ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΈ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’ процСссС Ρ‚Π°ΠΊΠΎΠ³ΠΎ пСрСмСщСния ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° пСриодичСски измСняСтся, поэтому для описания Π΄Π°Π½Π½ΠΎΠ³ΠΎ процСсса ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ понятия срСднСй ΠΈ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ скоростСй.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

МгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – это ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ‚Π΅Π»Π°, которая фиксируСтся Π² ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΏΡƒΡ‚ΠΈ. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ \(v\) Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π» стрСмлСния срСднСй скорости Ρ‚Π΅Π»Π° \(v_<ср>\) ΠΏΡ€ΠΈ бСсконСчно ΠΌΠ°Π»ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, Π² случаС стрСмлСния послСднСго ΠΊ Π½ΡƒΠ»ΡŽ, – это главная производная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ.

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€ скатывания ΡˆΠ°Ρ€ΠΈΠΊΠ° ΠΏΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ повСрхности. ΠŸΡ€ΠΈ этом ΠΌΡ‹ наблюдаСм, Ρ‡Ρ‚ΠΎ ΡˆΠ°Ρ€ΠΈΠΊ двиТСтся Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ: расстояния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π·Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, постоянно ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ. Π’ΠΎ Π΅ΡΡ‚ΡŒ, Ρ‚Π΅ΠΌΠΏ Π΅Π³ΠΎ двиТСния постоянно растёт. Π”Π°Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠ°ΠΊ ΠΈ скачиваниС любого ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°, являСтся классикой прямолинСйного равноускорСнного пСрСмСщСния.

Π•Ρ‰Π΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ транспорта, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ разгоняСтся, Π° Ρ‚Π°ΠΊ ΠΆΠ΅ ΠΊΠΎΠ³Π΄Π° Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚. Π’ΠΎ Π΅ΡΡ‚ΡŒ равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ускорСнноС, Π½ΠΎ ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Π”Π΅Π»ΠΎ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ понятиС «ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΠ΅» Π² физичСском смыслС Π±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅, Π½Π΅ΠΆΠ΅Π»ΠΈ ΠΌΡ‹ ΠΏΡ€ΠΈΠ²Ρ‹ΠΊΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ. Π‘Π»ΠΎΠ²ΠΎ ускорСниС Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ ΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΠΈ понимаСтся ΠΊΠ°ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ скорости, Π½ΠΎ физичСски ΠΏΠΎΠ΄ ускорСниСм понимаСтся ΠΏΠ΅Ρ€Π΅Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° с постоянным ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ скорости, ΠΏΡ€ΠΈ этом Π½Π΅Π²Π°ΠΆΠ½ΠΎ увСличиваСтся ΠΎΠ½Π° ΠΈΠ»ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

Π‘Π»ΠΎΠΆΠ½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ самому?

ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒΡΡ Π·Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊ прСподаватСлям

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ прямолинСйного равноускорСнного двиТСния достаточно ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ.

Π‘Ρ‚ΠΎΠΈΡ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ влиянии постоянной силы Ρ‚Π΅Π»ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒΡΡ равноускорСно.

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Ρ‚Π°ΠΊΠΎΠ΅ мСханичСскоС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°, ΠΊΠΎΠ³Π΄Π° Π·Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π²Π°Π΅Ρ‚ Ρ€Π°Π²Π½Ρ‹Π΅ расстояния.

Для Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пСрСмСщСния Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎ постоянноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ скорости:

Π³Π΄Π΅ \(v\) – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пСрСмСщСния, ΠΌ/с;

\(l\) – расстояниС, ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ, ΠΌ;

\(Ξ΄t\) – ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ пСрСмСщСния, с.

ΠŸΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π° остаётся Ρ€Π°Π²Π½ΠΎΠΉ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ ΠΏΡƒΡ‚ΠΈ.

Если ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ прямолинСйноС, Ρ‚ΠΎ Π΅Π³ΠΎ ΠΏΡƒΡ‚ΡŒ Ρ€Π°Π²Π΅Π½ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ Π΅Π³ΠΎ пСрСмСщСния. Π—Π½Π°Ρ‡ΠΈΡ‚, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌΡƒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΡŽ, опрСдСляСм ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного пСрСмСщСния:

Π³Π΄Π΅ \(\overline \) – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного пСрСмСщСния, ΠΌ/с;

\(\overline\) – ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°, ΠΌ;

\(Ξ΄t\) – ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ пСрСмСщСния, с.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного пСрСмСщСния являСтся Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ. Π’ΠΎ Π΅ΡΡ‚ΡŒ Π΅Ρ‘ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ.

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°

ΠŸΡ€ΠΈ равноускорСнном ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ постоянно измСняСтся. Если Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Π΅Ρ‚ ΠΎΠ± убыстрСнии, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ постоянно растСт. Π’ΠΎ Π΅ΡΡ‚ΡŒ ускорСниС остаётся Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ постоянной, Π° Ρ‚Π΅ΠΌΠΏ постоянно растСт.

