эритроцитов (красных кровяных телец), а емкость легких в среднем на два литра больше.
Как обезопасить себя в горах при катании или походе
Еще один интересный и, на первый взгляд, очевидный факт – в горах человек двигается значительно медленнее, чем на равнине. В обычной жизни мы ходим со скоростью примерно 5 километров в час. Это значит, что расстояние в километр преодолевается нами за 12 минут.
Чтобы подняться на вершину Эльбруса (5642 метров), начав свой путь с высоты 3800 метров, здоровому акклиматизированному человеку в среднем потребуется около 12 часов. То есть скорость упадет до 130 метров в час по сравнению с обычной.
Сравнив эти цифры, нетрудно понять насколько серьезно высота влияет на наш организм.
Десятый за весну турист погиб на Эвересте
Почему чем выше, тем холоднее
Даже те, кто ни разу не был в горах, знают еще одну особенность горного воздуха – чем выше, тем холоднее. Почему же так происходит, ведь ближе к солнцу воздух, наоборот, должен сильнее прогреваться.
Все дело в том, что тепло мы чувствуем не от воздуха, он нагревается очень плохо, а от поверхности земли. То есть луч солнца идет сверху, сквозь воздух и не нагревает его.
А земля или вода принимают этот луч, достаточно быстро нагреваются и отдают тепло вверх, воздуху. Поэтому чем выше от равнины мы находимся, тем меньше тепла от земли получаем.
Даешь давление для альпинистов или как дышать свободно на вершинах?
Как пел когда-то Владимир Высоцкий, «лучше гор могут быть только горы, на которых еще не бывал». Завораживающая высота гор издавна манила к себе людей и только в прошлом веке, люди смогли покорить многие самые высокие вершины Земли.
Для дыхания на высоте используется сжатый воздух и в этой статье мы рассмотрим, а можно ли его как то заменить?
Покорение вершин в прошлом было связано со значительными трудностями, впрочем, не исчезнувшими и сегодня: низкая температура, ураганные ветра, со скоростью ветра, достигающей 160 км/час, резкая смена погоды, ну и, конечно же, — невозможность полноценно дышать на такой высоте. Это связано с тем, что атмосферное давление падает по мере удаления от поверхности Земли. Для примера, на вершине Эвереста, атмосферное давление составляет всего лишь около 30% от того, которое является обычным и к которому мы привыкли, находясь на уровне моря.
Высота же, находящаяся после отметки в 8.000 метров, называется «зоной смерти», так как на таких высотах адаптация к низкому давлению невозможна и человек постепенно начинает умирать. При таком понижении давления, могут происходить такие негативные явления как бред, внезапная слепота и даже отёк мозга.
Поэтому альпинисты, совершающие восхождения на такие высокие пики, вынуждены брать с собой запас воздуха для дыхания в баллонах. В среднем, альпинисту требуется до 28 л сжатого воздуха для восхождения, который будет израсходован за 140 часов, при максимальной интенсивности дыхания.
Запас воздуха является конечным, его невозможно пополнить на вершине. И это один из тех факторов, из-за чего, в частности, было много трагических моментов, связанных с гибелью альпинистов.
Ситуация примерно аналогична с ситуацией при кораблекрушении: когда воды вокруг тебя полно, а напиться ты не можешь! Довольно досадная ситуация, надо признать!
Однако, мы же инженеры! Может быть, существует некий способ, который позволяет воспользоваться окружающим воздухом для дыхания? Способ напрашивается только один: каким-либо образом «сгустить» окружающий атмосферный воздух, сделав его пригодным для дыхания!
В технике, наиболее известным способом «сгущения» воздуха, — является его сжатие компрессорами. Наиболее распространенным типом компрессора является поршневой, частный случай которого представлен мембранным компрессором (гибкая мембрана оттягивается в середине специальной тягой и возвращается на место, благодаря чему происходит нагнетание воздуха, находящегося над мембраной).
Источник картинки:www.hydro-pnevmo.ru
Единственная проблема заключается в том, что такие компрессоры потребляют достаточно много энергии, обладают большим весом, поэтому малоприменимы в целях создания некой носимой установки.
Но неужели все так плохо?!
К счастью, вовсе нет: существует один тип компрессорных установок, который обладает поистине поразительной производительностью: компрессоры винтового типа.
Суть устройства компрессорных установок такого типа, заключается в том, что 2 винта специальной формы вращаются друг рядом с другом, с небольшим зазором. Их форма разработана с таким расчетом, что воздух, попадающий между быстро вращающимися роторами данных винтов, — постепенно сжимается. Для увеличения эффективности действия компрессоров такого типа, используется подача смазки между винтами. Она служит как для целей смазывания винтов (особенно в момент старта, когда они могут соударяться друг с другом), так и для обеспечения герметичности зоны сжатия.
«Конструкция винтового компрессора запатентована в 1934 году. Надёжность в работе, малая металлоёмкость и габаритные размеры предопределили их широкое распространение. Кроме того, использование винтовых компрессоров позволяет экономить до 30 % электроэнергии. Винтовые компрессоры успешно конкурируют с другими типами объёмных компрессорных машин, практически полностью вытеснив их в передвижных компрессорных станциях, судовых холодильных установках.
Типовая конструкция компрессора — сухого сжатия, работает без подачи масла в рабочую полость. Компрессор имеет два винтовых ротора. Ведущий ротор с выпуклой нарезкой соединён непосредственно или через зубчатую передачу с двигателем. На ведомом роторе нарезка с вогнутыми впадинами. Роторы расположены в разъёмном корпусе, имеющем один или несколько разъёмов. В корпусе выполнены расточки под винты, подшипники и уплотнения, а также камеры всасывания и нагнетания.
Высокие частоты вращения винтовых компрессоров определяют применение в них опорных и упорных подшипников скольжения.
Между подшипниковыми камерами и винтовой частью роторов, в которых сжимается газ, расположены узлы уплотнений, состоящие из набора графитовых и баббитовых колец. В камеры между группами колец подаётся запирающий газ, препятствующий попаданию масла из подшипниковых узлов в сжимаемый газ, а также газа в подшипниковые камеры.
Касание винтов роторов при отсутствии смазки недопустимо, поэтому между ними оставляют минимальный зазор, обеспечивающий безопасную работу компрессора, а синхронная частота вращения ведущего и ведомого роторов обеспечивается наружными синхронизирующими шестернями. Винтовые поверхности роторов и стенок корпуса образуют рабочие камеры. При вращении роторов объём камер увеличивается, когда выступы роторов удаляются от впадин и происходит процесс всасывания. Когда объём камер достигает максимума, процесс всасывания заканчивается и камеры оказываются изолированными стенками корпуса и крышками от всасывающего и нагнетательного патрубков.
При дальнейшем вращении во впадину ведомого ротора начинает внедряться сопряженный выступ ведущего ротора. Внедрение начинается у переднего торца и постепенно распространяется к нагнетательному окну. С некоторого момента времени обе винтовые поверхности объединяются в общую полость, объем которой непрерывно уменьшается благодаря поступательному перемещению линии контакта сопряжённых элементов в направлении к нагнетательному окну. Дальнейшее вращение роторов приводит к вытеснению газа из полости в нагнетательный патрубок. Из-за того, что частота вращения роторов значительна и одновременно существует несколько камер, компрессор создаёт равномерный поток газа.
Отсутствие клапанов и неуравновешенных механических сил обеспечивают винтовым компрессорам высокие рабочие частоты вращения, то есть позволяют получать большую производительность при сравнительно небольших внешних габаритах.
В наше время широкое распространение получили двухступенчатые винтовые компрессоры. Их особенностью является эксплуатация винтовых пар не с двумя роторами, а с четырьмя, что обеспечивает увеличение производительности на одной и той же электрической мощности до 15%».
Уникальными качествами таких компрессорных установок являются:
Но у внимательного читателя возникнет естественный вопрос: если всё так хорошо и прекрасно, почему же компрессоры такого типа не используются массово, вместо поршневых и мембранных?
Ответ на него очень простой: ввиду сложности изготовления винтовых пар для такого компрессора. Поэтому у промышленных компрессоров такого типа, существует понятие «количества пусков», так как в момент старта, роторы соударяются друг об друга и, соответственно, меняется геометрия, происходит износ, снижается ресурс.
Каждая компания, производящая компрессорные установки такого типа, считает своим ноу-хау геометрию винтовых пар. Так как именно от неё зависит производительность каждого конкретного компрессора.
Однако наше время предоставляет весьма неожиданные возможности для усовершенствования и в этой сфере: из-за появления 3D печати, роторы компрессора могут быть легко изготовлены! Мало того, они могут изготовляться достаточно легко, сложной конфигурации, в массовом порядке.
Поэтому, компрессор такого типа как нельзя лучше подходит в качестве носимой установки альпиниста, которая будет сжимать окружающий воздух до значений, пригодных для дыхания.
В рамках нашей инженерной задачи, требования к такому компрессору достаточно низкие. Изначально компрессоры такого типа предназначены для создания достаточно больших давлений (известны экземпляры, создающие давление в 8, 10, 20 атмосфер). Нам же, требуется всего лишь поднять давление окружающего воздуха (которое, как мы упомянули ранее, составляет всего 30% от нормального атмосферного давления.
Кстати, следует уточнить, что несмотря на широко распространенное заблуждение, количество кислорода не уменьшается с высотой, падает только его давление, равно как и всей газовой смеси атмосферы) до пригодного значения в 1 атмосферу. Так как давление окружающего воздуха уже составляет 0,3 атмосферы, нам не хватает для нормального дыхания докачать, недостающие 0,7 атмосфер.
Это достаточно маленькие требования и с этим компрессор винтового типа легко справится.
Ввиду низких требований, мы с лёгкостью сможем отказаться как от использования смазки для герметизации валов (чтобы не иметь потом проблем с очисткой воздуха), так и от потребности его работы на больших частотах. То есть, в нашем случае, компрессор может работать на достаточно небольших оборотах и этого будет вполне достаточно, для обеспечения человека воздухом для дыхания!
Таким образом, вырисовывается следующая конфигурация нашей компрессорной установки:
А на рюкзаке можно разместить компактный, толщиной сантиметров 10 — массив цилиндрических ветрогенераторов:
При такой конфигурации дыхательной системы, можно обеспечить человека практически неограниченным запасом воздуха для дыхания на большой высоте!
Автором статьи был проведён достаточно скрупулёзный поиск в сети интернет, в целях найти какой-либо проект 3D-печатного винтового компрессора. Но интернет в этой области оказался «девственно чист». За исключением одного проекта энтузиаста, который напечатал компрессор из пластика, чтобы создать аппарат для обеспечения воздухом больных covid-19. Там же он выложил исходные файлы проекта, прошивку для Ардуино Нано и пару любопытных видео, которые демонстрируют принцип работы этой системы:
Как нетрудно заметить, компрессор, даже работая на маленьких оборотах, достаточно легко накачивает большой полиэтиленовый мешок воздухом. Это как раз то самое, о чем мы говорили ранее: высокая производительность позволяет работать даже на малых оборотах, тем не менее обеспечивая большой поток воздуха.
Стартап? «Почему бы и да».
▍ В качестве альтернативного компрессорному способу сжатия, можно было бы рассмотреть весьма любопытный эффект, с которым наверняка знакомы большинство читателей: ионный ветер.
Суть его заключается в том, что при подаче высокого напряжения на электроды специальной формы, которые по сути являются ассиметричным конденсатором, возникает поток заряженных ионов воздуха, которые дуют от одного электрода к другому.
По данным ряда исследователей, эффективность такого способа примерно равна воздушному винту в авиации.
Так что, несмотря на обилие на YouTube различных экспериментов с ионным ветром, ионными двигателями и ионолётами, достаточно скромного масштаба, эффективность этого способа является достаточно интересной, в рамках нашей задачи.
Говоря о энергозатратах такого способа создания давления, имеются следующие цифры. Для создания подъемной силы для подъёма 1 грамма веса, — требуются затраты примерно в 1 Вт мощности. Таким образом, несложно подсчитать, что для накачки наших 0,7 атмосфер, нам потребуется мощность в 700 Вт. Если подробнее, то давление 1 атмосферы составляет приблизительно 1 кг/см2. Нам нужно накачать 0,7 атмосферы или же 700 грамм/см2. Что соответственно составит 700 Вт потребляемой мощности.
Установка такого типа могла бы выглядеть как некий рюкзачный носимый комплекс, имеющий воздухозаборный патрубок и «разгоняющий воздух» внутри себя, для создания требуемого давления на выкиде системы.
Очевидным плюсом такого способа является отсутствие каких-либо движущихся деталей, что является весьма существенным фактором в условиях низких температур и для повышения общей надежности системы.
Кроме того, из за электрического способа создания давления — его величину можно было бы регулировать с высокой точностью, применяя для этого ШИМ-контроль.
▍ В порядке же технического бреда, можно было бы рассмотреть еще один способ, который теоретически возможен, хотя и весьма труден в реализации.
Но, несмотря на это, рассмотрение этого способа в рамках «мозгового штурма» является достаточно интересным, так как в истории науки и техники существовало и существует множество решений, которые в момент непосредственно изобретения казались полным бредом. Тем более, согласно 3 закону Артура Кларка:
«любая, достаточно развитая технология — неотличима от магии»…
Итак… Общеизвестно, что звуковые колебания, распространяясь в пределах земной атмосферы, представляют собой соответствующие «сгущения» и разрежения воздуха. Совокупная протяженность зон повышенного и пониженного давления — соответствует длине волны конкретного звука (длина волны — расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе). Достаточно красивой демонстрацией этого факта являются эксперименты с трубой Рубенса:
Представим некий генератор звуковой волны, достаточно мощный, чтобы за счёт излучения соответствующей длины волны, — «покрыть полностью» группу восходящих альпинистов зоной повышенного давления, в которой возможно нормальное дыхание! Способ является достаточно красивым с технической точки зрения и укладывается в рамки ТРИЗ («лучшее устройство, это то, которое не существует, но тем не менее — его функция выполняется»). В нашем случае, каждый конкретный член восходящей группы не имеет какого-либо устройства для дыхания, однако вся группа, тем не менее, находится в приемлемой для дыхания зоне, которая перемещается вместе с группой! Это не обязательно может быть звуковой метод, это может быть некое излучение, создающее, например, за счет резонанса, протяженные зоны повышенного давления в атмосфере Земли.
В любом случае, если кто то сможет реализовать этот метод — это тянет на Нобелевскую премию, не меньше.
На данном этапе развития науки и техники данный волновой способ выглядит полнейшим бредом, однако, как учит нас «матерь всех наук» философия, — «любая истина привязана к месту, времени и личности, её воспринимающей». Поэтому то, что выглядит трудновыполнимым сейчас, не обязательно останется таковым и в будущие периоды времени.
Не ставить самому себе границ в сознании, мечтать, экспериментировать, двигаться вперед — и кто знает…
АПДЕЙТ:
Друзья, по поводу вполне справедливых комментариев, которые можно свести в 3: 1) «зачем надувать альпиниста»; 2) «будет трудно выдыхать»; 3) «нужен скафандр».
Вы безусловно правы. Любая концепция, еще не дошедшая до практической реализации — всегда требует решения ряда неожиданных вопросов. И даже узких мест.
В ходе написания этой статьи — я ставил своей целью показать широкой публике ряд достаточно неожиданных возможностей, которые можно было бы применить для создания давления. Полагаю, что большинство даже не задумывалось о данном направлении.
Надеюсь, статья даст пищу для размышлений и (даже!) кто то сможет реализовать что то на базе изложенного в реальной жизни.
Мало того, способ с винтовым компрессором, я рассматривал для запуска своего стартапа. Но, так как понял, что мои руки дойдут до этого «лет через 100 — не меньше», мне было не жалко поделиться этой мыслью — с народом 😉