какое свойство тела называют инертностью
Тест по физике Масса тела 7 класс
Тест по физике Масса тела для учащихся 7 класса с ответами. Тест состоит из 9 заданий и предназначен для проверки знаний к теме Взаимодействие тел.
1. Какое свойство тела называют инертностью?
1) Изменение его скорости при взаимодействии с другими телами
2) Интенсивность изменения скорости тела при его взаимодействии с разными телами
3) Сохранение скорости, если нет взаимодействия с другими телами
4) Среди ответов нет верного
2. Какое из двух взаимодействующих тел более инертно?
1) То, у которого изменение скорости меньше
2) То, у которого изменение скорости больше
3) То, которое сохранило свою скорость
4) Среди ответов нет правильного
3. Какая физическая величина введена для характеристики инертности тела?
1) Время движения
2) Скорость движения
3) Масса
4) Пройденный после взаимодействия путь
4. Основная единица массы в СИ — это
1) миллиграмм (мг)
2) грамм (г)
3) килограмм (кг)
4) тонна (т)
5. Масса коробки конфет равна 600 г. Какова её масса в килограммах?
6. Выразите в миллиграммах массу крупного помидора, равную 0,5 кг.
1) 500 мг
2) 5000 мг
3) 50 000 мг
4) 500 000 мг
7. Каким прибором измеряют массу тела?
1) Мензуркой
2) Рулеткой
3) Весами
4) Секундомером
8. Имеются медный шарик массой 100 г и свинцовый шарик массой 100 г. Какой из них при взаимодействии больше изменит свою скорость?
1) Для ответа не хватает данных
2) Изменят одинаково
3) Медный
4) Свинцовый
9. Взаимодействуют два первоначально покоящихся тела. Тело массой 2 кг приобретает скорость 8 м/с, взаимодействуя с другим телом, которое получает в результате этого скорость 4 м/с. Какова масса второго тела?
1) 16 кг
2) 4 кг
3) 2 кг
4) 8 кг
Ответы на тест по физике Масса тела
1-2
2-1
3-3
4-3
5-2
6-4
7-3
8-2
9-2
Какое свойство тела называют инертностью
Инертность тела.
Мы уже говорили о явлении инерции.
Именно вследствие инерции покоящееся тело приобретает заметную скорость под действием силы не сразу, а лишь за некоторый интервал времени.
Инертность — свойство тел по-разному изменять свою скорость под действием одной и той же силы.
Ускорение возникает сразу, одновременно с началом действия силы, но скорость нарастает постепенно.
Даже очень большая сила не в состоянии сообщить телу сразу значительную скорость.
Для этого нужно время.
Чтобы остановить тело, опять-таки нужно, чтобы тормозящая сила, как бы она ни была велика, действовала некоторое время.
Именно эти факты имеют в виду, когда говорят, что тела инертны, т. е. одним из свойств тела является инертность.
Масса.
Количественной мерой инертности является масса.
Приведём примеры простых опытов, в которых очень отчётливо проявляется инертность тел.
1. На рисунке 2.4 изображён массивный шар, подвешенный на тонкой нити.
Внизу к шару привязана точно такая же нить.
Если медленно тянуть за нижнюю нить, то порвётся верхняя нить: ведь на неё действуют и шар своей тяжестью, и сила, с которой мы тянем шар вниз.
Однако если за нижнюю нить очень быстро дёрнуть, то оборвётся именно она, что на первый взгляд довольно странно.
Но это легко объяснить.
Когда мы тянем за нить медленно, то шар постепенно опускается, растягивая верхнюю нить до тех пор, пока она не оборвётся.
При быстром рывке с большой силой шар получает большое ускорение, но скорость его не успевает увеличиться сколько-нибудь значительно за тот малый промежуток времени, в течение которого нижняя нить сильно растягивается и обрывается.
Верхняя нить поэтому мало растягивается и остаётся целой.
2. Интересен опыт с длинной палкой, подвешенной на бумажных кольцах (рис. 2.5).
Если резко ударить по палке железным стержнем, то палка ломается, а бумажные кольца остаются невредимыми.
3. Наконец, самый, пожалуй, эффектный опыт.
Если выстрелить в пустой пластмассовый сосуд, пуля оставит в стенках правильные отверстия, но сосуд останется целым.
Если же выстрелить в такой же сосуд, заполненный водой, то сосуд разорвётся на мелкие части.
Это объясняется тем, что вода малосжимаема и небольшое изменение её объёма приводит к резкому возрастанию давления.
Когда пуля очень быстро входит в воду, пробив стенку сосуда, давление резко возрастает.
Из-за инертности воды её уровень не успевает повыситься, и возросшее давление разрывает сосуд на части.
Чем больше масса тела, тем больше его инертность, тем сложнее вывести тело из первоначального состояния, т. е. заставить его двигаться или, наоборот, остановить его движение.
Единица массы.
В кинематике мы пользовались двумя основными физическими величинами — длиной и временем.
Для единиц этих величин установлены соответствующие эталоны, сравнением с которыми определяются любая длина и любой интервал времени.
Единицей длины является метр, а единицей времени — секунда.
Все другие кинематические величины не имеют эталонов единиц.
Единицы таких величин называются производными.
При переходе к динамике мы должны ввести ещё одну основную единицу и установить её эталон.
В Международной системе единиц (СИ) за единицу массы — один килограмм (1 кг) — принята масса эталонной гири из сплава платины и иридия, которая хранится в Международном бюро мер и весов в Севре, близ Парижа.
Точные копии этой гири имеются во всех странах.
Приближённо массу 1 кг имеет вода объёмом 1 л при комнатной температуре.
Легко осуществимые способы сравнения любой массы с массой эталона путём взвешивания мы рассмотрим позднее.
Свойство инертности и масса тела
Когда мы играем с мячом, нам кажется, что стоит его ударить рукой или ногой, и он мгновенно полетит в нужную сторону. Если же мяч налетит на стену, то в тот же миг отскочит назад. Похоже на правду?
Проверим наше мнение кинематографическим методом: заснимем движение мяча на киноплёнку и рассмотрим его положения на получившихся кадрах (см. рисунок).
Вот мяч приближается к стене (кадр 1). Вот он её касается (2), значит, на следующем кадре мяч должен полететь обратно. Нет! Мяч летит дальше, сплющиваясь всё сильнее (3). И на следующем кадре мяч всё плотнее приближается к стене (4). И лишь после этого, распрямляясь, летит обратно (кадры 5–7). Как видите, мяч не мгновенно меняет скорость, останавливаясь при ударе и разгоняясь в обратном направлении.
Не только упругий мяч, но и вообще любое тело не мгновенно изменяет свою скорость – для этого всегда требуется некоторое время. Например, нагруженный самосвал дольше разгоняется и тормозит, чем тот же самосвал, но без груза.
В физике свойство тела сопротивляться мгновенному изменению направления и/или быстроты движения, то есть изменению скорости, называют инертностью тела. Для изменения скорости тела с большей массой нужно больше времени, то есть инертность тела проявляется тем заметнее, чем больше его масса.
Как вы понимаете, гравитационное притяжение и инертность тела – это совершенно разные свойства. Для их характеристики правильнее было бы использовать две разные физические величины: гравитационную массу и инертную массу. Однако эксперименты не обнаружили их различия, что позволяет нам оба этих свойства каждого тела характеризовать одной величиной – массой.
Рассмотрим опыт. Имеются две одинаковые тележки с упругими пластинками; на левой тележке находится «взвешиваемое» тело, а на правой – гири. Подкатим тележки друг к другу, согнув пластинки между ними и перевязав их тонкой нитью. Если её пережечь, пластинки начнут распрямляться, отталкивая друг друга. При этом тележки разъедутся в стороны, приобретя некоторые скорости. Говорят, что произошло взаимодействие тележек.
Если масса гирь на правой тележке мала, то за время взаимодействия она приобретёт большую скорость, чем тележка с телом. И наоборот: при избыточной массе гирь скорость тележки с ними будет меньше, чем скорость тележки с телом. Подбирая массу гирь, можно заставить тележки разъезжаться с одинаковыми скоростями. Это значит, что в этом случае масса тела равна массе гирь. Подсчитав массу гирь, мы найдём массу тела.
Весами и методом взвешивания мы не можем воспользоваться в условиях невесомости, поскольку ни тело, ни гири не будут давить на чаши весов. Однако метод взаимодействия в этом случае вполне применим, так как даже в условиях невесомости можно наблюдать взаимодействие тележек и сравнивать их скорости.
Содержание:
Во время равномерного прямолинейного движения тело движется с постоянной по значению и направлению скоростью. Скорость неравномерного движения изменяется со временем. Рассмотрим теперь явления, вследствие которых тело изменяет собственную скорость движения или её направление.
Наблюдение. Из повседневного опыта следует: чтобы тело пришло в движение (т. е. набрало скорость), на него должно подействовать другое тело. Например, лежащий на футбольном поле мяч, придёт в движение только тогда, когда на него налетит другой мяч или по нему ударят ногой (рис. 48). Но если на мяч не действуют другие тела, то он сам по себе не изменит собственную скорость, не придёт в движение относительно Земли.
Опыт 1. На одну из двух тележек, стоящих на рельсах, положили магнит, а на другую — стальной брусок (рис. 49). Под рельсами перекинута нить, которая своими концами закреплена позади каждой из тележек и не позволяет им сблизиться. Если нить пережечь, то тележки начинают двигаться навстречу друг другу, изменяя свою скорость от нуля до некоторого значения. Причиной изменения скорости тележек является притяжение между магнитом и железным бруском, т. е. взаимодействие между ними.
Опыт 2. Толкнём шарик, лежащий на горизонтальном столе, — он начнет равномерно двигаться по прямолинейной траектории. Положим на стол магнит перед шариком на расстоянии от линии его движения. Шарик вследствие взаимодействия с магнитом начнёт увеличивать свою скорость и отклоняться в сторону магнита, т. е. он изменит направление движения (рис. 50).
Опыт 3. Один конец пружины прикрепим к игрушечному автомобилю (рис. 51), другой — к стойке на краю стола. Потянем за автомобиль в сторону от стойки — начнётся взаимодействие руки с автомобилем и пружиной, в результате чего их скорости изменяются, а пружина растягивается. Отпустим машинку — теперь взаимодействуют пружина и автомобиль — пружина начинает сжиматься и двигаться с ним в обратном направлении. Во всех этих опытах взаимодействие тел приводит к изменению их скоростей.
При взаимодействии тел может изменяться скорость движения не только тел в целом, но и отдельных их частей. Это происходит, например, если мы сжимаем в руке теннисный мяч (рис. 52). Вследствие неодинакового перемещения отдельных частей мяч сжимается и деформируется (изменяет свою форму). Также изменяют свою форму и пальцы руки. На фотографии (рис. 53) показано, как пуля пробивает стальной лист.
В этом случае произошло взаимодействие пули с листом, в результате чего они деформировались, а пуля ещё и изменила свою скорость движения.
Вследствие взаимодействия тел они изменяют скорость и направление своего движения, а также деформируются.
Что такое инерция
Повседневный опыт подтверждает вывод, сделанный нами из предыдущих опытов: скорость и направление движения тела могут изменяться лишь при взаимодействии его с другим телом.
Рассмотрим случаи, когда тело в начале наблюдения уже находится в движении. Увидим, что уменьшение скорости движения и остановка тела не могут происходить сами по себе, а обусловлены действием на него другого тела.
Наблюдение 1. Вы, наверное, неоднократно наблюдали, как пассажиры, едущие в транспорте, вдруг наклоняются вперёд во время торможения или прижимаются к стенке на крутом повороте.
Наблюдение 2. Когда на уроке физкультуры вы пробегаете дистанцию 60 м, то стараетесь развить максимальную скорость. На финише уже можно не бежать, но вы не можете резко остановиться и пробегаете ещё несколько метров. Подобно этому автомобиль не может остановиться мгновенно, а движется ещё определённое время при отключённом двигателе или даже во время торможения. Поэтому нельзя перебегать улицу перед приближающимся автомобилем: водитель не сможет его резко остановить.
Опыт. Тележку с бруском на нём поставим на наклонную плоскость и отпустим (рис. 54, а). Она будет двигаться вниз, набирая скорость, но достигши преграды, резко остановится. Видим, что брусок, не связанный жёстко с тележкой, будет продолжать свое движение дальше (рис. 54, б). Из приведённых примеров видим, что все тела имеют свойство сохранять скорость и направление движения и не могут мгновенно их изменить в результате действия на них другого тела. Можно предположить, что при отсутствии внешнего воздействия тело будет сохранять скорость и направление движения как угодно долго.
Явление сохранения скорости движения тела при отсутствии действия на него других тел называют инерцией.
Явление инерции открыл итальянский учёный Галилео Галилей. На основе своих опытов и размышлений он утверждал: если на тело не действуют другие тела, то оно или находится в покое, или движется прямолинейно и равномерно. В этом случае говорят, что тело движется по инерции.
Инерция — это латинское слово, которое означает «недвижимость», «бездеятельность».
Явление инерции широко используют в технике и быту. Например, чтобы насадить молоток на ручку (рис. 55), нужно другим молотком ударять по торцу ручки или торцом ручки — по массивному неподвижному предмету.
Инертность тел и масса
Всегда ли одинаковый результат действия силы?
Результатом действия силы на тело является изменение его скорости или формы. Однако действие одной и той же силы не всегда сопровождается одинаковым эффектом. Он будет зависеть и от свойств тела, к которому приложена сила.
Разместим на полочке, закрепленной в штативе, два алюминиевых шарика (рис. 41). Упругую пластинку согнем, концы ее завяжем ниткой и введем между шариками. Если нитку перерезать, то пластинка распрямится и толкнет оба шарика, придав им определенные скорости. Измерив расстояния и на которые отлетели шарики, увидим, что они равные:
Если опыт повторить, поменяв один из алюминиевых шариков на стальной такого же диаметра (рис. 42), то расстояния, на которые сместятся шарики, будут различными:
Явление инерции
Физическое явление сохранения телом состояния покоя или равномерного прямолинейного движения называют инерцией (от латин. іnertia — неподвижность, бездеятельность).
Инерция — это явление сохранения скорости движения тела при отсутствии или скомпенсированности действий на него других тел. В физике движение тела в идеальных условиях (когда на тело не действуют другие тела) называют движением по инерции. В реальности невозможно создать условия, когда действие других тел отсутствует. Поэтому в повседневной жизни движением по инерции считают случаи, когда действие на тело других тел достаточно слабо и до заметного изменения скорости своего движения тело проходит значительный путь (рис. 14.8).
Действие одного тела на другое
Итоги:
Тело движется равномерно прямолинейно или находится в состоянии покоя только тогда, когда на него не действуют другие тела или действия других тел скомпенсированы.
Инерция — это явление сохранения скорости движения тела при отсутствии или скомпенсированности действий на него других тел. Если действия на тело других тел не скомпенсированы, то тело изменяет скорость своего движения по значению или направлению либо по значению и направлению одновременно.
Инертность тела и масса
Вспомните: вы заходите в автобус, все места заняты. Двери закрываются, автобус резко начинает движение, и вы должны приложить усилия, чтобы не упасть. Следующая остановка — и вы снова вынуждены цепляться за поручни, ведь автобус остановился достаточно резко. Почему что-то «толкает» вас вперед или назад? Вы узнаете, из-за какого свойства физических тел вы отклоняетесь назад, когда транспортное средство набирает скорость, и вперед — в момент его резкой остановки (см. рис. 15.1).
Что такое инертность
Вообще ни одно тело не может изменить скорость своего движения мгновенно. Говорят, что все тела «оказывают сопротивление» попытке измененить скорость их движения. В физике такое свойство тел называют инертностью. Инертность — свойство тела, которое заключается в том, что для изменения скорости движения тела в результате взаимодействия требуется время. Инертность тела проявляется тогда, когда мы пытаемся изменить скорость движения этого тела (см. рис. 15.1–15.3).
Определение массы тела
В результате одинакового воздействия одни тела изменяют скорость своего движения достаточно быстро, другие — намного медленнее. Например, чтобы с помощью весел придать определенную скорость легкой байдарке, нужно намного меньше времени, чем для придания такой же скорости тяжелой лодке. В таком случае говорят, что лодка более инертна, чем байдарка. Инертность тел характеризуется физической величиной — массой. Чем больше масса тела, тем больше времени нужно для изменения скорости его движения в результате одного и того же воздействия.
Масса тела — это физическая величина, которая является мерой инертности тела. Массу тела обозначают символом m. Единица массы в СИ — килограмм: [m]=кг. Кроме килограмма используют также другие единицы массы, например тонна (т), грамм (г), миллиграмм (мг):
Масса — это одна из основных единиц СИ, поэтому для нее существует эталон. Международный эталон килограмма был создан в 1880 г.*; его используют и сейчас. Эталон килограмма — это цилиндр, изготовленный из сплава платины и иридия (рис. 15.4). Масса цилиндра — ровно 1 килограмм.
Сначала в качестве эталона килограмма был принят 1 л чистой воды при температуре около +4 °C. Однако такой эталон был очень неудобным.
Международный эталон килограмма хранится во Франции, в Международном бюро мер и весов, расположенном в г. Севр (предместье Парижа). Эталон достают из хранилища не чаще одного раза в 15 лет. В Украине, в Национальном научном центре «Институт метрологии» (г. Харьков), хранится государственный эталон единицы массы 1 кг.
Измеряем массу тела взвешиванием:
Кроме инертности любое физическое тело имеет также свойство притягиваться к другим телам благодаря гравитационному взаимодействию *. Как вы уже, возможно, догадались, мерой гравитационного свойства тела также является масса. Именно на гравитационном свойстве тел основан самый распространенный способ измерения массы — взвешивание (рис. 15.5): чем больше масса тела, тем сильнее оно притягивается к Земле и поэтому сильнее давит на весы.
Подробнее об измерении масс тел взвешиванием вы узнаете при выполнении лабораторной работы № 6.
Еще об одном способе измерения массы:
Массу тела можно также измерить, основываясь на инертности тел. Поставим две тележки со сжатыми пружинами на гладкую горизонтальную поверхность (рис. 15.6, а). Распрямляясь, пружины придадут тележкам некоторые скорости. Если тележки приобретут одинаковые скорости и, соответственно, проедут до остановки одинаковое расстояние, то это означает, что их массы равны (рис. 15.6, б). Если одна из тележек, например тележка 2, приобретет меньшую скорость и, соответственно, проедет меньшее расстояние, то она имеет большую массу (рис. 15.7). При этом во сколько раз скорость движения тележки 2, будет меньше скорости движения тележки 1, во столько же раз масса тележки 2 больше массы тележки 1: где — массы тележек; — скорости движения, которые приобрели тележки в результате взаимодействия. Полученное равенство позволяет определить отношение масс взаимодействующих тел по измеренным скоростям движений, которые приобретают эти тела в результате взаимодействия. Если же при этом масса одного из тел (например, ) известна, то можно определить массу второго тела : На первый взгляд, способ измерения масс, основанный на инертности тел, неудобен, но он является единственным, если тела невозможно взвесить (например, элементарные частицы или космические тела)*.
В большинстве таких случаев в формулу подставляют не приобретенные телами скорости движения, а изменение скорости движения каждого тела в результате взаимодействия.
Итоги:
Инертность — это свойство тела, которое заключается в том, что для изменения скорости движения тела в результате взаимодействия требуется время.
Масса тела (m) — это физическая величина, которая является мерой инертного и гравитационного свойств тела.
Единица массы в СИ — килограмм.
Массу тела можно определить взвешиванием (этот способ основан на том, что масса является мерой гравитационного свойства тела), а также сравнив, как изменились скорости движения тел в результате взаимодействия (способ основан на том, что масса является мерой инертности тела).
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.