Помимо равноускорСнного двиТСния Π΅Ρ‰Π΅ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅, Π³Π΄Π΅ Ρ‚Π΅ΠΌΠΏ постоянно ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ быстротой.

Π Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ускорСниС. ΠŸΠ΅Ρ€Π²ΠΎΠ΅ происходит вдоль ΠΎΠ΄Π½ΠΎΠΉ оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π° Π²Ρ‚ΠΎΡ€ΠΎΠ΅ – Π² плоскости ΠΈΠ»ΠΈ Π² пространствС.

НС нашли Ρ‡Ρ‚ΠΎ искали?

ΠŸΡ€ΠΎΡΡ‚ΠΎ напиши ΠΈ ΠΌΡ‹ ΠΏΠΎΠΌΠΎΠΆΠ΅ΠΌ

УскорСниС Ρ‚Π΅Π»Π°

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния для расчСта ускорСния ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π±Π΅Π· ΡƒΡ‡Ρ‘Ρ‚Π° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² Ρ€Π°Π·Π½Ρ‹Ρ… плоскостях. НапримСр, ΠΏΡ€ΠΈ расчётС свободного падСния ТСстких Ρ‚Π΅Π», ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΈΡ… мСстополоТСниС. Π­Ρ‚ΠΎ Π±Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… гСомСтричСских расчётах.

НСравномСрноС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°, Ρ‚Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ равноускорСнноС, характСризуСтся ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ скорости. Но Π² Ρ‡Ρ‘ΠΌ ΠΆΠ΅ Ρ‚ΠΎΠ³Π΄Π° ΠΈΡ… ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅? ΠŸΡ€ΠΈ равноускорСнном – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π½Π΅ просто измСняСтся, ΠΎΠ½Π° Ρ€Π°Π²Π½ΠΎ ускоряСтся.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ускорСния часто Π°ΡΡΠΎΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‚ с ростом скорости. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ растСт ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ, говорят ΠΎ Ρ€Π°Π²Π½ΠΎΠΌ возрастании скорости. Как ΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ растСт Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΠΈΠ»ΠΈ Π½Π΅Ρ‚? Для этого Π·Π°ΡΠ΅ΠΊΠ°ΡŽΡ‚ врСмя, ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ скорости Π·Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ссли ΠΏΡ€ΠΈ этом ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ Π½ΠΎΠ²ΠΎΠΌ участкС, ΠΏΠ΅Ρ€Π΅Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ считаСтся равноускорСнным.

УскорСниС – это физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰Π°Ρ Π½Π° сколько возрастаСт ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ.

Π—Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π΅ΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ с ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‰Π΅ΠΉΡΡ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ любоС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ с ΠΌΠ΅Π½ΡΡŽΡ‰Π΅ΠΉΡΡ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ называСтся ускорСнным, Ρ‚ΠΎ Π½Π΅Π²Π°ΠΆΠ½ΠΎ разгоняСтся Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ Π»ΠΈΠ±ΠΎ Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚, Π² любом случаС ΠΎΠ½ пСрСдвигаСтся с ускорСниСм.

Π—Π½Π°Ρ‡ΠΈΡ‚, ускорСниС описываСт быстроту измСнСния скорости. Оно ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° сколько мСняСтся ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π·Π° ΠΎΠ΄Π½Ρƒ сСкунду. Π§Π΅ΠΌ большС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ускорСния, Ρ‚Π΅ΠΌ ΡΡ‚Ρ€Π΅ΠΌΠΈΡ‚Π΅Π»ΡŒΠ½Π΅Π΅ Ρ‚Π΅Π»ΠΎ Π½Π°Π±ΠΈΡ€Π°Π΅Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π»ΠΈΠ±ΠΎ сбрасываСт Π΅Ρ‘. УскорСниС обозначаСтся Π±ΡƒΠΊΠ²ΠΎΠΉ a ΠΈ опрСдСляСтся ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ измСнСния скорости Ξ΄v ΠΊ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΡƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ΄t, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΎΠ½ΠΎ осущСствлСно:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΡ€ΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅: Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΈ равноускорСнноС

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅Π»Π° называСтся ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ полоТСния Π² пространствС ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΡ…. Рассмотрим Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°, для этого Π²Π²Π΅Π΄Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ понятия.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Ρ‚Π΅Π»Π°

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° β€” это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π΅Π»ΠΎ Π·Π° Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ пСрСмСщСния.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°β€” Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, слуТащая для опрСдСлСния полоТСния ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° плоскости ΠΈΠ»ΠΈ Π² пространствС.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅Π»Π° называСтся Π²Π΅ΠΊΡ‚ΠΎΡ€, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° с Π΅Π³ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ.

ВраСктория β€” это линия, вдоль ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ двиТСтся Ρ‚Π΅Π»ΠΎ.

ΠŸΡƒΡ‚ΡŒ β€” это Π΄Π»ΠΈΠ½Π° Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, вдоль ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ двиТСтся Ρ‚Π΅Π»ΠΎ.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ― это вСкторная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°!

Π’ заданиях, Π³Π΄Π΅ Π΄Π°Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ,

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π‘Π»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Ρ‚Ρ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π² Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅:

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹: ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚Π΅Π»ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ (Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ позиция) ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСннои ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°, ΠΊΡƒΠ΄Π° ΠΎΠ½ ΠΏΡ€ΠΈΠ±Ρ‹Π²Π°Π΅Ρ‚ Ρ‡Π΅Ρ€Π΅Π· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ врСмя (конСчная позиция) ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСннои ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°, ΠΊΡƒΠ΄Π° ΠΎΠ½ ΠΏΡ€ΠΈΠ±Ρ‹Π²Π°Π΅Ρ‚ Ρ‡Π΅Ρ€Π΅Π· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ врСмя (конСчная позиция) ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно.
Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ: ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ всСгда Π±ΡƒΠ΄Π΅Ρ‚ постоянной ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно.
ВрСмя: ΠΌΠΎΠΌΠ΅Π½Ρ‚, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ (Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ врСмя) ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСннои врСмя, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ для прохоТдСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ расстояния (ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ΅ врСмя) ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСннои врСмя, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ для прохоТдСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ расстояния (ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ΅ врСмя) ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно.
Π­Ρ‚ΠΈ Ρ‚Ρ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ связаны этой Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно,

Π³Π΄Π΅ ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно.

РавноускорСнноС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

РавноускорСнноС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° β€” Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π΅Π³ΠΎ ускорСниС Π½Π΅ мСняСтся, Π½ΠΈ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Π½ΠΈ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ равноускорСнного двиТСния Π² ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π° ось Ox ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно, Π³Π΄Π΅:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно— Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π°;

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно— проСкция Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π° ось x;

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно— проСкция ускорСния Π½Π° ось x;

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно— врСмя двиТСния

УскорСниСм Ρ‚Π΅Π»Π° называСтся вСкторная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, равная ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ измСнСния скорости Π·Π° любой ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΊ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ ускорСния опрСдСляСтся Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно, Π³Π΄Π΅:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно— ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t; t β€” врСмя;

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно— Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π°;
ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно— ускорСниС Ρ‚Π΅Π»Π°.

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Если сущСствуСт Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ x(t), Ρ‚ΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ, взяв ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ этой зависимости.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ― это производная ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚Π΅Π»Π° ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

НапримСр, Ссли Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно, Ρ‚ΠΎ взяв ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π’ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅, ускорСниС ― это производная ΠΎΡ‚ скорости Ρ‚Π΅Π»Π°:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ выполнСния Π·Π°Π΄Π°Π½ΠΈΠΉ Π•Π“Π­ ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π—Π°Π΄Π°Π½ΠΈΠ΅ 1.

На рисункС прСдставлСн Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΏΡƒΡ‚ΠΈ S, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅, сколько сСкунд, послС Π½Π°Ρ‡Π°Π»Π° двиТСния, ΠΊΠΎΠ³Π΄Π° Ρ‚ΠΎΡ‡ΠΊΠ° стала Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 10 ΠΌ/с.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠžΡ‚Π²Π΅Ρ‚:1

РСшСниС: Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, Π½Π° всС врСмя двиТСния Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. На ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ с Π½Π°Ρ‡Π°Π»Π° двиТСния ΠΈ Π΄ΠΎ 1 с Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΡ€ΠΎΡˆΠ»Π° 10 ΠΌ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π΅Π΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π±Ρ‹Π»Π° 10 ΠΌ/с. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ… ΠΏΡƒΡ‚ΠΈ ― 2,5 ΠΌ/с, 0 ΠΌ/с ΠΈ 5 ΠΌ/с соотвСтствСнно.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 2.

На рисункС прСдставлСн Π³Ρ€Π°Ρ„ΠΈΠΊ двиТСния автобуса ΠΈΠ· ΠΏΡƒΠ½ΠΊΡ‚Π° А Π² ΠΏΡƒΠ½ΠΊΡ‚ Π‘ ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ. ΠŸΡƒΠ½ΠΊΡ‚ А находится Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ…= 0, Π° ΠΏΡƒΠ½ΠΊΡ‚ Π‘ ― Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ…= 30 ΠΊΠΌ. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ автобуса Π½Π° ΠΏΡƒΡ‚ΠΈ ΠΈΠ· А Π² Π‘? ΠžΡ‚Π²Π΅Ρ‚ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Π² ΠΊΠΌ/Ρ‡.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠžΡ‚Π²Π΅Ρ‚: 60 ΠΊΠΌ/Ρ‡

РСшСниС:

Богласно Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ, Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΡƒΡ‚ΠΈ автобуса ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Π°, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ автобуса Π½Π° всСх участках ΠΏΡƒΡ‚ΠΈ постоянна. Из ΠΏΡƒΠ½ΠΊΡ‚Π° А Π² ΠΏΡƒΠ½ΠΊΡ‚ Π‘, находящиСся Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π° Π½Π° расстоянии S = 30 ΠΊΠΌ автобус ΠΈΠ΄Π΅Ρ‚

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния автобуса: S = vt, ΠΎΡ‚ΠΊΡƒΠ΄Π° v = S/t = 30 ΠΊΠΌ/ 0,5 Ρ‡ = 60 ΠΊΠΌ/Ρ‡.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 3.

На рисункС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости модуля скорости двиТСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Какой ΠΈΠ· Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ β€” 1, 2, 3 ΠΈΠ»ΠΈ 4 β€” ΠΏΡ€ΠΎΡˆΠ΅Π» наибольший ΠΏΡƒΡ‚ΡŒ Π·Π° ΠΏΠ΅Ρ€Π²Ρ‹Π΅ 10 с двиТСния?

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠžΡ‚Π²Π΅Ρ‚: 3

РСшСниС:

ΠŸΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ ΠΈΠ· Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ, Ρ€Π°Π²Π΅Π½ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠΎΠ΄ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ зависимости модуля скорости автомобиля ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния.

Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… рисунков, наимСньшая ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости автомобиля 4, наибольшая ― ΠΏΠΎΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости автомобиля 3.

ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ 1 ΠΏΡ€ΠΎΡˆΠ΅Π» ΠΏΡƒΡ‚ΡŒ:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ 2 ΠΏΡ€ΠΎΡˆΠ΅Π» ΠΏΡƒΡ‚ΡŒ:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠŸΡƒΡ‚ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΅Ρ…Π°Π» Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ 4:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π—Π°Π΄Π°Π½ΠΈΠ΅ 4.

На рисункС прСдставлСн Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости v автомобиля ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΌ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ 0 Π΄ΠΎ 3 с.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠžΡ‚Π²Π΅Ρ‚: 25 ΠΌ

РСшСниС: ΠŸΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΌ, Ρ€Π°Π²Π΅Π½ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠΎΠ΄ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ зависимости модуля скорости автомобиля ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠ΅ΠΉΡΡ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π°: ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнном.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 5.

Π’Π΅Π»ΠΎ двиТСтся ΠΏΠΎ оси x. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Ρ‚Π΅Π»Π° Ο…x ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t установитС, ΠΊΠ°ΠΊΠΎΠΉ ΠΏΡƒΡ‚ΡŒ ΠΏΡ€ΠΎΡˆΠ»ΠΎ Ρ‚Π΅Π»ΠΎ Π·Π° врСмя ΠΎΡ‚ t1= 0 Π΄ΠΎ t2= 4 c.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠžΡ‚Π²Π΅Ρ‚: 20.

РСшСниС:

ΠŸΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ Ρ€Π°Π²Π΅Π½ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠΎΠ΄ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ зависимости модуля скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния. Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Π΅Π»ΠΎ двиТСтся ΠΏΠΎ оси Ρ…, Π΄Ρ€ΡƒΠ³ΠΈΡ… ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… скорости, ΠΊΡ€ΠΎΠΌΠ΅ Ο…x Ρƒ Ρ‚Π΅Π»Π° Π½Π΅Ρ‚.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠ΅Π³ΠΎΡΡ ΠΏΠΎΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Π°: ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π—Π°Π΄Π°Π½ΠΈΠ΅ 6

На Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ускорСниС Ρ‚Π΅Π»Π°.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠžΡ‚Π²Π΅Ρ‚: 6 ΠΌ/с 2

Π—Π°Π΄Π°Π½ΠΈΠ΅ 7

По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (см. рисунок) ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ускорСниС прямолинСйно двиТущСгося Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ 2 с.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π—Π°Π΄Π°Π½ΠΈΠ΅ 8

Π—Π°Π΄Π°Π½ΠΈΠ΅ 9

Π’Π΅Π»ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ ΠΏΠ°Π΄Π°Ρ‚ΡŒ ΠΈΠ· состояния покоя ΠΈ ΠΏΠ΅Ρ€Π΅Π΄ ΡƒΠ΄Π°Ρ€ΠΎΠΌ ΠΎ Π—Π΅ΠΌΠ»ΡŽ ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ 80 ΠΌ/с. Каково врСмя падСния? Π‘ΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²ΠΎΠ·Π΄ΡƒΡ…Π° ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Ρ‡ΡŒ.

ΠžΡ‚Π²Π΅Ρ‚: 8с.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΡƒΡΠΊΠΎΡ€Π΅Π½Π½ΠΎΠΎΡ‚ΡΡŽΠ΄Π° ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΡƒΡΠΊΠΎΡ€Π΅Π½Π½ΠΎΠΎΡ‚ΡΡŽΠ΄Π° ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСннос.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 10

ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ трогаСтся с мСста ΠΈ двиТСтся с постоянным ускорСниСм 5 ΠΌ/с2. Какой ΠΏΡƒΡ‚ΡŒ ΠΏΡ€ΠΎΡˆΡ‘Π» Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ, Ссли Π΅Π³ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² ΠΊΠΎΠ½Ρ†Π΅ ΠΏΡƒΡ‚ΠΈ оказалась Ρ€Π°Π²Π½ΠΎΠΉ 15 ΠΌ/с?

ΠžΡ‚Π²Π΅Ρ‚: 22,5 ΠΌ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ врСмя, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ понадобилось Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŽ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°Π·Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ v = 15 ΠΌ/с:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ ΠΏΡ€ΠΎΡˆΠ΅Π» ΠΏΡƒΡ‚ΡŒ: ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнном.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 11.

ΠŸΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ автомобиля Π½Π° ΠΏΡƒΡ‚ΠΈ 25 ΠΌ Π΅Π³ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ»Π°ΡΡŒ ΠΎΡ‚ 5 Π΄ΠΎ 10 ΠΌ/с. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ ускорСниС автомобиля?

ΠžΡ‚Π²Π΅Ρ‚: 1,5 ΠΌ/с2.

РСшСниС: Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния автомобиля ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно, Π³Π΄Π΅ v0 ― Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ автомобиля v0 = 5 ΠΌ/с, Π° ―постоянноС ускорСниС автомобиля, t ― врСмя двиТСния автомобиля, S = 25 ΠΌ.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ автомобиля Ρ€Π°Π²Π½Π° v = v0 + at, конСчная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½Π° v = 10 ΠΌ/с. Π’Ρ‹Ρ€Π°Π·ΠΈΠΌ ΠΈΠ· этого уравнСния врСмя двиТСния автомобиля:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

И ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ускорСниС ΠΈΠ· уравнСния двиТСния:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π—Π°Π΄Π°Π½ΠΈΠ΅ 12.

РСшСниС: Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΏΡƒΠ»ΠΈ ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно, Π³Π΄Π΅ v0 ― Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡƒΠ»ΠΈ v0 = 0 ΠΌ/с, Π° ―постоянноС ускорСниС ΠΏΡƒΠ»ΠΈ, t ― врСмя двиТСния ΠΏΡƒΠ»ΠΈ Π² стволС, S = 0,1 ΠΌ ― ΠΏΡƒΡ‚ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ пуля Π² стволС.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡƒΠ»ΠΈ ΠΏΡ€ΠΈ Π²Ρ‹Π»Π΅Ρ‚Π΅ ΠΈΠ· ствола считаСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ v = v0 + at ΠΈ Ρ€Π°Π²Π½Π° ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ v = 250 ΠΌ/с. ΠžΡ‚ΡΡŽΠ΄Π°, врСмя двиТСния ΠΏΡƒΠ»ΠΈ Ρ€Π°Π²Π½ΠΎ ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно, Π° ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΠ»Π΅ΠΉ ΠΏΡƒΡ‚ΡŒ:

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠžΡ‚ΡΡŽΠ΄Π°, ускорСниС ΠΏΡƒΠ»ΠΈ Ρ€Π°Π²Π½ΠΎ:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π²Ρ‹ смоТСтС Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ задания Π•Π“Π­ ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ Π½Π° Ρ‚Π΅ΠΌΡ‹ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ равноускорСнноС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Когда ΠΌΡ‹ ΠΈΠ΄Π΅ΠΌ Π² ΡˆΠΊΠΎΠ»Ρƒ ΠΈΠ»ΠΈ Π½Π° Ρ€Π°Π±ΠΎΡ‚Ρƒ, автобус ΠΏΠΎΠ΄ΡŠΠ΅Π·ΠΆΠ°Π΅Ρ‚ ΠΊ остановкС ΠΈΠ»ΠΈ сладкий ΠΊΠΎΡ€Π³ΠΈ гуляСт с хозяином, ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ с мСханичСским Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ.

ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ называСтся ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ полоТСния Ρ‚Π΅Π» Π² пространствС ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅Π» с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Β«ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅Π»Β» β€” ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹Π΅ слова Π² этом ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ. Для описания двиТСния Π½Π°ΠΌ Π½ΡƒΠΆΠ½Ρ‹:

Π’ совокупности эти Ρ‚Ρ€ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ систСму отсчСта.

Π’ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅ Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ Ρ€Π°Π·Π΄Π΅Π» β€” ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Он ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π½Π° вопрос, ΠΊΠ°ΠΊ двиТСтся Ρ‚Π΅Π»ΠΎ. Π”Π°Π»ΡŒΡˆΠ΅ ΠΌΡ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ опишСм Ρ€Π°Π·Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ мСханичСского двиТСния. НС ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°ΠΉΡ‚Π΅ΡΡŒ 😉

ΠŸΡ€ΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ прямой, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π΅Π»ΠΎ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ€Π°Π²Π½Ρ‹Π΅ участки ΠΏΡƒΡ‚ΠΈ Π·Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ прямолинСйным Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ. Π­Ρ‚ΠΎ любоС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ с постоянной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ.

НапримСр, Ссли Ρƒ вас ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ скорости Π½Π° Π΄ΠΎΡ€ΠΎΠ³Π΅ 60 ΠΊΠΌ/Ρ‡, ΠΈ Ρƒ вас Π½Π΅Ρ‚ Π½ΠΈΠΊΠ°ΠΊΠΈΡ… прСпятствий Π½Π° ΠΏΡƒΡ‚ΠΈ β€” скорСС всСго, Π²Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚Π΅ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ прямолинСйно Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ.

ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ.

БкалярныС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ (ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ)

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ (ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ)

ΠŸΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ описаниС двиТСния ΠΏΠΎΠ»Π΅Π·Π½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π½Π° ΠΎΠ΄Π½ΠΎΠΌ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ всСгда ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π΄ Π³Π»Π°Π·Π°ΠΌΠΈ Π½Π°Π³Π»ΡΠ΄Π½ΡƒΡŽ Β«ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΡƒΒ» двиТСния.

Однако всякий Ρ€Π°Π· ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π»ΠΈΠ½Π΅ΠΉΠΊΡƒ ΠΈ транспортир, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ дСйствия с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΎΡ‡Π΅Π½ΡŒ Ρ‚Ρ€ΡƒΠ΄ΠΎΡ‘ΠΌΠΊΠΎ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ эти дСйствия сводят ΠΊ дСйствиям с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами β€” проСкциями Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

Если Π²Π΅ΠΊΡ‚ΠΎΡ€ сонаправлСн с осью, Ρ‚ΠΎ Π΅Π³ΠΎ проСкция Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. А Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ оси β€” проСкция числСнно Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π½ΠΎ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°. Если Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрпСндикулярСн β€” Π΅Π³ΠΎ проСкция Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒΡΡ ΠΏΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ пСрСмСщСния ΠΈ ΠΏΡƒΡ‚ΠΈ, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ это Π±ΡƒΠ΄ΡƒΡ‚ Π΄Π²Π΅ Ρ€Π°Π·Π½Ρ‹Π΅ характСристики.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ β€” это вСкторная физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ быстроту пСрСмСщСния, Π° срСдняя путСвая ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ β€” это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ ΠΏΡƒΡ‚ΠΈ ΠΊΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΡƒΡ‚ΡŒ Π±Ρ‹Π» ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ

β†’ β†’
V = S/t

β†’
V β€” ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ [ΠΌ/с]
β†’
S β€” ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ [ΠΌ]
t β€” врСмя [с]

БрСдняя путСвая ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ

V ср.путСвая = S/t

V ср.путСвая β€” срСдняя путСвая ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ [ΠΌ/с]
S β€” ΠΏΡƒΡ‚ΡŒ [ΠΌ]
t β€” врСмя [с]

Π—Π°Π΄Π°Ρ‡Π°

НайдитС, с ΠΊΠ°ΠΊΠΎΠΉ срСднСй ΠΏΡƒΡ‚Π΅Π²ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ, Ссли расстояниС ΠΎΡ‚ Π‘Π°Π½ΠΊΡ‚-ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³Π° Π΄ΠΎ Π’Π΅Π»ΠΈΠΊΠΎΠ³ΠΎ Новгорода Π² 210 ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π΅ΠΌΡƒ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠΉΡ‚ΠΈ Π·Π° 2,5 часа. ΠžΡ‚Π²Π΅Ρ‚ Π΄Π°ΠΉΡ‚Π΅ Π² ΠΊΠΌ/Ρ‡.

РСшСниС:

Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ срСднСй ΠΏΡƒΡ‚Π΅Π²ΠΎΠΉ скорости
V ср.путСвая = S/t

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ значСния:
V ср.путСвая = 210/2,5 = 84 ΠΊΠΌ/Ρ‡

ΠžΡ‚Π²Π΅Ρ‚: Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ со срСднСй ΠΏΡƒΡ‚Π΅Π²ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π²Π½ΠΎΠΉ 84 ΠΊΠΌ/Ρ‡

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния

Основной Π·Π°Π΄Π°Ρ‡Π΅ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ полоТСния Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ этой Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ… = Ρ…(t).

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния

x(t) = x0 + vxt

x(t) β€” искомая ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° [ΠΌ]
x0 β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° [ΠΌ]
vx β€” ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ [ΠΌ/с]
t β€” ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ [с]

Если ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ оси ОΠ₯ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ двиТСния Ρ‚Π΅Π»Π°, Ρ‚ΠΎ проСкция скорости Ρ‚Π΅Π»Π° Π½Π° ось ОΠ₯ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ мСньшС нуля (v

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ² оси

x(t) β€” искомая ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° [ΠΌ]
x0 β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° [ΠΌ]
vx β€” ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ [ΠΌ/с]
t β€” ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ [с]

Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ

ИзмСнСниС любой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ графичСски. ВмСсто Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΈΡΠ°Ρ‚ΡŒ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, ΠΌΠΎΠΆΠ½ΠΎ просто Π½Π°Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ β€” это ΠΏΡ€ΠΎΡ‰Π΅.

Π’ Π²ΠΈΠ΄Π΅ΠΎ Π½ΠΈΠΆΠ΅ разбираСмся, ΠΊΠ°ΠΊ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ кинСматичСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈ Π·Π°Ρ‡Π΅ΠΌ ΠΎΠ½ΠΈ Π½ΡƒΠΆΠ½Ρ‹.

ΠŸΡ€ΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π·Π° Ρ‚ΠΈΠΏ двиТСния Π² этом Π·Π°Π³ΠΎΠ»ΠΎΠ²ΠΊΠ΅, Π½ΡƒΠΆΠ½ΠΎ ввСсти Π½ΠΎΠ²ΠΎΠ΅ понятиС β€” ускорСниС.

УскорСниС β€” вСкторная физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ быстроту измСнСния скорости. Π’ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ систСмС Π΅Π΄ΠΈΠ½ΠΈΡ† БИ измСряСтся Π² ΠΌΠ΅Ρ‚Ρ€Π°Ρ…, Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π½Π° сСкунду Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅.

БИ β€” мСТдународная систСма Π΅Π΄ΠΈΠ½ΠΈΡ†. Β«ΠŸΠ΅Ρ€Π΅Π²Π΅ΡΡ‚ΠΈ Π² БИ» ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ всСх Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π² ΠΌΠ΅Ρ‚Ρ€Ρ‹, ΠΊΠΈΠ»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹, сСкунды ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ измСрСния Π±Π΅Π· приставок. Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ β€” ΠΊΠΈΠ»ΠΎΠ³Ρ€Π°ΠΌΠΌ с приставкой Β«ΠΊΠΈΠ»ΠΎΒ».

Π˜Ρ‚Π°ΠΊ, прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β€” это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ с ускорСниСм ΠΏΠΎ прямой Π»ΠΈΠ½ΠΈΠΈ. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° мСняСтся Π½Π° Ρ€Π°Π²Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Π·Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости

Основная Π·Π°Π΄Π°Ρ‡Π° ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ Π½Π΅ помСнялась ΠΏΠΎ Ρ…ΠΎΠ΄Ρƒ тСкста β€” ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ полоТСния Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π£ равноускорСнного двиТСния Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ появляСтся ускорСниС.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния для равноускорСнного двиТСния

x(t) = x0 + v0xt + axt^2/2

x(t) β€” искомая ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° [ΠΌ]
x0 β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° [ΠΌ]
v0x β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ [ΠΌ/с]
t β€” врСмя [с]
ax β€” ускорСниС [ΠΌ/с^2]

Для этого процСсса Ρ‚Π°ΠΊΠΆΠ΅ Π²Π°ΠΆΠ½ΠΎ ΡƒΠΌΠ΅Ρ‚ΡŒ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ β€” Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΊΠΈ Ρ‚Π°ΠΊ ΠΏΡ€ΠΎΡ‰Π΅. ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ находится ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости

β†’ β†’
v = v0 + at

β†’
v β€” конСчная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° [ΠΌ/с]
v0 β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° [ΠΌ/с]
t β€” врСмя [с]
β†’
a β€” ускорСниС [ΠΌ/с^2]

Π—Π°Π΄Π°Ρ‡Π°

НайдитС мСстополоТСниС автобуса Ρ‡Π΅Ρ€Π΅Π· 0,5 часа послС Π½Π°Ρ‡Π°Π»Π° двиТСния, Ρ€Π°Π·ΠΎΠ³Π½Π°Π²ΡˆΠ΅Π³ΠΎΡΡ Π΄ΠΎ скорости 60 ΠΊΠΌ/Ρ‡ Π·Π° 3 ΠΌΠΈΠ½ΡƒΡ‚Ρ‹.

РСшСниС:

Π‘Π½Π°Ρ‡Π°Π»Π° Π½Π°ΠΉΠ΄Π΅ΠΌ ускорСниС автобуса. Π•Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости:

Π’Π°ΠΊ ΠΊΠ°ΠΊ автобус двигался с мСста, v0 = 0. Π—Π½Π°Ρ‡ΠΈΡ‚
a = v/t

ВрСмя Π΄Π°Π½ΠΎ Π² ΠΌΠΈΠ½ΡƒΡ‚Π°Ρ…, ΠΏΠ΅Ρ€Π΅Π²Π΅Π΄Π΅ΠΌ Π² часы, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠΎΠΎΡ‚Π½ΠΎΡΠΈΠ»ΠΎΡΡŒ с Π΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌΠΈ измСрСния скорости.

3 ΠΌΠΈΠ½ΡƒΡ‚Ρ‹ = 3/60 часа = 1/20 часа = 0,05 часа

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ значСния:
a = v/t = 60/0,05 = 1200 ΠΊΠΌ/Ρ‡^2
Π’Π΅ΠΏΠ΅Ρ€ΡŒ возьмСм ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния.
x(t) = x0 + v0xt + axt^2/2

ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, ΠΊΠ°ΠΊ ΠΌΡ‹ ΡƒΠΆΠ΅ выяснили β€” Ρ‚ΠΎΠΆΠ΅. Π—Π½Π°Ρ‡ΠΈΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π²ΠΈΠ΄:

УскорСниС ΠΌΡ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‡Ρ‚ΠΎ нашли, Π° Π²ΠΎΡ‚ врСмя Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΠΎ Π½Π΅ 3 ΠΌΠΈΠ½ΡƒΡ‚Π°ΠΌ, Π° 0,5 часа, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ нас просят Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Π² этот ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Ρ†ΠΈΡ„Π΅Ρ€ΠΊΠΈ:
x = 1200*0,5^2/2 = 1200*0,522= 150 ΠΊΠΌ

ΠžΡ‚Π²Π΅Ρ‚: Ρ‡Π΅Ρ€Π΅Π· полчаса ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° автобуса Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° 150 ΠΊΠΌ.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ

ΠœΡ‹ ΡƒΠΆΠ΅ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ Π·Π°Ρ‡Π΅ΠΌ ΠΎΠ½ΠΈ Π½ΡƒΠΆΠ½Ρ‹. Для прямолинСйного равноускорСнного двиТСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ. Об этом β€” Π² Π²ΠΈΠ΄Π΅ΠΎ Π½ΠΈΠΆΠ΅

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΠΈ

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΠΈ β€” это частный случай равноускорСнного двиТСния. Π”Π΅Π»ΠΎ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½Π° Π—Π΅ΠΌΠ»Π΅ Ρ‚Π΅Π»Π° ΠΏΠ°Π΄Π°ΡŽΡ‚ с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ ускорСниСм β€” ускорСниСм свободного падСния. Для Π—Π΅ΠΌΠ»ΠΈ ΠΎΠ½ΠΎ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π²Π½ΠΎ 9,81 ΠΌ/с^2, Π° Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… ΠΌΡ‹ ΠΈ вовсС осмСливаСмся ΠΎΠΊΡ€ΡƒΠ³Π»ΡΡ‚ΡŒ Π΅Π³ΠΎ Π΄ΠΎ 10 (Ρ„ΠΈΠ·ΠΈΠΊΠΈ просто Π΄Π΅Ρ€Π·ΠΊΠΈΠ΅).

Π’ΠΎΠΎΠ±Ρ‰Π΅ Π² Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ ускорСния свободного падСния для Π—Π΅ΠΌΠ»ΠΈ ΠΎΡ‡Π΅Π½ΡŒ ΠΌΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΠΊΠΎΠ² послС запятой. Π’ школС ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π΄Π°ΡŽΡ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅: g = 9,8 ΠΌ/с2. Π’ экзамСнах ΠžΠ“Π­ ΠΈ Π•Π“Π­ Π² справочных Π΄Π°Π½Π½Ρ‹Ρ… Π΄Π°ΡŽΡ‚ g = 10 ΠΌ/с2.

Частным случаСм двиТСния ΠΏΠΎ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΠΈ (частным случаСм частного случая, получаСтся) считаСтся свободноС ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ β€” это равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄ дСйствиСм силы тяТСсти, ΠΊΠΎΠ³Π΄Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ силы, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π½Π° Ρ‚Π΅Π»ΠΎ, ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅ΠΆΠΈΠΌΠΎ ΠΌΠ°Π»Ρ‹.

ΠŸΠΎΠΌΠ½ΠΈΡ‚Π΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ свободноС ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ β€” это Π½Π΅ всСгда Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΠΈ. Если ΠΌΡ‹ бросаСм Ρ‚Π΅Π»ΠΎ Π²Π²Π΅Ρ€Ρ…, Ρ‚ΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ ΠΆΠ΅, Π±ΡƒΠ΄Π΅Ρ‚.

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

ΠΊΠ°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π° ΠΊΠ°ΠΊΠΎΠ΅ равноускорСнно

БСсплатный ΠΌΠ°Ρ€Π°Ρ„ΠΎΠ½: ΠΊΠ°ΠΊ самому ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΈΠ³Ρ€Ρ‹, Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠ³Ρ€Π°Ρ‚ΡŒ Π² Π½ΠΈΡ… (β—•α΄—β—•)

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *