какое значение имеют соли калия и натрия для клеток

Электролиты крови

Электролиты – это минеральные соединения, которые способны проводить электрический заряд. Находясь в тканях и крови в виде растворов солей, они помогают перемещению питательных веществ в клетки и выводу продуктов обмена веществ из клеток, поддерживают в них водный баланс и необходимый уровень кислотности.

Калий – важная составляющая большинства клеток. Вместе с другими электролитами ионы калия отвечают за функционирование мышц и нервов, нормальный кислотно-щелочной баланс, водный обмен. В крови содержится только небольшое количество макроэлемента, даже незначительные колебания его уровня приводят к серьезным последствиям. Существенные отклонения от нормы могут привести к состояниям, представляющим опасность для жизни (шок, нарушение сердечной деятельности, дыхательная недостаточность и прочее). В норме концентрация калия составляет 3,5-5,1 ммоль/литр.

Натрий имеется во всех тканях и жидкостях организма. Он необходим для сокращения мышц, поддержания водно-солевого баланса. Макроэлемент всасывается в кишечнике из обычной столовой соли. Отклонения его нормального уровня связано с нарушением одного из механизмов его поддержания. Например, нормальная концентрация натрия нарушается, если антидиуретический гормон, который предупреждает потерю жидкости с мочой, вырабатывается в аномальном количестве. Нарушение количества этого электролита влечет за собой появление отеков или обезвоживания, так как меняется количество жидкости в тканях. Анализ на натрий используется при диагностике многих заболеваний (например, патологий почек, легких, мозга).

Хлор входит в состав многих биологически активных веществ, выполняет целый ряд физиологических функций. Его уровень в норме относительно стабилен (небольшое уменьшение показателей наблюдается после еды). Тест на количество хлора часто назначается в комплексе с другими исследованиями для выявления различных патологий. Его результаты также используются для установления причины слабости, длительной рвоты, диарей, нарушений дыхания.

Ионизированный кальций. Значительные колебания его уровня чреваты нарушением сердечного ритма (тахикардией либо брадикардией), нарушениям ясности сознания, спазмами мышц. В некоторых случаях такие колебания могут стать причиной комы.
Изменения показателей в течение суток являются нормой. Максимальная концентрация макроэлемента наблюдается в конце дня, а утром она снижена. Количество Ca может отклоняться от нормы у женщин, которые используют оральные либо инъекционные контрацептивы. У пожилых людей его количество значительно снижено. Прием ряда препаратов может оказывать значительное влияние на результаты теста. Важно поставить в известность врача, который будет оценивать результаты анализа, о приеме любых препаратов. Как дефицит, так и переизбыток макроэлемента может быть вызван различными причинами. Для точной диагностики во многих случаях требуется дополнительное обследование. Грамотно оценить его результаты, поставить диагноз и назначить лечение может только врач.

Интерпретация результатов

Нарушения баланса электролитов может быть вызвано различными причинами. На результаты влияют, как различные заболевания, так и питьевой режим, рацион питания, прием многих лекарственных препаратов. Поэтому при расшифровке результатов, установлении диагноза и назначении лечения в обязательном порядке учитывают эти моменты.

Грамотно интерпретировать результаты может только врач. В некоторых случаях для этого требуется комплексное обследование.

Когда нужно сдавать анализ Калий (К+), натрий (Na+), хлориды?

Показания к исследованию

Нарушения баланса электролитов в крови могут проявляться следующими симптомами:

Подготовка к исследованию:

• Не принимать пищу в течение 12 часов перед исследованием.
• Исключить физическое и эмоциональное перенапряжение за 30 минут до исследования.
• Не курить в течение 30 минут до сдачи крови.

Источник

Физиологическая роль основных ионов в организме ребенка

какое значение имеют соли калия и натрия для клеток

Натрий. Основной внеклеточный катион

В организме взрослого человека содержится 70-100 г натрия, у детей его содержание ниже. Он обнаруживается во всех тканях в виде катионов натрия. Содержание натрия в плазме крови 130-150 ммоль/л (биохимический анализ крови ребенку, детская поликлиника «Маркушка»).

Натрий — главный внеклеточный катион: на его долю приходится более 90 % всех катионов плазмы. Около 85 % ионов натрия представлено в свободной форме и приблизительно 15 % его удерживается белками.

Натрий создает и поддерживает осмотическое давление жидкостей организма (преимущественно внеклеточной), задерживает воду в организме, участвует во всасывании в кишечнике и реабсорбции в почках глюкозы и аминокислот. Натрий участвует в регуляции кислотно-щелочного состояния организма, является щелочным резервом крови, активатором некоторых ферментов. Содержание натрия в клеточной микросреде определяет величину мембранного потенциала и, соответственно, возбудимость клеток. Совместно с ионами калия натрий стимулирует АТФазную активность фракций клеточных мембран, стабилизирует симпатический отдел нервной системы, принимает участие в регуляции тонуса сосудов.

Основное количество натрия поступает в организм с поваренной солью, небольшое количество его ребенок потребляет в виде бикарбоната натрия, цитрата, сульфата и глутамата натрия, которые как добавки встречаются в продуктах питания. Суточная потребность ребенка в натрии составляет в среднем 1,5-2,0 ммоль/л.

Основное количество натрия (около 95 %) выводится почками с мочой в виде натриевых солей фосфорной, серной, угольной и других кислот. Натрий выводится также с потом и через кишечник. Дефицит или избыток натрия вызывают серьезные изменения в организме ребенка.

Калий. Внутриклеточный катион

В отличие от натрия является внутриклеточным катионом. У взрослых содержание калия составляет приблизительно 53 ммоль/л и 95 % его обменивается. Уровень калия в организме ребенка ниже. Основное количество калия (90 %) находится внутри клеток в виде непрочных соединений с белками, углеводами и фосфором.Часть калия содержится в клетках в ионизованном виде и обеспечивает мембранный потенциал.

Суточная потребность ребенка в калии — 1,5-2,0 ммоль/л. Основным пищевым источником калия являются продукты растительного происхождения. Из организма калий выводится преимущественно почками (80—90 %), в меньшей степени пищеварительным трактом и потовыми железами. Основным регулятором выведения его с мочой является альдостерон.

Калий участвует в ряде жизненно важных физиологических процессов: вместе с натрием создает и поддерживает осмотическое давление жидкостей организма (преимущественно внутриклеточной), участвует в регуляции кислотно-щелочного состояния организма. Калий — активатор ряда ферментов, вместе с катионом натрия формирует электрохимический потенциал в мембранах клеток. Уровень калия в клетках и внеклеточной среде играет важнейшую роль в деятельности сердечно-сосудистой, мышечной и нервной систем, в секреторной и моторной функциях пищеварительного тракта, экскреторной функции почек. Обычно выход калия из клеток зависит от увеличения их биологической активности, распада белка и гликогена, недостатка кислорода. Дефицит и избыток калия вызывают серьезные изменения в организме ребенка.

Кальций. Внутриклеточный и в костной ткани

В различных тканях содержится внутриклеточно и почти исключительно в форме растворимых белковых комплексов. Лишь в костной ткани, включающей до 97 % всех запасов кальция в организме, он находится главным образом в виде нерастворимых внеклеточных включений гидроксиапатита.

Содержание кальция в организме у детей составляет около 200 ммоль/л, у взрослых — 475 ммоль/л. Содержание кальция в крови поддерживается в норме в диапазоне 2,5-2,8 ммоль/л.

Основной источник кальция — продукты питания: молоко и молочные продукты, яйца, бобовые, сухофрукты и др. Для детей грудного возраста основной источник кальция — молоко.У взрослого человека поддерживается нулевой баланс кальция, у детей — положительный.

Кальций участвует в физиологических процессах только в ионизованном виде. Кальций — необходимый участник процесса мышечного сокращения, важнейший компонент свертывающей системы крови (превращения протромбина в тромбин, фибриногена в фибрин, способствует агрегации тромбоцитов), как кофактор или активатор участвует в работе многих ферментов. Кальций входит в состав костей и хрящей в форме апатитов, является стабилизатором клеточных мембран, регулирует возбудимость нервов и мышц. Кальций — внутриклеточный посредник в действии некоторых гормонов на клетку, универсальный триггер многих секреторных процессов. Ионизация кальция зависит от рН крови. При ацидозе содержание ионизованного кальция повышается, а при алкалозе падает. Алкалоз и снижение уровня кальция ведут к резкому повышению нейромышечной возбудимости.

Магний. Внутриклеточный и в костной ткани

Как и калий, является основным внутриклеточным катионом (его концентрация в клетках значительно выше, чем во внеклеточной среде). Общее количество магния в организме у детей составляет 11 ммоль/л, у взрослых — 14 ммоль/л. Половина всего магния находится в костях (1/3 этого количества свободно обменивается), 49 % — в клетках мягких тканей, он играет существенную роль во многих ферментативных реакциях, в том числе в активации АТФ-азы. Уровень магния в крови составляет 0,75-0,9 ммоль/л, при этом более 60 % катиона находится в ионизованном виде.

Суточная потребность в магнии взрослого человека составляет около 300 мг. Овощи с зелеными листьями и фрукты, бобовые и злаки, мясо являются основными пищевыми источниками магния. Значительное количество эндогенного магния поступает в пищеварительный тракт с пищеварительными секретами. Главным регулятором содержания магния в организме являются почки. При недостатке его в организме он полностью реабсорбируется почками.

Магний — структурный элемент костной ткани. Он стабилизирует биологические мембраны, уменьшая их текучесть и проницаемость. Образуя хелаты с нуклеиновыми кислотами, он стабилизирует структуры ДНК, ассоциации субъединиц рибосом, связанные транспортными РНК с рибосомой. Магний входит в состав более 300 разных ферментных комплексов, обеспечивая их активность. Катион магния уменьшает возбудимость нервно-мышечной системы, сократительную способность миокарда и гладких мышц сосудов, оказывает депрессивное действие на психические функции.

При дефиците магния повышается возбудимость ЦНС, что проявляется слабостью и расстройством психики (спутанность сознания, беспокойство и агрессивность), возникновением судорог.

Повышение уровня магния в плазме (более 1,5 ммоль/л) вызывает тошноту и рвоту. Высокие концентрации магния могут вызвать гипотензию.

Хлор. Основной анион внеклеточной жидкости

Главным анионом внеклеточной жидкости является хлор, в организме он находится преимущественно в ионизованном состоянии (хлорид-анион) в форме солей натрия, калия, кальция, магния и т. д. Общее количество хлора в организме составляет 33 ммоль/кг. Распределение хлоридов в жидкостях организма определяется распределением ионов натрия. В крови хлориды встречаются главным образом в виде натрия хлорида. Концентрация хлора в плазме крови в норме колеблется от 90 до 105 ммоль/л, 90 % аниона хлора находится во внеклеточной жидкости. Суточная потребность хлора (2-4 г) полностью покрывается пищевой поваренной солью.

Хлориды участвуют в создании и поддержании осмотического давления жидкостей организма, в синтезе соляной кислоты в желудке. Хлориды также участвуют в генерации электрохимического градиента на плазматических мембранах клеток, являются активаторами ряда ферментов.

Изменение концентрации хлора в крови приводит соответственно к изменению концентрации натрия. Однако иногда изменение концентрации хлора не сопровождается эквивалентными изменениями концентрации натрия. Избыток хлора ведет к ацидозу.

Фосфор. Исключительно большое биологическое значение для растущего организма

Около 70 % фосфора сосредоточено в костной ткани, он входит в состав межклеточной жидкости и активных биохимических соединений каждой клетки организма. Фосфаты являются основными анионами внутриклеточной жидкости, где концентрация их выше, чем во внеклеточной среде, в 40 раз. Содержание неорганического фосфора в крови составляет 0,94-1,60 ммоль/л, у детей первого года жизни — 1,26-2,26 ммоль/л.

Потребность в фосфатах взрослого человека — около 1200 мг/сут. Фосфор в достаточном количестве присутствует в пищевом рационе, так как содержится практически во всех пищевых продуктах и всасывается (около 50 %) в виде неорганических фосфатов.

Фосфаты — необходимый компонент клеточных мембран, играют ключевую роль в метаболических процессах, входя в состав многих коферментов, нуклеиновых кислот и фосфопротеидов.

Фосфат — структурный компонент костей и зубов в виде апатитов, участвует в регуляции концентрации водородных ионов (фосфатная буферная система), важнейший компонент фосфорорганических соединений организма: нуклеотидов, нуклеиновых кислот и фосфопротеидов, фосфолипидов и др. Органические соединения фосфора (АТФ, АДФ) составляют основу энергетического обмена.

Избыток фосфора в организме встречается редко и наблюдается при нарушении функции почек или гипофункции паращитовидных желез. Это приводит к гипокальциемии и нарушению метаболизма костной ткани. Проявлениями недостатка фосфора являются ломкость костей, нарушение диссоциации оксигемоглобина, слабость, миопатия, кардиомиопатия.

Сульфаты, бикарбонаты

Сульфаты в большем количестве содержатся во внутриклеточном пространстве, входят в состав многих биологически активных веществ. Сульфаты необходимы для обезвреживания токсических соединений в печени.

Ион бикарбоната в наибольшем количестве содержится в экстрацеллюлярной жидкости. Ион бикарбоната находится в динамическом равновесии с угольной кислотой и является компонентом основной буферной системы организма.

Источник

Какое значение имеют соли калия и натрия для клеток

какое значение имеют соли калия и натрия для клеток

Калий играет ключевую роль в ежедневном функционировании нашего организма.

какое значение имеют соли калия и натрия для клеток

В идеале взрослый человек, не имеющий проблем с почками, должен ежедневно употреблять 4700 мг калия, предпочтительно из пищевых источников, а при нарушении функции почек следует употреблять от 1500 до 2700 мг калия в день. Также следует уменьшить потребление калия при диабете первого типа и сердечной недостаточности.

В норме содержание калия в крови колеблется от 3,5 до 5,2 ммоль/л.

Калий играет роль в функционировании нервной системы, сокращении мышц, поддержании водного баланса организма, поддержании нормального кровяного давления и сахара в крови, во многих биохимических реакциях, обеспечивающих жизнедеятельность человека.

При недостатке калия могут наблюдаться учащенное сердцебиение, тошнота и слабость, поэтому, если ваш рацион не позволяет получить достаточное количество калия из пищевых продуктов, можно использовать биологически активные добавки, содержащие калий. При этом следует помнить, что чрезмерное потребление этого минерала также может поставить под угрозу ваше здоровье.

Итак, нормы содержания калия в крови колеблются от 3,5 до 5,2 ммоль/л. Если уровень калия в организме выходит за рамки этого диапазона, то у человека могут развиться такие состояния, как:

— гипокалиемия – состояние, характеризующееся снижением уровня калия ниже 3,5 ммоль/л. Гипокалиемия может быть связана с диетой с низким содержанием калия, либо может являться побочным эффектом других проблем со здоровьем, таких как обезвоживание, диарея и чрезмерное потоотделение (гипергидроз);

Проявления низкого или высокого уровня калия обычно слабо выражены и неспецифичны, что затрудняет определение таких состояний. Чтобы выявить гипо- или гиперкалиемию нужно провести анализ крови и полный врачебный осмотр.

Признаками низкого уровня калия могут являться раздражительность, мышечная слабость, судороги, нарушение сердечного ритма, запор и усталость. В случае возникновения таких признаков следует обратиться к врачу,
поскольку задержка в лечении может привести к серьезному дефициту калия. Уровень калия ниже 2,5 ммоль/л считается опасным для жизни и может привести к параличу, дыхательной недостаточности, распаду мышечной ткани, синдрому ленивого кишечника, а также увеличить риск сердечного приступа и инсульта.

Нормализация уровня калия с помощью изменения рациона возможна путем включения в свое питание таких пищевых продуктов, как бананы (один средний банан содержит 422 мг калия), зелень (ботва) свеклы (в половине стакана содержится 654 мг калия), авокадо (в половине стакана содержится 364 мг), шпинат (в чашке содержится от 740 до 838 мг калия), картофель (в одной средней запеченной в кожуре картофелине содержится 941 мг калия), йогурт (в чашке содержится 579 мг калия). Также к богатым калием продуктам относятся морковь, редис, помидоры, огурцы, цуккини, баклажаны и капуста.

Нормальный уровень калия в организме, помимо стимулирования регулярных сердечных сокращений, может помочь нейтрализовать негативные последствия диеты с высоким содержанием натрия, поскольку калий фактически является его антагонистом. Тем самым снижается риск развития артериальной гипертензии, инсульта и других сердечно-сосудистых заболеваний.

Калий помогает поддерживать щелочную среду в организме, что способствует укреплению здоровья костей и сохранению мышечной массы

Калий также может помочь в поддержании нормальной функции почек и надпочечников. Однако при заболеваниях почек и/или почечной недостаточности может быть рекомендовано ограничение потребления калия.

Большое количество исследований демонстрируют пользу калия для здоровья, особенно в отношении сердечно-сосудистой системы. Например, популяционное исследование, проведенное в 1982 году, показало, что более высокое потребление калия может снизить уровень систолического артериального давления на 2–3 мм рт. ст., что, в свою очередь, помогает снизить риск развития ишемической болезни сердца и смертности от инсульта на 4% и 6% соответственно. Также накапливающиеся эпидемиологические данные последних десятилетий показывают, что низкое содержание калия в рационе связано с повышенным риском инсулинорезистентности и/или диабета.

При использовании биологически активных добавок – источников калия – в дозировках, превышающих рекомендованные производителем, могут возникнуть понос, тошнота, расстройство желудка, рвота, повышенное газообразование, слабость, аллергические реакции (такие как сыпь и зуд).

Не стоит забывать, что калий может взаимодействовать с лекарственными средствами, в частности с нестероидными противовоспалительными препаратами и ингибиторами ангиотензинпревращающего фермента, поэтому людям, принимающим какие-либо лекарства, необходимо проконсультироваться с врачом до начала приема биологически активных добавок. Также консультация врача перед началом приема БАД, содержащих калий, или до увеличения потребления богатых калием пищевых продуктов, необходима людям с заболеваниями почек, сердца, диабетом, болезнью Аддисона или язвенной болезнью желудка.

Если вы планируете принимать любые биологически активные добавки, обязательно предварительно проконсультируйтесь с врачом.

Источник

Сведения о биологической роли макро- и микроэлементов

Эссенциальные и условно-эссенциальные элементы

Символ

Основные функции в организме

Возможные причины дефицита

Возможные причины избытка

Серебро. Вопрос о физиологической роли серебра изучен недостаточно хорошо. Серебро относят к условно-эссенциальным и потенциально-токсичным элементам. Известно, что в организме серебро образует соединения с белками, может блокировать тиоловые группы ферментных систем, угнетать тканевое дыхание. В плазме крови серебро связывается с глобулинами, альбуминами и фибриногеном. При длительном контакте с серебром в производственных условиях этот элемент может накапливаться в печени, почках, коже и слизистых оболочках. Установлено, что лейкоциты могут фагоцитировать серебро и доставлять его к очагам воспаления.

Поступление серебра в организм в токсических дозах (в результате несчастных случаев); поступление в организм металлического серебра (при длительном контакте); вдыхание пыли бромистого и сернистого серебра в производственных условиях; длительное лечение препаратами азотнокислого серебра.

Алюминий входит в состав множества биомолекул, образовывая прочные связи с атомами кислорода или азота. Алюминий является постоянной составной частью клеток, где преимущественно находится в виде Al 3+. Его присутствие в том или ином виде обнаружено практически во всех органах человека. Алюминий играет в организме важную физиологическую роль, – он участвует в образовании фосфатных и белковых комплексов; процессах регенерации костной, соединительной и эпителиальной ткани; оказывает, в зависимости от концентрации, тормозящее или активирующее действие на пищеварительные ферменты; способен влиять на функцию околощитовидных желез. Алюминий в небольших количествах необходим для организма, и особенно для костной ткани, в случае же его избытка этот металл может представлять серьезную опасность для здоровья. В целом алюминий относят к токсичным (иммунотоксичным) элементам. Пониженное содержание алюминия в волосах может свидетельствовать о нарушении обменных процессов в костной ткани, передозировке комплексонов, алкалозе («защелачивании») организма.

Острые отравления солями алюминия на производстве; избыточное поступление в условиях повышенного содержания алюминия, его окислов и солей в пище, питьевой воде, воздухе; поступление с лекарственными препаратами, дезодорантами; хроническая почечная недостаточность.

Золото. В настоящее время известно, что золото может входить в состав металлопротеидов, взаимодействовать с медью и с протеазами, гидролизующими коллаген, также как и с эластазами и другими активными компонентами соединительной ткани. Золото может вовлекаться в процессы связывания гормонов в тканях.

Недостаточное количество в питьевой воде и продуктах питания.

Избыточное поступление;
передозировка при лечении препаратами золота.

Бор играет существенную роль в обмене углеводов и жиров, ряда витаминов и гормонов, влияет на активность некоторых ферментов. Показано, что введение борнокислого натрия в дозе 5-10 мг/кг вызывает повышение уровня сахара в крови. Под влиянием боратов инактивируются витамины B2 и В12, угнетается окисление адреналина. In vitro бор ингибирует активность двух классов ферментов. Во-первых, это тирозиннуклеотидзависимые и флавиннуклеотидзависимые оксиредуктазы (алкогольдегидрогеназа, альдегиддегидрогеназа, ксантиндегидрогеназа и цитохром-В5-редуктаза). Бораты конкурируют с ферментами за НАД и ФАД. Во-вторых, бораты (или производные соединений бора), могут связываться с активными центрами таких ферментов как химотрипсин, субтилизин, глицеральдегид-3-фосфатдегидрогеназа. У женщин в период постменопаузы устранение дефицита бора сопровождается повышением уровня 17 бета-эстрадиола в сыворотке крови и меди в плазме крови. Улучшаются показатели ЭЭГ, память, нормализуются поведенческие реакции. Имеются данные, свидетельствующие о том, что бор играет регуляторную роль по отношению к паратгормону и поэтому может косвенным образом влиять на метаболизм кальция, магния, фосфора и витамина D.

Недостаточное поступление бора; нарушение регуляции обмена бора.

Бром относят к условно-эссенциальным элементам. В организм человека бром попадает с растительной пищей, главным образом, с зерновыми и орехами, и с рыбой. Бромид натрия (NaBr) участвует в активации пепсина, активизирует некоторые ферменты, в частности, липазы и амилазы поджелудочной железы, которые участвуют в переваривании жиров и углеводов. Ионы Br угнетают деятельность щитовидной железы, являясь антагонистами йодидов, и при хроническом воздействии замедляют их усвоение. Бромиды участвуют в регуляции ЦНС, усиливая процессы торможения.
При хронической интоксикации соединениями брома в условиях производства, при длительном приеме внутрь препаратов брома или их индивидуальной непереносимости, могут развиваться различные симптомокомплексы, известные как бромизм и бромодерма. При остром отравлении наблюдается «бромистое оглушение» с ослаблением внимания к внешним воздействиям, расстройством походки, затруднением речи.

Избыточное поступление; нарушение регуляции обмена брома.

Кальций очень активен: доминирующее положение этого элемента в конкуренции с другими металлами и соединениями за активные участки белков, определяется химическими особенностями иона кальция – наличием двух валентностей и сравнительно небольшим атомным радиусом. Поэтому кальций может успешно конкурировать с радионуклидами и тяжелыми металлами на всех этапах метаболизма. Метаболизм кальция находится под влиянием околощитовидных желез, кальцитонина (гормон щитовидной железы) и кальциферолов (витамин D). Кальций обладает высокой биологической активностью, выполняет в организме многообразные функции, среди которых: регуляция внутриклеточных процессов; регуляция проницаемости клеточных мембран; регуляция процессов нервной проводимости и мышечных сокращений; поддержание стабильной сердечной деятельности; формирование костной ткани, минерализация зубов; участие в процессах свертывания крови.

Низкое содержание кальция в пищевых продуктах и воде; неадекватное питание, голодание; нарушения абсорбции кальция в кишечнике (дисбактериоз, кандидоз, пищевые аллергии и т.д.); избыточное поступление в организм фосфора, свинца, цинка, магния, кобальта, железа, калия, натрия; недостаток кальциферолов (витамина D); заболевания щитовидной железы; дисфункция околощитовидных желез; повышенная потребность в кальции в период роста, при беременности и лактации, в постменопаузу; усиленный расход кальция в результате стрессорных воздействий; чрезмерного употребления кофеин-содержащих продуктов, курения; усиленное выведение кальция из организма в результате длительного применения мочегонных и слабительных средств; заболевания почек; панкреатит; длительная иммобилизация больных; избыток в организме фосфора, магния, калия, натрия, железа, цинка, свинца, кобальта; другие нарушения метаболизма кальция в организме.

Избыточное поступление; нарушения метаболизма кальция, в том числе связанные с расстройствами регуляции (заболевания и травмы нервной системы, нарушения функции околощитовидных желез и щитовидной железы и т.д.); длительный прием в больших дозах кальцийсодержащих лекарственных препаратов и БАДП; гипервитаминоз D.

Кобальт входит в состав молекулы цианокобаламина, активно участвует в ферментативных процессах и образовании гормонов щитовидной железы, угнетает обмен йода, способствует выделению воды почками. Кобальт повышает усвоение железа и синтез гемоглобина, является мощным стимулятором эритропоэза. Процесс кроветворения у человека и животных может осуществляться только при нормальном взаимодействии трех биоэлементов – кобальта, меди и железа. Следует отметить, что механизм влияния кобальта на гемопоэз продолжает оставаться неясным. Известно, что при введении кобальта в костный мозг увеличивается образование молодых эритроцитов и гемоглобина. Однако для этого необходимо наличие в организме достаточного количества железа.
Дефицит кобальта часто встречается у вегетарианцев, лиц с нарушениями функций органов желудочно-кишечного тракта, спортсменов, испытывающих повышенные физические нагрузки; а также при кровопотерях и глистной инвазии.
Не смотря на то, что избыточное поступление кобальта в организм встречается довольно редко, этот процесс сопровождается различными нарушениями здоровья. Повышенное содержание кобальта может наблюдаться у лиц, работающих в металлургической, стекольной и цементной промышленности. Пыль, содержащая соединения кобальта, при поступлении в легкие способна вызывать отек и легочные кровотечения. Повышенное количество кобальта в организме может наблюдаться при избыточном приеме витамина В12. Соли кобальта используются при производстве некоторых сортов пива, что в ряде случаев приводит к развитию у потребителей «кобальтовой» кардиопатии.

Недостаточное поступление; нарушение регуляции обмена; атрофия слизистых оболочек желудочно-кишечного тракта; пониженная кислотность желудочного сока; снижение функции поджелудочной железы; глистная инвазия; дефицит витамина В12.

Недостаточное поступление извне; нарушение регуляции обмена; повышенное расходование (напр., беременность);
усиленное выведение хрома из организма, в условиях повышенного содержания в пище углеводов (избыточное потребление белого хлеба, сладостей, макаронных изделий);
увеличение выведения хрома с мочой в результате повышенных физических нагрузок.

Избыточное поступление извне (повышенная концентрация в воздухе, избыточный прием с хром-содержащими биодобавками, усиленное всасывание при недостатке цинка и железа); нарушение регуляции обмена хрома.

Медь является жизненно важным элементом, который входит в состав многих витаминов, гормонов, ферментов, дыхательных пигментов, участвует в процессах обмена веществ, в тканевом дыхании и т.д. Медь имеет большое значение для поддержания нормальной структуры костей, хрящей, сухожилий (коллаген), эластичности стенок кровеносных сосудов, легочных альвеол, кожи (эластин). Медь входит в состав миелиновых оболочек нервов. Действие меди на углеводный обмен проявляется посредством ускорения процессов окисления глюкозы, торможения распада гликогена в печени. Медь входит в состав многих важнейших ферментов, таких как цитохромоксидаза, тирозиназа, аскорбиназа и др. Медь присутствует в системе антиоксидантной защиты организма, являясь кофактором фермента супероксиддисмутазы, участвующей в нейтрализации свободных радикалов кислорода. Этот биоэлемент повышает устойчивость организма к некоторым инфекциям, связывает микробные токсины и усиливает действие антибиотиков. Медь обладает выраженным противовоспалительным свойством, смягчает проявления аутоиммунных заболеваний (напр., ревматоидного артрита), способствует усвоению железа

Недостаточное поступление; длительный прием кортикостероидов, нестероидных противовоспалительных препаратов, антибиотиков; нарушение регуляции обмена меди.

Избыточное поступление в организм (вдыхание паров и пыли соединений меди в условиях производства, бытовые интоксикации растворами соединений меди, использование медной посуды); нарушение регуляции обмена меди.

Железо. Важная роль железа для организма человека установлена еще в XVIII в. Основной функцией железа в организме является перенос кислорода и участие в окислительных процессах (посредством десятков железосодержащих ферментов). Железо входит в состав гемоглобина, миоглобина, цитохромов. Большая часть железа в организме содержится в эритроцитах; много железа находится в клетках мозга. Железо играет важную роль в процессах выделения энергии, в ферментативных реакциях, в обеспечении иммунных функций, в метаболизме холестерина. Насыщение клеток и тканей железом происходит с помощью белка трансферрина, который способен переносить ионы трехвалентного железа. Лигандные комплексы железа стабилизируют геном, однако в ионизированном состоянии могут являться индукторами ПОЛ, вызывать повреждение ДНК и провоцировать гибель клетки. Дефицит, так же как и избыток железа, отрицательно влияют на здоровье человека.

Недостаточное поступление (неадекватное питание, вегетарианская диета, недоедание); снижение всасывания железа в кишечнике; нарушение регуляции обмена витамина С; избыточное поступление в организм фосфатов, оксалатов, кальция, цинка, витамина Е; поступление в организм железосвязывающих веществ (комплексонов); отравление свинцом, антацидами; усиленное расходование железа (в периоды интенсивного роста и беременности); потери железа связанные с травмами, кровопотерями при операциях, обильными менструациями, язвенными болезнями, донорством, занятиями спортом; гормональные нарушения (дисфункция щитовидной железы); гастриты с пониженной кислотообразующей функцией, дисбактериоз; различные системные и опухолевые заболевания; глистная инвазия.

Избыточное поступление извне (напр., при повышенном содержании в питьевой воде); заболевания печени, селезенки, поджелудочной железы (в том числе, в результате хронического алкоголизма); нарушение регуляции обмена железа.

Германий. В организм человека германий поступает с пищей. Значительное количество германия содержится в чесноке, рыбе, отрубях, овощах, семенах, грибах, корне женьшеня. Германий хорошо абсорбируется организмом (около 95%) и относительно равномерно распределяется по органам и тканям (как во внеклеточных, так и внутриклеточных пространствах). Германий не токсичен; доза 100 мг/кг (внутрь) и 4 мг/кг (внутримышечно) при однократном введении не оказывают на человека токсического действия. Германий выводится из организма преимущественно с мочой (90%).
В организм человека германий поступает с пищей. Значительное количество германия содержится в чесноке, рыбе, отрубях, овощах, семенах, грибах, корне женьшеня. Германий хорошо абсорбируется организмом (около 95%) и относительно равномерно распределяется по органам и тканям (как во внеклеточных, так и внутриклеточных пространствах). Германий не токсичен; доза 100 мг/кг (внутрь) и 4 мг/кг (внутримышечно) при однократном введении не оказывают на человека токсического действия. Германий выводится из организма преимущественно с мочой (90%). Отходы угледобывающей и коксовой промышленности служат источником загрязнения окружающей среды германием. В золе лигнита содержится до 120 мкг/г германия. Неорганические соли германия более токсичны, чем органические. Имеются данные о смертельных случаях отравления БАДП, содержащих органические соли германия и одновременно загрязненных неорганическими солями германия.

Избыточное поступление; нарушение регуляции обмена германия.

Йод. Основными источниками йода для организма человека являются морепродукты, а также применяемые в пищевой промышленности йодофоры и йодированная соль. Содержание йода в пищевых продуктах и питьевой воде значительно варьируется. Количество йода во фруктах и овощах зависит от состава почвы и удобрений, а также от того, какую обработку прошли эти продукты. Наиболее богаты йодом такие морепродукты, как треска, красные и бурые водоросли, пикша, палтус, сельдь, сардины, креветки. Таким образом, йод поступает в организм с продуктами растительного и животного происхождения и отчасти с водой. Всасывается йод преимущественно в верхнем отделе желудочно-кишечного тракта. Прием натуральных продуктов не вызывают побочных эффектов, даже при избыточном содержании в них йода. Йод обладает высокой физиологической активностью и является обязательным структурным компонентом тиреотропного гормона и тиреоидных гормонов щитовидной железы. Перечислим основные функции йода в организме: участие в регуляции скорости биохимических реакций; участие в регуляции обмена энергии, температуры тела; участие в регуляции белкового, жирового, водно-электролитного обмена; участие в регуляции обмена некоторых витаминов; участие в регуляции дифференцировки тканей, процессов роста и развития организма, в том числе нервно-психического; индукция повышения потребления кислорода тканями.
Около 1 млрд. человек на земле страдают от дефицита йода. Основной причиной снижения содержания йода в организме является недостаточный уровень этого элемента в пище и воде, что, в свою очередь, приводит к развитию йододефицитных состояний и заболеваний (эндемический зоб, гипотиреоз, дистериоз, кретинизм и др.), которые сопровождаются разнообразными функциональными и структурными нарушениями.

Недостаточное поступление (снижение потребления морепродуктов; прекращение йодной профилактики); наличие в пище струмогенных факторов, препятствующих усвоению и утилизации йода; прием фармпрепаратов, обладающих струмогенным действием; нарушение регуляции обмена; повышение радиационного фона; загрязнение окружающей среды; аллергизация организма.

Избыточное поступление; нарушение регуляции обмена йода.

Калий является основным внутриклеточным катионом. Его концентрация в клетках на порядок выше, чем вне клеток. Главной функцией калия является формирование трансмембранного потенциала (Kin > Kout) и распространение изменения потенциала по клеточной мембране путем обмена с ионами натрия по градиенту концентраций. Вместе с натрием и хлором, калий является постоянным составным элементом всех клеток и тканей. В организме эти элементы содержатся в определенном соотношении и обеспечивают постоянство внутренней среды. В виде катиона К+ калий участвует в поддержании гомеостаза (ионное равновесие, осмотическое давление в жидкостях организма). Хлориды калия и натрия, будучи сильными электролитами, участвуют в генерации и проведении электрических импульсов в нервной и мышечной ткани. Таким образом калий участвует в поддержании электрической активности мозга, функционировании нервной ткани, сокращении скелетных и сердечных мышц. Калий регулирует активность таких важнейших ферментов как К+-АТФ-аза, ацетилкиназа, пируватфосфокиназа. Терапевтическое значение калия связано с его раздражающим действием на слизистые оболочки и повышением тонуса гладких мышц (кишечник, матка), в силу чего его соединения используются в качестве слабительных средств. Калий вызывает расширение сосудов внутренних органов и сужение периферических сосудов, что способствует усилению мочеотделения. Калий замедляет ритм сердечных сокращений и, действуя аналогично блуждающему нерву, участвует в регулировании деятельности сердца. Ниже приведены основные функции калия в организме: поддержание постоянства состава клеточной и межклеточной жидкости; поддержание кислотно-щелочного равновесия; обеспечение межклеточных контактов; обеспечение биоэлектрической активности клеток; поддержание нервно-мышечной возбудимости и проводимости; участие в нервной регуляции сердечных сокращений; поддержание водно-солевого баланса, осмотического давления; роль катализатора при обмене углеводов и белков; поддержание нормального уровня кровяного давления; участие в обеспечении выделительной функции почек.

Недостаточное поступление в организм; нарушение регуляции обмена калия; функциональные расстройства выделительных систем (почки, кожа, кишечник, легкие); усиленное выведение калия из организма под действием гормональных препаратов, мочегонных и слабительных средств; психические и нервные перегрузки, чрезмерные или хронически действующие стрессорные факторы; избыточное поступление в организм натрия, таллия, рубидия и цезия.

Избыточное поступление (в т.ч., длительный и избыточный прием препаратов калия, потребление «горьких» минеральных вод, постоянная картофельная диета и пр.); нарушение регуляции обмена калия; перераспределение калия между тканями организма; массированный выход калия из клеток (цитолиз, гемолиз, синдром раздавливания тканей); дисфункция симпатоадреналовой системы; инсулин-дефицитные состояния; нарушение функции почек, почечная недостаточность.

Недостаточное количество в питьевой воде и продуктах питания.

Избыточное поступление; нарушение регуляции обмена лития.

Магний является важнейшим внутриклеточным элементом. Магний участвует в обменных процессах, тесно взаимодействуя с калием, натрием, кальцием; является активатором для множества ферментативных реакций. Нормальный уровень магния в организме необходим для обеспечения «энергетики» жизненно важных процессов, регуляции нервно-мышечной проводимости, тонуса гладкой мускулатуры (сосудов, кишечника, желчного и мочевого пузыря и т.д.). Магний стимулирует образование белков, регулирует хранение и высвобождение АТФ, снижает возбуждение в нервных клетках. Магний известен как противострессовый биоэлемент, способный создавать положительный психологический настрой. Магний укрепляет иммунную систему, обладает антиаритмическим действием, способствует восстановлению сил после физических нагрузок. Ближайшим соседом магния в группе периодической системы является кальций, с которым магний вступает в обменные реакции. Эти два элемента легко вытесняют друг друга из соединений. Дефицит магния в диете, богатой кальцием, обусловливает задержку кальция во всех тканях, что ведет к их обызвествлению. Магний выполняет в организме следующие функции: участие в синтезе белка и нуклеиновых кислот; участие в обмене белков, жиров и углеводов; участие в переносе, хранении и утилизации энергии; участие в митохондриальных процессах; участие в регуляции нейрохимической передачи и мышечной возбудимости (уменьшает возбудимость нейронов и замедляет нейромышечную передачу); является кофактором многих ферментативных реакций (гидролиз и перенос фосфатной группы, функционирование Na+-K+-АТФ насоса, Са2+-АТФ насоса, протонного насоса); препятствует поступлению ионов кальция через пресинаптическую мембрану; является физиологическим антагонистом кальция; контролирует баланс внутриклеточного калия; снижает количество ацетилхолина в нервной ткани; расслабляет гладкую мускулатуру; снижает артериальное давление (особенно при его повышении); угнетает агрегацию тромбоцитов; повышает осмотическое давление в просвете кишечника; ускоряет пассаж кишечного содержимого.

Нарушения регуляции обмена магния; недостаточное поступление; нарушение всасывания в кишечнике (дисбактериоз, хронический дуоденит); снижение усвоения под действием избытка фосфатов, кальция и липидов; хронический стресс; нарушение синтеза инсулина; длительное применение антибиотиков (гентамицин), мочегонных, противоопухолевых и других фармакологических препаратов; парентеральное питание; повышенная потребность в магнии (при беременности, в период роста и выздоровления, при хроническом алкоголизме, чрезмерной потливости); интоксикация алюминием, бериллием, свинцом, никелем, кадмием, кобальтом и марганцем.

Избыточное поступление; нарушение регуляции обмена магния.

Недостаточное поступление марганца извне (неадекватное питание, снижение потребления богатых марганцем продуктов, в частности, растительной пищи); избыточное поступление в организм фосфатов (лимонады, консервы); усиленное выведение марганца под влиянием избыточного содержания в организме кальция, меди и железа; усиленное расходование марганца в результате психо-эмоциональных перегрузок, у женщин в предклимактерический период и при климаксе; загрязнение организма различными токсинами (цезий, ванадий); нарушение регуляции обмена марганца в организме.

Избыточное поступление в организм (напр., вдыхание марганцевой пыли в производственных условиях, сварочного аэрозоля); нарушение регуляции обмена марганца в организме.

Молибден. Физиологическое значение молибдена для организма животных и человека было впервые показано в 1953 г, с открытием влияния этого элемента на активность фермента ксантиноксидазы. Молибден входит в состав ряда ферментов (альдегидоксидаза, сульфитоксидаза, ксантиноксидаза и др.), выполняющих важные физиологические функции, в частности, регуляцию обмена мочевой кислоты. Недостаток молибдена в организме сопровождается уменьшением содержания в тканях ксантиноксидазы. Тиомолибдат аммония (растворимая соль молибдена), является антагонистом меди и нарушает ее утилизацию в организме. Есть сведения, что молибден играет важную роль в процессе включения фтора в зубную эмаль, а также в стимуляции гемопоэза.
При хронической молибденовой интоксикации развиваются неспецифические симптомы, проявляющиеся раздражением слизистых оболочек, пневмокониозом, уменьшением массы тела. При избыточном содержании молибдена в почве наблюдается эндемическое заболевание, «молибденовая» подагра, впервые наблюдаемая в Анкаванском районе Армении профессором В.В. Ковальским.

Вегетарианская диета; парентеральное питание; избыток вольфрама в организме.

Избыточное поступление в организм соединений молибдена с пищей, водой, молибденсодержащими препаратами, БАДП; интоксикация молибденом в условиях производства; дефицит меди в рационе.

Натрий играет весьма важную роль в регуляции осмотического давления и водного обмена, при нарушении которых отмечаются следующие признаки: жажда, сухость слизистых оболочек, отечность кожи. Натрий оказывает значительное влияние и на белковый обмен. Обмен натрия находится под контролем щитовидной железы. При гипофункции щитовидной железы происходит задержка натрия в тканях. При гиперфункции количество натрия в коже уменьшается, а выделение его из организма усиливается. Обмен натрия регулируется в основном альдостероном. В организме человека натрий выполняет «внеклеточные» функции, среди которых: поддержание осмотического давления и рН среды; формирование потенциала действия путем обмена с ионами калия; транспорт углекислого газа; гидратация белков; солюбилизация органических кислот. Внутри клеток натрий необходим для поддержания нейро-мышечной возбудимости и работы Na+-K+-насоса, обеспечивающих регуляцию клеточного обмена различных метаболитов. От натрия зависит транспорт аминокислот, сахаров, различных неорганических и органических анионов через мембраны клеток.
Постоянный избыток натрия и калия в пище сопровождается некоторым повышением уровня инсулина в крови. Отмечаются и другие гормональные сдвиги. Введение большого количества хлористого натрия вызывает распад белка и сильное исхудание. При парентеральном введении изотонического раствора может повыситься температура тела, что чаще всего наблюдается у детей.

Недостаточное поступление; болезни гипофиза, надпочечников; болезни почек; черепно-мозговые травмы; усиленное выделение натрия (повышенная потливость, понос, рвота); обильная экссудация при сильных ожогах; длительное применение мочегонных препаратов, кортикостероидов, препаратов лития; избыток в организме калия, кальция; длительный контакт с морской водой; нарушение регуляции обмена натрия.

Нарушение регуляции обмена натрия; избыточное поступление извне; недостаточное содержание воды в организме.

Никель. В начале XX в. было установлено, что поджелудочная железа богата никелем. При введении вслед за инсулином никеля, продлевается действие инсулина, и тем самым повышается гипогликемическая активность. Никель оказывает влияние на ферментативные процессы, окисление аскорбиновой кислоты, ускоряет переход сульфгидрильных групп в дисульфидные. Никель может угнетать действие адреналина и снижать артериальное давление. Под влиянием никеля в организме вдвое возрастает выведение кортикостероидов с мочой, усиливается антидиуретическое действие экстракта гипофиза. Избыточное поступление в организм никеля может вызывать депигментацию кожи (витилиго). В плазме крови никель находится в основном в связанном состоянии с белками никелоплазмином (альфа-2-макроглобулин) и альфа-1-гликопротеином. Депонируется никель в поджелудочной и околощитовидных железах.
Никель и его соединения, поступающие в организм с пищей, как правило, относительно нетоксичны. Однако при избыточном поступлении никеля может развиться не только контактный дерматит, но и системная гиперчувствительность к никелю. При обнаружении повышенного содержания никеля в волосах необходимо уточнить, были ли контакты с этим металлом. Может быть полезной аллергопроба с никелем.

Избыточное поступление никеля в организм в результате бытовых и производственных причин.

Фосфор. Значение фосфора для организма человека огромно. Фосфор находится в биосредах в виде фосфат-иона, который входит в состав неорганических компонентов и органических биомолекул. Фосфор присутствует во всех тканях, входит в состав белков, нуклеиновых кислот, нуклеотидов, фосфолипидов. Соединения фосфора АДФ и АТФ являются универсальным источником энергии для всех живых клеток. Значительная часть энергии, образующаяся при распаде углеводов и других соединений, аккумулируется в богатых энергией органических соединениях фосфорной кислоты. Растворимые соли фосфорной кислоты формируют фосфатную буферную систему, ответственную за постоянство кислотно-щелочного равновесия внутриклеточной жидкости. Труднорастворимые (кальциевые) соли фосфорной кислоты составляют минеральную основу костной и зубной ткани. Фосфор играет важную роль в деятельности головного мозга, сердца, мышечной ткани.
При избыточном поступлении фосфора в организм может повышаться уровень выведения кальция, что создает риск быстрого развития остеопороза. Повышение уровня фосфора в волосах часто указывает на его усиленное выведение из организма и может наблюдаться при нарушениях соотношения Са/Р.

Нарушение регуляции обмена; недостаточное поступление в организм (низкое потребление белка); повышенное поступление в организм соединений кальция, алюминия, магния, бария; избыточное потребление искусственных напитков (лимонады и пр.); длительные хронические заболевания; интоксикации, наркозависимости, алкоголизм; заболевания щитовидной железы; болезни околощитовидных желез; заболевания почек; искусственное вскармливание грудных детей.

Избыточное поступление фосфора («белковый перекорм»); избыточное употребление консервированных продуктов, лимонадов; длительный контакт с фосфорорганическими соединениями; нарушение регуляции обмена.

Нарушение регуляции обмена серы.

Избыточное поступление; нарушение регуляции обмена серы.

Селен участвует как в первой фазе биохимической адаптации (окисление чужеродных веществ с образованием органических окисей и перекисей), так и во второй (связывание и выведение активных метаболитов). Селен является основным компонентом фермента пероксидазы глютатиона, который защищает организм от вредных веществ, образующихся при распаде токсинов. Селен антагонист ртути и мышьяка, способен защитить организм от кадмия, свинца, таллия. Селен участвует и в других формах антиоксидантной защиты. Селен является элементом, выполняющим многочисленные защитные функции в организме. Селен усиливает иммунную защиту организма, способствует увеличению продолжительности жизни. Значение селена в механизмах поддержания гомеостаза хорошо иллюстрируется эффективностью применения препаратов селена при самых разнообразных патологических процессах. Селен оказывает лечебный эффект при кардиопатиях различной этиологии, при гепатитах, панкреатитах, заболеваниях кожи, уха, горла и носа. Общеизвестна роль селена в профилактике и лечении злокачественных новообразований.
Недостаток в организме селена ведет к нарушению целостности клеточных мембран, значительному снижению активности сгруппированных на них ферментов, накоплению кальция внутри клеток, нарушению метаболизма аминокислот и кетоновых кислот, снижению энергопродуцирующих процессов. В России к селен-дефицитным регионам относятся, в первую очередь, Северо-Западный регион, Верхнее Поволжье, Удмуртия и Забайкалье.
Избыточное поступление селена и его соединений отмечается у рабочих, занятых в электронной, литейной, медеплавильной, стекольной, лакокрасочной, нефтеперерабатывающей, химической (производство пестицидов) и фармацевтической (производство сульфида селена, селенита натрия) промышленности. Описаны случаи селенотоксикоза у животных и человека, обусловленного избыточным поступлением этого элемента в организм вместе с растениями, которые являются концентраторами селена (астрагал, Stanlea, Happlopappus и др.). Такой селенотоксикоз проявляется в виде так называемой «щелочной болезни» (см. симптомы селенотоксикоза). Повышенное содержание селена в почве наблюдается на обширных территориях Австралии и США. В России избыток селена в окружающей среде встречается в Туве, Якутии, на Урале.

Пониженное содержание селена в пище, в питьевой воде; усиленный расход на нейтрализацию вредных веществ; алкоголизм.

Избыточное поступление; нарушение регуляции обмена селена.

Кремний в виде различных соединений входит в состав большинства тканей, влияет на обмен липидов и на образование коллагена и костной ткани. Особенно важна роль кремния как структурного элемента соединительной ткани. Концентрация кремния в аорте с возрастом снижается, что косвенно указывает на значимость биоэлементного статуса кремния в патогенезе атеросклероза.
Повышенное содержание кремния в организме встречается у рабочих добывающей промышленности при контактах с асбестом, кварцем, аэрозолями, цементом, стеклом и т.п., а также в местностях с избытком соединений кремния в воде и в воздухе. Систематическое вдыхание пыли, содержащей свободную двуокись кремния в высоких концентрациях, приводит к развитию силикоза.

Недостаточное поступление; усиленное расходование кремния (быстрый рост, физические перегрузки);нарушение регуляции обмена кремния.

Избыточное поступление; нарушение регуляции обмена кремния.

Ванадий участвует в регуляции углеводного обмена и сердечно-сосудистой деятельности, а также в метаболизме тканей костей и зубов. Считается, что ванадию свойственны функции катализатора окислительно-восстановительных процессов. Ванадий является ингибитором и, возможно, регулятором Na+-K+-АТФ-азы, рибонуклеазы и других ферментов. Ванадий усиливает поглощение кислорода тканями печени, катализирует окисление фосфолипидов изолированными ферментами печени, и возможно, оказывает влияние на уровень сахара в крови. Ванадий оказывает действие на некоторые функции глаз, печени, почек, миокарда, нервной системы.
Недостаток ванадия может сопровождаться снижением уровня холестерина и повышением содержания триглицеридов, печеночных липидов и фосфолипидов в плазме крови, увеличением гематокрита.
Избыточное поступление ванадия в организм обычно связано с экологическими и производственными факторами. При остром воздействии токсических доз ванадия у рабочих отмечаются местные воспалительные реакции кожи и слизистых оболочек глаз, верхних дыхательных путей, скопление слизи в бронхах и альвеолах. Возникают и системные аллергические реакции типа астмы и экземы; а также лейкопения и анемия, которые сопровождаются нарушениями основных биохимических параметров организма.

Состояния после операций, ожоги, парентеральное питание; избыточное поступление в организм эстрогенов, кортикостероидов, диуретиков и некоторых других фармпрепаратов; избыточное поступление в организм меди, кадмия, свинца, ртути; злоупотребление алкоголем; усиленное расходование цинка (напр., при беременности, кормлении грудью, в период заживления ран и выздоровления после болезней); нарушение всасывания цинка в кишечнике (дисбактериоз, ферментопатии и пр.); кишечные паразиты; псориаз, себорея, повышенная потливость.

Избыточное поступление (напр., при контакте с соединениями цинка в производственных условиях); неконтролируемое использование препаратов цинка, в т.ч., мазей; нарушение регуляции обмена цинка.

Условно-токсичные элементы

Символ

Отравляющее воздействие

Возможные причины

Мышьяк относят к иммунотоксичным элементам. Известно, что мышьяк взаимодействуют с тиоловыми группами белков, цистеином, глутатионом, липоевой кислотой. Мышьяк оказывает влияние на окислительные процессы в митохондриях и принимает участие во многих других важных биохимических процессах. Мышьяк относится к так называемым «тиоловый ядам». Механизм его токсичности связан с нарушением обмена серы, селена и фосфора. Токсичность мышьяка зависит от его химических свойств и снижается в следующем порядке ряда: арсин > неорганический As3+> органический As3+> неорганический As5+ > соединения арсония > элементарный мышьяк. Отравление мышьяком происходит при употреблении отравленной пищи и воды, вдыхании соединений мышьяка в виде пыли в производственных условиях, применении некоторых медикаментов. Органами-мишенями при избыточном содержании мышьяка в организме являются костный мозг, желудочно-кишечный тракт, кожа, легкие и почки.

Избыточное поступление (постоянный контакт с мышьяком, загрязнение окружающей среды, табакокурение, злоупотребление виноградным вином, длительное введение препаратов сальварсана); нарушение регуляции обмена мышьяка; усиленное накопление при недостатке в организме селена.

Барий относится к токсичным ультрамикроэлементам. Содержание бария в плазме крови изменяется параллельно изменениям концентрации кальция. В незначительных количествах барий находится во всех органах и тканях, однако всего его больше в головном мозге, мышцах, селезенке и хрусталике глаза. Около 90% всего содержащегося в организме бария концентрируется в костях и зубах. Установлено, что при ишемической болезни сердца, хронической коронарной недостаточности, заболеваниях органов пищеварения содержание бария в тканях снижается. Даже в ничтожных концентрациях барий оказывает выраженное влияние на гладкие мышцы. Барий относят к токсичным ультрамикроэлементам, однако этот элемент не считается мутагенным или канцерогенным. Токсичны все соединения бария (за исключением сульфата бария, применяемого в рентгенологии). Барий оказывает нейротоксическое, кардиотоксическое и гемотоксическое действие.

Избыточное поступление (в т.ч. за счет производственных и бытовых отравлений).

Висмут относится к токсичным ультрамикроэлементам. В организм человека висмут поступает в основном с пищей, а также с воздухом и водой. Всасывание висмута, поступившего в желудочно-кишечный тракт, незначительно. После всасывания висмут обнаруживается в крови в виде соединений с белками, а также проникает в эритроциты. Между органами и тканями висмут распределяется относительно равномерно. Некоторое накопление висмута может наблюдаться в печени, почках (до 1 мкг/г), селезенке и костях. Обнаруживается висмут и в головном мозгу. Висмут, прошедший через желудочно-кишечный тракт, выделяется в виде сульфида висмута, окрашивая кал в темный цвет. Резорбированный висмут выделяется с мочой. Висмут индуцирует синтез низкомолекулярных белков, принимает участие в процессах оссификации, образует внутриклеточные включения в эпителии почечных канальцев. Возможно, этот элемент обладает генотоксичными и мутагенными свойствами. Интоксикация обычно наблюдается лишь при длительном воздействии на организм солей висмута в больших дозах. Тем не менее, встречаются случаи ятрогенных, профессиональных и бытовых отравлений.

Избыточное поступление (напр., с табачным дымом, при производственном контакте); дефицит цинка, селена, меди, кальция, железа.

Церий. Условно-токсичный редкоземельный ультрамикроэлемент лантаноидной группы. Обладает способностью к биоаккумуляции. Токсичность элемента и его соединений невелика.

Цезий. Условно-токсичный ультрамикроэлемент, относительно малотоксичен.

Диспрозий. Условно-токсичный редкоземельный ультрамикроэлемент лантаноидной группы. Токсичность элемента и его соединений невелика.

Эрбий. Условно-токсичный редкоземельный ультрамикроэлемент лантаноидной группы. Токсичность элемента и его соединений невелика.

Европий. Условно-токсичный редкоземельный ультрамикроэлемент лантаноидной группы. Токсичность элемента и его соединений невелика.

Галлий. В основном, галлий поступает в организм с пищей и содержится в тканях в незначительных количествах (0,01-0,06 мкг/г). Имеются единичные данные, свидетельствующие о присутствии галлия в железах внутренней секреции, в частности, в гипофизе. «Депо» галлия в организме является костная ткань и печень. Галлий не оказывает влияния на резорбцию костной ткани, стимулированную витамином D; но предупреждает резорбцию, связанную с метаболизмом паратгормона, тирок

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *