какое тело называют телом отсчета

Основные понятия кинематики

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин, его вызывающих.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Механическое движение относительно (см 1.2) Движение одного и того же тела относительно разных тел оказывается различным. Для описания движения тела нужно указать, по отношению к какому телу рассматривается движение. Это тело называют телом отсчета.

Система координат, связанная с телом отсчета, и часы для отсчета времени образуют систему отсчета, позволяющую определять положение движущегося тела в любой момент времени.

В Международной системе единиц (СИ) за единицу длины принят метр, а за единицу времени – секунда.

В системе СГС (Сантиметр, грамм, секунда) приняты соответственно сантиметр и секунда.

Всякое тело имеет определенные размеры. Различные части тела находятся в разных местах пространства. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела.

Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать его материальной точкой. Так можно поступать, например, при изучении движения планет вокруг Солнца.

Если все части тела движутся одинаково, то такое движение называется поступательным. Поступательно движутся, например, кабины в аттракционе «Колесо обозрения», автомобиль на прямолинейном участке пути и т. д. При поступательном движении тела его также можно рассматривать как материальную точку.

Тело, размерами которого в данных условиях можно пренебречь, называется материальной точкой.

Понятие материальной точки играет важную роль в механике.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает некоторую линию, которую называют траекторией движения тела.

Положение материальной точки в пространстве в любой момент времени (закон движения) можно определять либо с помощью зависимости координат от времени x = x (t), y = какое тело называют телом отсчетаy (t), z = z (t) (координатный способ), либо при помощи зависимости от времени

радиус-вектора какое тело называют телом отсчета(векторный способ), проведенного из

начала координат до данной точки (рис. 1.1.1).

какое тело называют телом отсчета

и радиус-вектора какое тело называют телом отсчета

какое тело называют телом отсчета– радиус-вектор положения точки в начальный момент времени

Перемещением тела

какое тело называют телом отсчета

называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение есть векторная величина.

Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина.

Если движение тела рассматривать в течение достаточно короткого промежутка времени, то вектор перемещения окажется направленным по касательной к траектории в данной точке, а его длина будет равна пройденному пути.

В случае достаточно малого промежутка времени Δt пройденный телом путь Δl почти совпадает с модулем вектора перемещения какое тело называют телом отсчетаПри движении тела по криволинейной траектории модуль вектора перемещения всегда меньше пройденного пути (рис. 1.1.2).

какое тело называют телом отсчета

Пройденный путь l и вектор перемещения какое тело называют телом отсчетапри криволинейном движении тела. a и b – начальная и конечная точки пути

Для характеристики движения вводится понятие средней скорости:

какое тело называют телом отсчета

В физике наибольший интерес представляет не средняя, а мгновенная скорость, которая определяется как предел, к которому стремится средняя скорость на бесконечно малом промежутке времени Δt,

какое тело называют телом отсчета

В математике такой предел называют производной и обозначают

какое тело называют телом отсчета

Мгновенная скорость какое тело называют телом отсчетатела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке. Различие между средней и мгновенной скоростями показано на рис. 1.1.3.

какое тело называют телом отсчета

Средняя и мгновенная скорости.

какое тело называют телом отсчета– перемещения за времена какое тело называют телом отсчетасоответственно.

какое тело называют телом отсчета

При движении тела по криволинейной траектории его скорость какое тело называют телом отсчетаизменяется по модулю и направлению. Изменение вектора скорости какое тело называют телом отсчетаза некоторый малый промежуток времени Δt можно задать с помощью вектора какое тело называют телом отсчета(рис. 1.1.4).

Вектор изменения скорости какое тело называют телом отсчетаза малое время Δt можно разложить на две составляющие: какое тело называют телом отсчетанаправленную вдоль вектора какое тело называют телом отсчета(касательная составляющая), и какое тело называют телом отсчетанаправленную перпендикулярно вектору какое тело называют телом отсчета(нормальная составляющая).

какое тело называют телом отсчета

Изменение вектора скорости по величине и направлению. какое тело называют телом отсчета– изменение вектора скорости за время Δt

Мгновенным ускорением (или просто ускорением) тела какое тело называют телом отсчетаназывают предел отношения малого изменения скорости какое тело называют телом отсчетак малому промежутку времени Δt, в течение которого происходило изменение скорости:
какое тело называют телом отсчета

Направление вектора ускорения какое тело называют телом отсчетав случае криволинейного движения не совпадает с направле какое тело называют телом отсчетанием вектора какое тело называют телом отсчетаскорости Составляющие вектора ускорения называют касательным (тангенциальным) какое тело называют телом отсчетаи нормальным какое тело называют телом отсчетаускорениями (рис. 1.1.5).

какое тело называют телом отсчета

Касательное и нормальное ускорения

Касательное ускорение указывает, насколько быстро изменяется скорость тела по модулю:

какое тело называют телом отсчета

Вектор какое тело называют телом отсчетанаправлен по касательной к траектории.

Нормальное ускорение указывает, насколько быстро скорость тела изменяется по направлению.

Криволинейное движение можно представить как движение по дугам окружностей (рис. 1.1.6).

какое тело называют телом отсчета

Движение по дугам окружностей

Нормальное ускорение зависит от модуля скорости υ и от радиуса R окружности, по дуге которой тело движется в данный момент: какое тело называют телом отсчетакакое тело называют телом отсчета

Вектор какое тело называют телом отсчетавсегда направлен к центру окружности.

Из рис. 1.1.5 видно, что модуль полного ускорения равен

какое тело называют телом отсчета

Таким образом, основными физическими величинами в кинематике материальной точки являются пройденный путь l, перемещение какое тело называют телом отсчета, скорость какое тело называют телом отсчетаи ускорение какое тело называют телом отсчета. Путь l является скалярной величиной. Перемещение какое тело называют телом отсчета, скорость какое тело называют телом отсчетаи ускорение какое тело называют телом отсчета– величины векторные. Чтобы задать векторную величину, нужно задать ее модуль и указать направление. Векторные величины подчиняются определенным математическим правилам. Вектора можно проектировать на координатные оси, их можно складывать, вычитать и т. д.

Источник

Какое тело называют телом отсчета

Система отсчёта — это совокупность тела отсчета, связанной с ним системы координат и системы отсчёта времени, по отношению к которым рассматривается движение (или равновесие) каких-либо материальных точек или тел.

Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения. Например, в декартовых координатах х, y, z движение точки определяется уравнениями

какое тело называют телом отсчета

Движущиеся тела изменяют своё положение относительно других тел в пространстве с течением времени. Положение автомобиля, мчащегося по шоссе, изменяется относительно указателей на километровых столбах, положение корабля, плывущего в море недалеко от берега, меняется относительно береговой линии, а о движении самолёта, летящего над землей, можно судить по изменению его положения относительно поверхности Земли. Можно показать, что одно и то же тело при одном и том же движении может одновременно по-разному перемещаться относительно разных тел.

Абсолютная система отсчёта

Часто в физике какую-то СО считают наиболее удобной (привилегированной) в рамках решения данной задачи — это определяется простотой расчётов либо записи уравнений динамики тел и полей в ней. Обычно такая возможность связана с симметрией задачи.

С другой стороны, ранее считалось, что существует некая «фундаментальная» система отсчёта, простота записи в которой законов природы выделяет её из всех остальных систем. Например, физики XIX в. считали что, система, относительно которой покоится эфир электродинамики Максвелла, является привилегированной, и поэтому она была названа Абсолютной Системой Отсчета (АСО). В современных представлениях никакой системы отсчёта, выделенной именно таким способом, не существует, так как законы природы, выраженные в тензорной форме, имеют один и тот же вид во всех системах отсчёта — то есть во всех точках пространства и во все моменты времени. Это условие — локальная пространственно-временная инвариантность — является одним из проверяемых оснований физики.

Иногда абсолютной системой отсчета называют систему, связанную с реликтовым излучением, то есть инерциальную систему отсчета, в которой реликтовое излучение не имеет дипольной анизотропии.

Источник

Механическое движение

какое тело называют телом отсчета

Механическое движение

Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.

«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:

В совокупности эти три параметра образуют систему отсчета.

В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉

Прямолинейное равномерное движение

Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.

Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.

Мы можем охарактеризовать это движение следующими величинами.

Скалярные величины (определяются только значением)

Векторные величины (определяются значением и направлением)

Проецирование векторов

Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.

Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.

Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.

какое тело называют телом отсчета

Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.

Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.

Скорость

→ →
V = S/t


V — скорость [м/с]

S — перемещение [м]
t — время [с]

Средняя путевая скорость

V ср.путевая = S/t

V ср.путевая — средняя путевая скорость [м/с]
S — путь [м]
t — время [с]

Задача

Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.

Решение:

Возьмем формулу средней путевой скорости
V ср.путевая = S/t

Подставим значения:
V ср.путевая = 210/2,5 = 84 км/ч

Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч

Уравнение движения

Основной задачей механики является определение положения тела в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).

Уравнение движения

x(t) = x0 + vxt

x(t) — искомая координата [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v

Уравнение движения при движении против оси

x(t) — искомая координата [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Графики

Изменение любой величины можно описать графически. Вместо того, чтобы писать множество значений, можно просто начертить график — это проще.

В видео ниже разбираемся, как строить графики кинематических величин и зачем они нужны.

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».

Итак, прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.

Уравнение движения для равноускоренного движения

x(t) = x0 + v0xt + axt^2/2

x(t) — искомая координата [м]
x0 — начальная координата [м]
v0x — начальная скорость тела в данный момент времени [м/с]
t — время [с]
ax — ускорение [м/с^2]

Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:

Формула конечной скорости

→ →
v = v0 + at


v — конечная скорость тела [м/с]
v0 — начальная скорость тела [м/с]
t — время [с]

a — ускорение [м/с^2]

Задача

Найдите местоположение автобуса через 0,5 часа после начала движения, разогнавшегося до скорости 60 км/ч за 3 минуты.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

Так как автобус двигался с места, v0 = 0. Значит
a = v/t

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

Подставим значения:
a = v/t = 60/0,05 = 1200 км/ч^2
Теперь возьмем уравнение движения.
x(t) = x0 + v0xt + axt^2/2

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

Подставим циферки:
x = 1200*0,5^2/2 = 1200*0,522= 150 км

Ответ: через полчаса координата автобуса будет равна 150 км.

Графики

Мы уже знаем, что такое графики функций и зачем они нужны. Для прямолинейного равноускоренного движения графики будут отличаться. Об этом — в видео ниже

Движение по вертикали

Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с^2, а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с2. В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с2.

Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

Помните о том, что свободное падение — это не всегда движение по вертикали. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.

какое тело называют телом отсчета

какое тело называют телом отсчета

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Источник

Вопросы § 10

Физика А.В. Перышкин

1.Как движется тело, если на него не действуют другие тела?

Тело движется равномерно и прямолинейно, либо покоится.

2. Чем отличаются взгляды Галилея от взглядов Аристотеля в вопросе об условиях равномерного движения тел?

До начала XVII века господствовала тео­рия Аристотеля, согласно которой, если на него не оказывается внешнее воздействие, то оно мо­жет покоится, а для того, чтобы оно двигалось с постоянной скоростью на него непрерывно должно действовать другое тело.

3. Как проводился опыт, изображённый на рисунке 19, и какие выводы из него следуют?

Ход опыта. На тележке, движущейся рав­номерно и прямолинейно, относительно земли, на­ходятся два шарика. Один шарик покоится на дне тележки, а второй подвешен на нити. Шарики на­ходятся в состоянии покоя относительно тележки, так как силы действующие на них уравновешены. При торможении оба шарика приходят в движение. Они изменяют свою скорость относительно тележ­ки, хотя на них не действуют никакие силы. Вывод. Следовательно, в системе отсчета, связанной с тор­мозящей тележкой закон инерции не выполняется.

4. Дайте современную формулировку первого закона Ньютона.

Первый закон Ньютона в современной фор­мулировке: существуют такие системы отсчета, от­носительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела (силы) или действие этих тел (сил) скомпенсиро­вано (равно нулю).

5. Какие системы отсчёта называются инерциальными, а какие — неинерциальными? Приведите примеры.

Системы отсчета в которых выполняется за­кон инерции называются инерциальными, а в кото­рых не выполняется — неинерциальными.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *