какое свойство характерно метаматериалам

Что такое метаматериалы? Перспективы практического использования.

какое свойство характерно метаматериалам

Метаматериалы

Метаматериалы, это специальные композиционные материалы, которые получаются, путём искусственной модификации внедряемых в них элементов. Изменение структуры осуществляется на наноуровне, что дает возможность менять размеры, формы и периоды решетки атома, а также иные параметры материала.

Благодаря искусственному преобразованию структуры, модифицированный объект приобретает совершенно новые свойства, которых нет у материалов природного происхождения.

Благодаря вышеуказанному преобразованию модифицируется магнитная, диэлектрическая проницаемость, а также иные физические показатели выбранного объекта.

В результате преобразованные материалы приобретают уникальные оптические, радиофизические, электрические и иные свойства, которые открывают широкие перспективы для развития научного прогресса. Работы в данном направлении могут привести к появлению совершенно новых устройств и изобретений, которые будут поражать воображение.

Виды и классификация метаматериалов

Метаматериалы принято классифицировать по степени преломления:

В них степень преломления постоянно меняется лишь в единственном направлении пространства. Подобные материалы выполнены из слоев элементов, расположенных параллельно и имеющих отличающиеся степени преломления. Они способны демонстрировать уникальные свойства лишь в единственном направлении пространства, которое перпендикулярно указанным слоям.

В них степень преломления постоянно меняется лишь в 2-х направлениях пространства. Подобные материалы в большинстве случаев выполнены из прямоугольных структур, имеющих преломление m1, и располагающихся в среде с преломлением m2. В то же время элементы с преломлением m1 располагаются в 2-х мерной решетке с кубической основой. В результате подобные материалы способны демонстрировать свои свойства в 2-х направлениях пространства. Но двухмерность материалов не ограничивается только прямоугольником, она может быть создана с помощью круга, эллипса или иной произвольной формой.

В них степень преломления постоянно меняется в 3-х направлениях пространства. Подобные материалы условно можно представить в виде массива областей в объемном значении (эллипс, куб и так далее), расположенных в трехмерной решетке.

Метаматериалы также делятся на:

К тому же существуют материалы:

Отличие резонансных материалов от элементов нерезонансного типа в том, что у них возникает диэлектрическая проницаемость лишь на определенной частоте резонанса.

Метаматериалы могут создаваться с разными электрическими свойствами. Поэтому их делят по их относительной проницаемости:

Устройство метаматериалов

Метаматериалы представляют вещества, свойства которых обеспечиваются микроскопической структурой, внедряемой людьми. Они синтезируются включением в заданный элемент природного происхождения периодических структур с разнообразными формами геометрии, модифицирующие магнитную и диэлектрическую восприимчивость исходной структуры.

какое свойство характерно метаматериалам

Метаматериалы

Условно подобные включения можно рассмотреть в качестве искусственных атомов, которые имеют довольно большие размеры. Во время синтезирования у создателя материала имеется возможность придать ему различные параметры, которые базируются на форме и размерах структур, переменности периода и тому подобное. Благодаря этому можно получать материалы, которые имеют удивительные свойства.

Одним из наиболее известных подобных элементов являются фотонные кристаллы. Их особенность проявляется периодической сменой степени преломления в пространстве в одном, двух и трех направлениях. Благодаря указанным параметрам материал может иметь зоны, которые могут получать или не получать энергию фотонов.

В результате, если на указанное вещество отпускается фотон, имеющий определенную энергию (требуемой частоты и длины волны), несоответствующей зоне указанного кристалла, то он отражается в противоположном направлении. Если же на кристалл попадает фотон с параметрами, которые отвечают параметрам разрешенной зоны, то он перемещается по нему. По-другому, кристалл выступает в виде оптического фильтрующего элемента. Именно поэтому указанные кристаллы имеют невероятно сочные и яркие цвета.

Применение метаматериалов

Метаматериалы находят и будут находить широчайшее применение во всех сферах, где применяется электромагнитное излучение. Это медицина, наука, промышленность, космическое оборудование и многое другое. Сегодня создается огромное количество электромагнитных материалов, которые уже находят применение.

Источник

Метаматериалы или какие возможности нас ждут в будущем

Да, темпы развития технологий всем известны, поэтому становится возможным воплощать теорию прошлых лет в реальность. Если ранее, некоторые высказвания могли рассмешить общество, как когда-то не поверили Пифагору, что Земля имеет круглую форму, так и в начале ХХ века — доказательство возможности отрицательного коэффициента преломления не убедило учёных.
какое свойство характерно метаматериаламДействительно, как?
А через несколько десятков лет, когда впервые получилось добиться отрицательного коэффициента преломления, теория всплыла снова и уже в другом течении.

Собственно, то, о чём я бы хотел рассказать, основывается на теории метаматериалов.

Метаматериал – искусственное вещество, способное так взаимодействовать с электромагнитными волнами, как не могут природные материалы. Приставка «мета» в данном случае подчёркивает, что эти композитные материалы в целом обладают электромагнитными свойствами, не присущими ни одному из составных элементов.

Метаматериалы имеют отрицательный коэффициент преломления. Такой эффект достигается за счёт одновременного изменения диэлектрической и магнитной проницаемости вещества, основных характеристик поля, описывающих распространение электромагнитных волн в среде. Значит, при прохождении луча света из одной среды в другую, преломленный луч будет попадать не в «правую» среду, а в «левую» относительно перпендикуляра, проведенного из точки падения луча.
какое свойство характерно метаматериалам

В средах с отрицательным коэффициентом преломления будет наблюдаться обращенный допплер-эффект и эффект Вавилова-Черенкова, т.е. происходит обращение фазовой скорости.

В первом случае источник света(излучения) находится слева от видеоролика

Во втором случае — справа

Также, оптические свойства, присущие рассеивающим и собирательным линзам меняются друг относительно друга, за счёт отрицательного коэффициента преломления.

Источник

Метаматериалы. Виды и устройство. Работа и применение

Метаматериалы — это специальные композиционные материалы, которые получаются искусственной модификацией внедряемых в них элементов. Изменение структуры осуществляется на наноуровне, что дает возможность менять размеры, формы и периоды решетки атома, а также иные параметры материала. Благодаря искусственному преобразованию структуры модифицированный объект приобретает совершенно новые свойства, которых нет у материалов природного происхождения.

Благодаря вышеуказанному преобразованию модифицируется магнитная, диэлектрическая проницаемость, а также иные физические показатели выбранного объекта. В результате преобразованные материалы приобретают уникальные оптические, радиофизические, электрические и иные свойства, которые открывают широкие перспективы для развития научного прогресса. Работы в данном направлении могут привести к появлению совершенно новых устройств и изобретений, которые будут поражать воображение. Это плащи невидимки, суперлинзы и многое другое.

Метаматериалы принято классифицировать по степени преломления:

Метаматериалы также делятся на:

К тому же существуют материалы:

Отличие резонансных материалов от элементов нерезонансного типа в том, что у них возникает диэлектрическая проницаемость лишь на определенной частоте резонанса.

Метаматериалы могут создаваться с разными электрическими свойствами. Поэтому их делят по их относительной проницаемости:

какое свойство характерно метаматериалам

Устройство

Метаматериалы представляют вещества, свойства которых обеспечиваются микроскопической структурой, внедряемой людьми. Они синтезируются включением в заданный элемент природного происхождения периодических структур с разнообразными формами геометрии, модифицирующие магнитную и диэлектрическую восприимчивость исходной структуры.

какое свойство характерно метаматериалам

Условно подобные включения можно рассмотреть в качестве искусственных атомов, которые имеют довольно большие размеры. Во время синтезирования у создателя материала имеется возможность придать ему различные параметры, которые базируются на форме и размерах структур, переменности периода и тому подобное. Благодаря этому можно получать материалы, которые имеют удивительные свойства.

Одним из наиболее известных подобных элементов являются фотонные кристаллы. Их особенность проявляется периодической сменой степени преломления в пространстве в одном, двух и трех направлениях. Благодаря указанным параметрам материал может иметь зоны, которые могут получать или не получать энергию фотонов.

В результате, если на указанное вещество отпускается фотон, имеющий определенную энергию (требуемой частоты и длины волны), несоответствующей зоне указанного кристалла, то он отражается в противоположном направлении. Если же на кристалл попадает фотон с параметрами, которые отвечают параметрам разрешенной зоны, то он перемещается по нему. По-другому, кристалл выступает в виде оптического фильтрующего элемента. Именно поэтому указанные кристаллы имеют невероятно сочные и яркие цвета.

Принцип действия

Главной особенностью искусственно образованных материалов является периодичность их структуры. Это может быть 1D, 2D или 3D структура. Фактически они могут иметь самую разную структуру. К примеру, их можно расположить в качестве диэлектрических элементов, между которыми будут находиться разомкнутые проволочные кольца. При этом кольца могут быть передеформированы из круглой в квадратную.

Чтобы свойства электрического характера сохранялись в любых частотах, кольца структурируются замкнутыми. К тому же кольца в веществе часто располагаются случайно. Реализация уникальных параметров нового вещества происходит при резонансе его частоты, а также действующей частоты электромагнитной волны извне.

Применение
Метаматериалы находят и будут находить широчайшее применение во всех сферах, где применяется электромагнитное излучение. Это медицина, наука, промышленность, космическое оборудование и многое другое. Сегодня создается огромное количество электромагнитных материалов, которые уже находят применение.

какое свойство характерно метаматериалам

Промышленные лазеры смогут качественно разрезать не только металлические материалы толщиной в несколько десятков миллиметров, но и на порядок большей величины.

Благодаря новым лазерным установкам будут появляться новые промышленные 3d принтеры, которые смогут быстро и с высоким качеством печатать металлические изделия. По своим качествам они практически не будут уступать изделиям, произведенным с применением типичных методов металлообработки. К примеру, это может быть шестерня или иная сложная деталь, на изготовление которой в обычных условиях потребуется затратить много времени и сил.

Уже сегодня удается обеспечить «невидимость» для техники в терагерцевом диапазоне частот. В будущем можно будет создавать технику, которая будет невидима во всем диапазоне частот, в том числе и «видимом» для человеческого глаза. Одним из таких решений является плащ-невидимка. На данный момент плащ-невидимка уже может скрывать небольшие объекты, но у нее есть некоторые изъяны.

какое свойство характерно метаматериалам

Источник

Какое свойство характерно метаматериалам

Все из нас, наверное, знакомы с явлением преломления света (рефракции), когда при переходе из одной оптической среды в другую (например, при переходе из воздуха в воду), лучи видимого света изменяют своё направление. Многие даже знакомы с понятием коэффициента преломления – характеристики оптической среды, величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде. Однако, задумывались ли вы, какими свойствами будет обладать материал, если коэффициент его преломления будет отрицательным?

какое свойство характерно метаматериалам

Материалы, проявляющие подобные свойства называются метаматериалы.

Приставка «мета-» переводится с греческого как «вне», что позволяет трактовать термин «метаматериалы» как структуры, чьи эффективные электромагнитные свойства выходят за пределы свойств образующих их компонентов.

Одним из основных свойств метаматериалов является их возможность на макро-уровне манипулировать световыми или звуковыми волнами, либо изменять свои электромагнитные свойства.

Существует много теоретических сфер применения высокотехнологичных материалов.

Мы не будем касаться такой фантастической экзотики как компьютроний, нейтроний, странная или кварковая материя, а коснёмся лишь «обычных» метаматериалов, способных изменять свои акустические или электромагнитные свойства, ведь человечество уже начало использовать некоторые из них, а в принципе, подобные метаматериалы способны изменить нашу жизнь кардинальным образом.

Чтобы дальше не вдаваться в тонкости физики, нас интересуют в первую очередь такие свойства как магнитная и диэлектрическая проницаемость.

Магнитная проницаемость – характеристика материала, показывающая способность материала к формированию внутри себя магнитного поля, иными словами – степень магнетизации материала под воздействием внешнего магнитного поля.

Диэлектрическая проницаемость отвечает за скорость изменения электрического заряда при формировании электрического поля (при изменении электрического потенциала).

Данные свойства так же влияют на коэффициент преломления (рефракции) материала, и в целом, определяют характер их взаимодействия с электромагнитными полями.

Природные материалы имеют положительные по величине значения диэлектрической или магнитной проницаемости, в метаматериалах данные значения могут быть и отрицательными (к способам изготовления вернёмся позднее). В равной степени метаматериал может обладать и отрицательным коэффициентом преломления (причём, мы говорим не только о видимом свете, но так же и об инфракрасном, микроволновом и радио-диапазонах).

какое свойство характерно метаматериалам

Чтобы представить себе отрицательный коэффициент преломления, сначала представьте зеркало, отражающее свет из верхнего левого угла в нижний левый. Теперь, если мы заменим зеркало на расположенную горизонтально пластину метаматериала, мы получим тот же самый эффект.

Электродинамика сред, проявляющих отрицательный коэффициент преломления, была впервые изучена советским теоретиком Виктором Веселаго в 1967 году. Он предсказал многие свойства метаматериалов, которые появились лишь тремя десятилетиями позже.

Как они изготавливаются? Принцип создания подобного материала основывается на конструировании геометрически-упорядоченных «ячеек» из материалов с отрицательной магнитной или диэлектрической проницаемостью. Каждый индивидуальный элемент подобного материала не проявляет никаких особых свойств, однако, в целом, набор подобных ячеек начинает проявлять свойства метаматериала. Подобная ячейка должна быть меньше длины волны видимого спектра, и мы только сейчас начинаем подступаться к нанотехнологиям, способным конструировать объекты с подобной точностью. Неудивительно, что изначально такие метаматериалы были найдены для радиоволн и микроволнового диапазона, имеющего существенно большую длину волны в сравнении с длиной волны видимого спектра, однако уже в 2007 году были найдены метаматериалы, работающие и в оптическом диапазоне:

Как уже было сказано, большинство природных материалов имеют положительную магнитную и диэлектрическую проницаемость, но есть и исключения. Ферриты, например, обладают магнитными свойствами ферромагнитного металла, и электрическими свойствами диэлектрика. Если скомбинировать крохотные ферритовые кольца с крохотными металлическими стержнями, мы можем добиться проявления свойств метаматериала.

Чтобы понять, как это происходит, нужно понимать, что электромагнитная волна, проходящая сквозь металл, возбуждает электроны в атомах. Электрон выходит из своего стационарного положения. При смещении электрона возникает разность потенциалов между электроном и ионом, которые оказались разнесены. Разность потенциалов вызывает электрическое поле, которое стремится вернуть электрон в исходное состояние. В этом движении он приобретает инерцию и по инерции проходит своё стационарное состояние, оказываясь в противоположной стороне. Поле снова воздействует на него, но оно противоположного направления. Возникает колебательный процесс, при достаточно высокой частоте которого, металл приобретёт свойства диэлектрика, а электромагнитная волна проходит сквозь него, словно сквозь вакуум.

Крохотные стержни такого металла обеспечат нам отрицательную магнитную, а малые ферритовые кольца – отрицательную диэлектрическую проницаемость для той частоты электромагнитного излучения, которая нам нужна.

какое свойство характерно метаматериалам

Каждый из этих материалов по отдельности не сможет обеспечить нам отрицательный коэффициент преломления, но если их скомбинировать, получится «ячейка» метаматериала.

У нас теперь есть метаматериал, давайте посмотрим, что мы можем с ним сделать?

Представим, что нам необходимо сконцентрировать радиоволны на приёмнике. С метаматериалом, мы можем создать крохотную антенну, которая будет справляться с задачей не хуже, и даже лучше стандартной громоздкой конструкции. Более того, наша антенна может быть абсолютно плоской.

По сути, мы создали идеальную линзу, которая может фокусировать излучение, но может быть при этом абсолютно плоской и тонкой.

какое свойство характерно метаматериалам

Чем большей миниатюризации мы добьёмся при изготовлении такой линзы, тем меньше длина волны, которую она сможет фокусировать.

Более того, мы можем тонко подстраивать нашу линзу лишь на интересующий нас диапазон частот (например, диапазон Wi-Fi 2,4 ГГц с длиной волны 12,5 см), а всё остальное – рассеивать. С такой линзой отношение сигнал/шум улучшается на порядки.

Ещё одним свойством метаматериала является возможность компенсировать эффект Доплера (https://arstechnica.com/science/2011/03/inverse-doppler-effect/), что сильно облегчит связь с космическими аппаратами, сигнал от которых приходит либо с красным, либо с синим смещением, в зависимости от направления движения. Например, немало головной боли доставила инженерам НАСА посадка зонда «Гюйгенс» на Титан (один из спутников Сатурна), когда огромная скорость его материнского корабля «Кассини» и торможение зонда об атмосферу Титана привело к сильному проявлению эффекта Доплера на канале связи между ними (http://www.thespacereview.com/article/306/1).

какое свойство характерно метаматериалам

С метаматериалом мы можем заставить приёмник принимать сигнал с нужной нам частотой без эффекта Доплера.

Отрицательный коэффициент рефракции метаматериала подводит нас к ещё одному интересному направлению – военному. Возьмём современного солдата, который носит камуфляж, маскирующий его на местности в видимом диапазоне, однако, он ничего не может сделать с теплом собственного тела, которое его абсолютно демаскирует при наличии тепловизора.

В военном деле широко используется разнообразная оптика и приборы ночного видения, а возможность приближения прямо зависит от размера линзы – чем лучшее разрешение требуется получить, тем большая линза вам нужна.

Теперь посмотрим, как может измениться жизнь этого солдата при помощи метаматериалов. Его камуфляж теперь делает его практически невидимым как в инфракрасном, так и в видимом диапазоне, так как способен перенаправлять электромагнитные волны в требуемом направлении, при этом режим «стелс» не требует энергии. Разумеется, это не полноценный «плащ-невидимка» из Гарри Поттера, но заметность подобного камуфляжа намного меньше, чем у обычной ткани. Настолько меньше, что обнаружить подобного солдата будет проще по звукам, которые он издаёт либо при помощи эхолокации.

какое свойство характерно метаматериалам

Транспондеры из метаматериала позволяют обеспечить надёжное опознавание «свой-чужой». Солнечные панели для подзарядки оборудования теперь имеют значительно меньшую массу и габариты. Получение сигнала со спутника теперь не потребует точного «прицеливания» антенны. Его оптика теперь позволяет добиться гораздо лучшего разрешения на большем расстоянии, его оборудование надёжно защищено от электромагнитных помех.

Не стоит, наверное, говорить, что подобные технологии помогают существенно снизить заметность не только живой силы, но и техники, особенно это важно для инфракрасного диапазона, так как множество вооружений наводится на цель именно по тепловому следу.

Но и в мирной жизни возможности для применения метаматериалов далеко не исчерпаны.

Ещё более замечательным свойством метаматериалов является возможность преодоления дифракционного предела в оптических системах, что позволит повысить разрешающую способность оптических микроскопов, создавать микросхемы нано-масштаба, существенно повысить плотность записи на оптические носители информации.

Там, где оптоволокно может заменить медный кабель, метаматериал может заменить оптоволокно, что приведёт к к более компактным, лёгким и энергоэффективным электронным приборам, антеннам и оптике.

Такой материал так же поможет существенно сэкономить место под расположение зеркал, а соответственно – увеличить мощность гелиотермальных электростанций.

какое свойство характерно метаматериалам

Применять метаматериалы можно не только там, где требуется манипуляция электромагнитными волнами. Те же принципы вполне можно применять и для акустических волн, даже проще, так как их длины вполне сопоставимы с нашими размерами (длина акустической волны различаемого человеческим ухом диапазона колеблется в пределах от 2 см до 20 м).

Шумовое загрязнение сейчас является серьёзной проблемой для крупных городов, а новые тонкие и лёгкие шумоизолирующие материалы помогут значительно улучшить жизнь населения. Своё применения акустические метаматериалы смогут найти и в таких обыденных приборах, как микрофоны и динамики, а в перспективе (поскольку при помощи звука можно и предметы двигать), можно вообразить узконаправленные звуковые линзы или защитные барьеры.

какое свойство характерно метаматериалам

В завершении хочется сказать, что мы пока только начали подступаться к технологиям создания метаматериалов, и не в состоянии охватить воображением полностью всё, где можно использовать метаматериалы, как не могли себе вообразить важность своих исследований первые экспериментаторы с полупроводниками, как не могли вообразить всего даже те, кто создавал из полупроводников первые транзисторы. Но метаматериалы – это не какой-то прожект из далёкого будущего, это технологии, которые войдут в повседневную жизнь быть может, уже следующего поколения.

Источник

Метаматериалы, графен, бионика. Новые материалы и технологии стремятся в бой

Ускоренные темпы технологического развития меняют природу ведения военных действий, при этом всё больше сил и средств направляется на научные исследования и разработки, целью которых является создание новых продвинутых материалов и их применение в оборонной сфере.

какое свойство характерно метаматериалам

Возможность создания материала с отрицательным углом преломления предсказал еще в 1967 году советский физик Виктор Веселаго, но только сейчас появляются первые образцы реальных структур с такими свойствами. Благодаря отрицательному углу преломления, лучи света огибают объект, делая его невидимым. Таким образом, наблюдатель замечает лишь то, что происходит за спиной надевшего «чудесный» плащ.

Чтобы получить преимущество на поле боя, современные вооруженные силы обращаются к таким потенциально прорывным возможностям, как например, продвинутая нательная защита и броня для транспортных средств, нанотехнологии. инновационный камуфляж, новые электрические устройства, супераккумуляторы и «интеллектуальная» или реактивная защита платформ и личного состава. Военные системы становятся всё более сложными, разрабатываются и изготавливаются новые продвинутые многофункциональные материалы и материалы двойного назначения, семимильными шагами идет миниатюризация сверхпрочной и гибкой электроники.

В качестве примеров можно привести перспективные самовосстанавливающиеся материалы, продвинутые композиционные материалы, функциональную керамику, электрохромные материалы, «киберзащитные» материалы, реагирующие на электромагнитные помехи. Они, как ожидается, станут основой прорывных технологий, которые бесповоротно изменять поле боя и природу будущих военных действий.

Прежде чем продолжить, дадим определение метаматериалам. Метаматериал — композиционный материал, свойства которого обусловлены не столько свойствами составляющих его элементов, сколько искусственно созданной периодической структурой. Они представляют собой искусственно сформированные и особым образом структурированные среды, обладающие электромагнитными или акустическими свойствами, сложнодостижимыми технологически, либо не встречающимися в природе.

Kymeta Corporation, дочерняя фирма патентной компании Intellectual Ventures, в 2016 году вышла на оборонный рынок с антенной из метаматериала mTenna. По словам директора компании Натана Кундца, переносная антенна в виде приемопередающей антенны весит около 18 кг и потребляет 10 Вт. Оборудование для метаматериальных антенн по размерам примерно равно книге или нетбуку, не имеет движущихся частей, и изготавливается таким же способом как ЖК-мониторы или экраны смартфонов с использованием технологии тонкопленочных транзисторов.

Метаматериалы состоят из субволновых микроструктур, то есть структур, чьи размеры меньше длины волны излучения, которым они должны управлять. Эти структуры могут быть изготовлены из немагнитных материалов, например, меди, и вытравлены на фибергласовой подложке печатной платы.

Могут быть созданы метаматериалы для взаимодействия с основными компонентами электромагнитных волн — диэлектрической проницаемостью и магнитной проницаемостью. По словам Паблоса Хольмана, изобретателя из Intellectual Ventures, антенны, созданные по технологии метаматериалов, могут со временем вытеснить вышки сотовой связи, наземные телефонные линии и коаксиальные и оптоволоконные кабели.

Традиционные антенны настраиваются на перехват управляемой энергии конкретной длины волны, которая возбуждает электроны в антенне, генерируя электрические токи. В свою очередь, эти кодированные сигналы могут быть интерпретированы как информация.

Современные антенные системы громоздки, поскольку для разных частот необходим свой тип антенны. В случае же с антеннами из метаматериалов поверхностный слой позволяет изменять направление изгиба электромагнитных волн. Метаматериалы показывают как отрицательную диэлектрическую, так и отрицательную магнитную проницаемости и, следовательно, имеют отрицательный коэффициент преломления. Этот отрицательный коэффициент преломления, не обнаруженный ни в одном природном материале, определяет изменение электромагнитных волн при пересечении границы двух разных сред. Таким образом, приемник метаматериальной антенны может настраиваться электронным образом для приема различных частот, в связи с чем у разработчиков появляется возможность достичь широкополосности и уменьшить размеры антенных элементов.

Метаматериалы внутри таких антенн компонуются в плоскую матрицу плотно упакованных отдельных ячеек (очень похоже на размещение пикселей экрана телевизора) с еще одной плоской матрицей параллельных прямоугольных волноводов, а также модулем, контролирующим излучение волны посредством программного обеспечения и позволяющим антенне определить направление излучения.

Хольман пояснил, что самый простой способ понять достоинства метаматериальных антенн — взглянуть поближе на физические апертуры антенны и надежность интернет-соединений на кораблях, самолетах, беспилотниках и других движущихся систем.

«Каждый новый спутник связи, выводимый на орбиту в наши дни, — продолжил Хольман, — имеет пропускную способность больше, чем имела группировка спутников еще несколько лет назад. У нас имеется огромный потенциал беспроводной связи в этих спутниковых сетях, но единственный способ связаться с ними — взять спутниковую тарелку, которая имеет большие размеры, большой вес и затратна в установке и обслуживании. Имея антенну на основе метаматериалов, мы сможем сделать плоскую панель, которая сможет управлять лучом и нацеливаться прямо на спутник.

«Пятьдесят процентов времени физически управляемая антенна не ориентирована на спутник и вы фактически находитесь в офлайне, — сказал Хольман. — Поэтому метаматериальная антенна может быть особенно полезной в морском контексте, ведь для направления на спутник тарелка управляется физически, поскольку судно часто меняет курс и постоянно раскачивается на волнах».

какое свойство характерно метаматериалам
какое свойство характерно метаматериалам

В настоящее время идет бурное развитие технологии беспилотных платформ с бионическими свойствами. Например, АПА Razor (масштабная модель на фото внизу) и АПА Velox (вверху) подражают естественным движениям животных или растений, что великолепно подходит для разведывательных и скрытных задач

Разработка новых материалов идет также в направлении создания гибких многофункциональных систем со сложными формами. Здесь важную роль играет прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы. Бионика (в западной литературе биомиметика) помогает человеку создавать оригинальные технические системы и технологические процессы на основе идей, найденных и заимствованных у природы.

Научно-исследовательский центр проблем подводной войны ВМС США испытывает минно-поисковый автономный подводный аппарат (АПА), в котором используются бионические принципы. имитирующие движения морских обитателей. Аппарат Razor длиной 3 метра могут переносить двое человек. Его электроника координирует работу четырех машущих крыльев и двух гребных винтов в кормовой части. Маховые движения имитируют движения некоторых животных, например, птиц и черепах. Это позволяет АПА зависать, выполнять точное маневрирование на небольших скоростях и развивать высокие скорости. Подобная маневренность позволяет также аппарату Razor легко менять положение в пространстве и плавать вокруг объектов для получения их трехмерного изображения.

Научно-исследовательское управление ВМС США финансирует разработку компанией Pliant Energy Systems прототипа опционально автономного подводного аппарата Velox, в котором вместо гребных винтов использована система мультистабильных, нелинейных, похожих на лист изгибаемой бумаги плавников, которые генерируют повторяющиеся волнообразные движения похожие на движения ската. Аппарат преобразует движения электроактивных, волнообразных, гибких полимерных плавников с планарной гиперболической геометрией в поступательное движение, свободно перемещаясь под водой, в волнах прибоя, в песке, над морской и наземной растительностью, по скользким камням или льду.

По мнению представителя компании Pliant Energy Systems, волнообразное движение вперед не позволяет запутаться в густой растительности, поскольку нет вращающихся частей, при этом растениям и осадочным породам наносится минимальный ущерб. Малошумный аппарат, питающийся от литий-ионного аккумулятора, может улучшать свою плавучесть, чтобы удерживать свое положение подо льдом, при этом он может управляться дистанционно. К его основным задачам относятся: коммуникационные, включая GPS, WiFi, радио- или спутниковые каналы; разведывательные и сбора информации; поисково-спасательные; и сканирование и идентификация мин.

Развитие нанотехнологий и микроструктур также весьма важно в бионических технологиях, вдохновение для которых берется из живой природы с целью имитации физических процессов или оптимизации производства новых материалов.

какое свойство характерно метаматериалам

Прозрачная броня применяется не только для баллистической защиты людей и транспортных средств. Она также идеально подходит для защиты электроники, стекол высокоэнергетических лазеров, упрочненных систем формирования изображения, лицевых защитных масок, БЛА, а также других платформ чувствительных к массе

Научно-исследовательская лаборатория ВМС США разрабатывает прозрачную полимерную защиту, которая имеет слоистую микроструктуру подобную хитиновому панцирю ракообразных, но изготавливается из пластических материалов. Это позволяет материалу оставаться конформным в широком диапазоне температур и нагрузок, что позволяет применять его для защиты личного состава, стационарных платформ, транспортных средств и летательных аппаратов.

По мнению Яса Сангхеры, руководителя направления оптических материалов и устройств в этой лаборатории, имеющаяся на рынке защита, как правило, изготавливается из пластика трех видов и не может на все сто процентов противостоять 9-мм пуле, отстреливаемой с 1-2 метров и летящей со скоростью 335 м/с.

Прозрачная броня разработки этой лаборатории позволяет уменьшить массу на 40% при сохранении баллистической целостности и поглощает на 68% процентов больше энергии пули. Сангхера пояснил, что броня могла бы прекрасно подойти для нескольких военных применений, например, машин с противоминной защитой, плавающих бронемашин, машин снабжения и окон кабин летательных аппаратов.

По словам Сангхеры, его лаборатория намерена на основе уже имеющихся разработок создать легкую конформную прозрачную броню с многоударными характеристиками и достичь снижения массы более чем на 20%, что обеспечит защиту от винтовочных пуль калибра 7,62×39 мм.

Управление перспективных оборонных исследований DARPA также разрабатывает прозрачную броню «Шпинель» (Spinel), имеющую уникальные свойства. Этот материал отличается превосходными многоударными характеристиками, высокой твердостью и эрозионной стойкостью, повышенным сопротивлением к внешним факторам; он пропускает средневолновое инфракрасное излучение более широкого диапазона, что повышает возможности устройств ночного видения (возможность видеть объекты за стеклянными поверхностями), а кроме того весит в два раза меньше традиционного пуленепробиваемого стекла.

Эта деятельность входит в программу DARPA под названием Atoms to Product (А2Р) в рамках которой «разрабатываются технологии и процессы, необходимые для сборки нанометровых частиц (размерами близкими размерам атомов) в системы, компоненты или материалы, по меньшей мере, миллиметрового масштаба».

По словам руководителя программы А2Р в DARPA Джона Мэйна, за последние восемь лет Управление добилось уменьшения толщины базовой прозрачной брони примерно с 18 см до 6 см при сохранении ее прочностных характеристик. Она состоит из множества различных слоев, «не все из них керамические и не все из них пластик или стекло», которые приклеиваются к материалу-подложке для предотвращения трещинообразования. «Вы должны думать о ней как о защитной системе, а не как о монолитном куске материала».

Стекла из «Шпинели» были изготовлены для установки на опытные образцы грузовиков FMTV (Family of Medium Tactical Vehicles — семейство войсковых транспортных средств средней грузоподъёмности) американской армии для оценки Научно-исследовательским бронетанковым центром.

В рамках программы А2Р Управление DARPA выдало компании Voxtel, работающей совместно с Институтом наноматериалов и микроэлектроники штатат Орегон, контракт стоимостью 5,9 миллиона долларов на исследование процессов производства, масштабируемых от нано- до макроуровня. Этот бионический проект включает разработку синтетического клеящего вещества, который копирует возможности ящерицы геккон.

«На подошвах геккона имеется что-то подобное маленьким волоскам. длиной примерно 100 микрон, которые буйно ветвятся. На конце каждой небольшой ветви имеется крошечная нанопластина размером примерно 10 нанометров. При контакте со стеной или потолком эти пластины позволяют геккону приклеиваться к стене или потолку».

Мэйн сказал, что производители никогда не могли повторить эти возможности, поскольку не могли создать разветвляющиеся наноструктуры.

«Компания Voxtel разрабатывает технологии производства, которые позволяют копировать подобную биологическую структуру и поймать эти биологические качества. Она использует углеродные нанотрубки действительно по-новому, это позволяет создавать сложные 3Д-структуры и использовать их очень оригинальными способами, не обязательно как структуры, а другими, более изобретательными способами».

Voxtel хочет разработать продвинутые аддитивные методики производства, которые позволят получать «материалы, которые сами собираются в функционально законченные блоки, затем собирающиеся в сложные гетерогенные системы». Эти методики будут базироваться на имитации найденных в природе простых генетических кодов и общих химических реакций, которые позволяют молекулам самособираться с атомного уровня в крупные структуры способные сами снабжать себя энергией.

«Мы хотим разработать продвинутый клеящий материал повторного действия. Мы хотели бы получить материал со свойствами эпоксидного клея, но без его одноразовости и загрязнения поверхности, — заметил Мэйн. — Прелесть материала а-ля геккон в том, что он не оставляет следов и действует мгновенно».

К другим быстро развивающимся продвинутым материалам относятся ультратонкие материалы, например, графен и углеродные нанотрубки, имеющие такие структурные, тепловые, электрические и оптические свойства, которые в корне изменят современное боевое пространство.

какое свойство характерно метаматериалам

Прозрачные окна из «Шпинели» были изготовлены для опытных образцов грузовых автомобилей FMTV американской армии

Хотя углеродные нанотрубки имеют хороший потенциал применения в электронных и камуфляжных системах, а также в биолого-медицинской сфере, графен «более интересен, так как предлагает, по крайней мере на бумаге, больше возможностей», — заметил Джузеппе Даквино, представитель Европейского оборонного агентства (ЕОА).

Графен — это сверхтонкий наноматериал, образованный слоем атомов углерода толщиной в один атом. Легкий и прочный графен обладает рекордно большими теплопроводностью и электропроводимостью. Оборонная промышленность внимательно изучает возможность применения графена в тех приложениях, в которых необходима его прочность, гибкость и сопротивление высоким температурам, например, в боевых задачах, выполняемых в экстремальных условиях.

Даквино сказал, что графен «по меньшей мере, в теории, является материалом будущего. Причина, почему сейчас ведется столь много интересных дебатов, заключается в том, что после стольких лет исследований в гражданском секторе стало очевидным, что он реально изменит боевые сценарии».

«Перечислю только некоторые возможности: гибкая электроника, энергосистемы, баллистическая защита, камуфляж, фильтры/мембраны, материалы с высоким теплорассеянием, биомедицинские приложения и сенсоры. Это, по сути, основные технологические направления».

В декабре 2017 года ЕОА начало годичное исследование возможных перспективных направлений применения графена в военной сфере и его влияния на европейскую оборонную промышленность. Эти работы возглавил испанский Фонд технических исследований и инноваций, с которым сотрудничают Университет Картахены и британская компания Cambridge Nanomaterial Technology Ltd. В мае 2018 года состоялся семинар исследователей и экспертов по графену, где были определена дорожная карта по его применению в оборонной сфере.

По данным ЕОА, «среди материалов, которые способны коренным образом изменить оборонные возможности в следующем десятилетии, графен находится в приоритетном списке. Легкий, гибкий, прочнее стали в 200 раз, а его электропроводность просто невероятна (лучше чем у кремния), так же как и его теплопроводность».

В ЕОА также отметили, что графен имеет замечательные свойства в области «управления сигнатурами». То есть он может быть использован для производства «радиопоглощающих покрытий, что превратит военные машины, самолеты, подводные лодки и надводные суда в почти необнаруживаемые объекты. Все это делает графен чрезвычайно привлекательным материалом не только для гражданской промышленности, но также для военных приложений, наземных, воздушных и морских».

какое свойство характерно метаматериалам
какое свойство характерно метаматериалам

Процесс спекания методом горячего прессования (вверху) Научно исследовательская лаборатория ВМС США использует для создания прозрачной керамики «Шпинель». Порошок сжимается в вакууме для получения прозрачности. Полученный материал (внизу) может быть подобно драгоценным камням отшлифован и отполирован

С этой целью американская армия изучает применение графена для транспортных средств и защитных предметов одежды. По мнению инженера Эмиля Сандоз-Росадо из Лаборатории военных исследований армии США (ARL), этот материал имеет превосходные механические свойства, один атомный слой графена в 10 раз жестче и более чем в 30 раз прочнее такого же слоя коммерческого баллистического волокна. «Потолок для графена очень высок. Это одна из причин, почему несколько рабочих групп в ARL проявили интерес к нему, ведь его конструктивные характеристики с точки зрения бронирования весьма перспективны.

Впрочем, есть и довольно большие сложности. Одна из них — масштабирование материала; армии необходимы защитные материалы, которые могли бы закрыть танки, автомобили и солдат. «Нам необходимо много больше. В общем и целом, речь идет о порядка миллиона и более слоев, в которых на данный момент мы нуждаемся».

Сандоз-Росадо рассказал, что графен может быть получен одним или двумя способами, либо за счет процесса отшелушивания, когда высококачественный графит разделяется на отдельные атомные слои, или выращивания одиночного атомного слоя графена на медной фольге. Этот процесс хорошо освоен лабораториями, занимающимися производством высококачественного графена. «Он не вполне совершенен, но довольно близок к этому. Однако, сегодня пора говорить уже не об одном атомном слое, нам необходим полноценный продукт». Как следствие, недавно была запущена программа по разработке непрерывных процессов производства графена в промышленных масштабах.

«Идет ли речь об углеродных нанотрубках или о графене, вы должны учитывать специфические требования, которым необходимо соответствовать», — предостерег Даквино, отметив, что официальное описание характеристик новых продвинутых материалов, стандартизация точных процессов создания новых материалов, воспроизводимость этих процессов, технологичность всей цепочки (от фундаментальных исследований до производства демонстрационных и опытных образцов) нуждаются в тщательном изучении и обосновании, когда речь идет об использовании в военных платформах таких прорывных материалов, как графен и углеродные нанотрубки.

«Это не только исследования, потому что, в конце концов, вам необходимо быть уверенным, что определенный материал получил официальное описание и после этого вам надо быть уверенным, что он сможет производиться по определенному процессу. Это не так то просто, поскольку процесс изготовления может меняться, качество произведенного продукта может различаться в зависимости от процесса, поэтому процесс должен быть повторен несколько раз».

По словам Сандоз-Росадо, ARL работала с производителями графена на предмет оценки класса качества выпускаемого продукта и возможность его масштабирования. Хотя пока не ясно, имеют ли непрерывные процессы, находящиеся в начале своего становления, бизнес-модель, соответствующие мощности и могут ли они дать необходимое качество.

Даквино отметил, что прогресс в компьютерном моделировании и квантовых вычислениях мог бы ускорить исследования и разработку, а также развитие методов производства продвинутых материалов в ближайшем будущем. «С автоматизированным проектированием и моделированием материалов можно смоделировать многие вещи: можно будет смоделировать характеристики материалов и даже процессы производства. Вы даже можете создать виртуальную реальность, где по сути можно рассматривать различные этапы создания материала».

Даквино также сказал, что продвинутое компьютерное моделирование и методы виртуальной реальности обеспечивают преимущество за счет создания «интегрированной системы, в которой вы можете моделировать конкретный материал и видеть, может ли этот материал быть применен в определенных условиях». Радикально изменить здесь положение дел могли бы квантовые вычисления.

«В будущем я вижу еще больше интереса к новым способам производства, новым путям создания новых материалов и новым процессам производства за счет компьютерного моделирования, поскольку огромные вычислительные мощности потенциально можно получить только при задействовании квантовых компьютеров».

По словам Даквино, одни применения графена технологически более отработаны, а другие менее. Например, керамические композиционные материалы с матричным основанием могут быть улучшены за счет интеграции графеновых пластинок, которые усиливают материал и повышают его механическое сопротивление, одновременно снижая его массу. «Если мы говорим, например, о композитах, — продолжил Даквино, — или в самых общих чертах о материалах, усиленных за счет добавления графена, то мы получим реальные материалы и реальные процессы их массового производства если не завтра, но может быть в ближайшие пять лет».

«Вот почему графен так интерес для систем баллистической защиты. Не потому, что графен может быть использован в качестве брони. Но если вы в броне используете графен в качестве усиливающего материала, то она может стать прочнее даже кевлара».

Приоритетные направления, например, автономные системы и сенсоры, а также военные сферы с высоким риском, например, подводная, космическая и кибернетическая, больше всего зависят от новых продвинутых материалов и сопряжения нано- и микротехнологий с биотехнологиями, «стелс»-материалами, реакционноспособными материалами и системами генерации и аккумулирования энергии.

Метаматериалы и нанотехнологии, например, графен и углеродные нанотрубки, сегодня переживают бурное развитие. В этих новых технологиях военные ищут новые возможности, изучают пути их применения и потенциальные барьеры, поскольку вынуждены балансировать между потребностями современного поля боя и долгосрочными исследовательскими целями.


Будущее идет к нам. Аппарат Velox компании Pliant Energy Systems

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *