какое расстояние видимости горизонта на море

НАВИГАЦИЯ. Глава 1. §§6-7. Видимый горизонт. Дальность видимости ориентиров на море.

§ 6. Видимый горизонт и его дальность

Наблюдатель, находясь в море, всегда видит вокруг себя определенный участок земной поверхности, в центре которого находится он сам.

Этот участок принято называть кругозором наблюдателя. Границей кругозора наблюдателя является линия, по которой небосвод как бы соприкасается с морем. Называется она линией видимого горизонта.

С увеличением высоты глаза наблюдателя его кругозор расширяется, линия видимого горизонта отодвигается от наблюдателя, дальность видимого горизонта увеличивается.

На сферической поверхности Земли линия видимого горизонта представляется малым кругом ММ (см.рис.11), по которому прямые линии — лучи, проведенные во все стороны от глаза наблюдателя, касаются земной поверхности.

какое расстояние видимости горизонта на море

Геометрическая дальность видимого горизонта Дг без учета земной рефракции, представляющая собой сферический радиус AM, может быть рассчитана на основании следующих соображений (которые вполне можно и пропустить).

Учитывая, что высота глаза наблюдателя е по сравнению с размерами Земли незначительна (на современных кораблях высота глаза едва ли может быть больше 50 м), сферический радиус AM можно считать равным длине касательной ВМ. Тогда из прямоугольного треугольника ОВМ можно написать

Видимый горизонт и его дальность:

Oтношение e/2R настолько мало, что пренебрежение им практически не скажется на точности вычисляемой дальности. Учитывая это, можно считать, что

/Ну всё же ясно как белый день, не правда ли?/

Длину сферического радиуса AM и приравненной к нему касательной ВМ мы назвали геометрической дальностью видимого горизонта без учета земной рефракции.

Если бы земная атмосфера во всех своих слоях имела одинаковую плотность (или будь Земля вовсе лишена атмосферы), лучи света от линии видимого горизонта MM1 достигали бы глаза наблюдателя по прямым без искривлений и сферический радиус AM представлял бы фактическую дальность видимого горизонта. В действительности же в земной атмосфере лучи света распространяются не прямолинейно, а с некоторым преломлением вследствие неодинаковой плотности атмосферы в разных ее слоях.

Явление преломления светового луча, проходящего через слои земной атмосферы с разной плотностью, называется земной рефракцией.

какое расстояние видимости горизонта на море

какое расстояние видимости горизонта на море

какое расстояние видимости горизонта на море

какое расстояние видимости горизонта на море

какое расстояние видимости горизонта на море

Вследствие рефракции траектория луча, соединяющего малый круг ММ1 с глазом наблюдателя В, в действительности будет кривой линией, обращенной вогнутостью к Земле. Точка касания этого луча с поверхностью Земли будет лежать несколько дальше точки М1, а именно в точке К1. Следовательно, кругозор наблюдателя за счет рефракции расширится и дальность видимого им горизонта увеличится.

Земная рефракция характеризуется углом r земной рефракции, заключенным между хордой ВК1 и касательной к траектории светового луча K1B в точке В.

Величина этого угла зависит от преломляющих свойств атмосферы в момент наблюдений, в свою очередь зависящих от разности температуры воды и воздуха, влажности воздуха, атмосферного давления и других факторов.

какое расстояние видимости горизонта на море

Проходя из более плотных слоев атмосферы у поверхности Земли в менее плотные, на высоте е луч света, преломляясь, искривляется и принимает вид кривой К1В.

Поэтому наблюдатель видит точку К1 не по направлению касательной BM1 или хорды BK1, а по направлению касательной ВТ к траектории действительного луча К1В.

Из многочисленных наблюдений, произведенных в разное время и в разных частях земного шара, установлено, что отношение R/ρ, называемое коэффициентом земной рефракции, при нормальном состоянии атмосферы примерно равно 0,16.

Этот коэффициент характеризует преломляющую способность земной атмосферы.

Для отыскания зависимости геометрической дальности видимого горизонта с учетом земной рефракции от высоты глаза наблюдателя е физматы и желающие могут обратится к полной версии этого параграфа и погрузиться с головой в формулы и расчёты с синусо-косинусами и прочими очень интересными вещами.

Мы же, гуманитарии, сразу ограничившись двумя первыми членами разложения, получим:

Де (мили) = 2,08 √е (метры)

Такова формула геометрической дальности видимого горизонта с учетом земной рефракции в море для наблюдателя с высотой глаза, равной е.

Для приближенных расчетов можно принимать, что геометрическая дальность видимого горизонта в морских милях равна удвоенному корню квадратному из численного значения высоты глаза наблюдателя в метрах.

В очень нужной и полезной книге «Мореходные таблицы МТ-2000» имеется специальная таблица 2.1, (слава всем морским богам) вычисленная по последней формуле. Она приводится в конце этого параграфа.

Пользуясь этой таблицей, можно непосредственно по высоте глаза наблюдателя е выбрать дальность видимого горизонта.

Рассмотренные выше геометрические дальности видимого горизонта как с учетом, так и без учета земной рефракции являются дальностями теоретическими.

Действительная дальность видимого горизонта в зависимости от условий прозрачности атмосферы может значительно отличаться от теоретической.

Действительная дальность видимости может быть определена только опытным путем (поминаем добрым словом Христофора Бонифатьевича).

МТ-2000 Таблица 2.1.

какое расстояние видимости горизонта на море

§ 7. Дальность видимости ориентиров на море.

Наблюдатель, находясь в море, может увидеть тот или иной ориентир лишь в том случае, если его глаз окажется выше траектории или, в предельном случае, на самой траектории луча, идущего от вершины ориентира касательно к поверхности Земли.

Очевидно, что упомянутый предельный случай будет соответствовать моменту, когда ориентир открывается приближающемуся к нему наблюдателю или скрывается, когда наблюдатель удаляется от ориентира.

какое расстояние видимости горизонта на море

Дальность видимости, рассчитанная по этой формуле называется географической дальностью видимости предмета.

Ее можно рассчитать, сложив выбранные из упомянутой выше табл. 2.1. МТ-2000 дальности видимого горизонта для каждой из заданных высот h и e.

Пример 1.

Требуется рассчитать полную дальность видимости предмета, имеющего высоту h=144 м, с высоты глаза наблюдателя e = 16 м.

Решение.

По табл. 2.1. находим:

Дh=25 миль, Дe =8,3 мили.

Следовательно,
Дп = 25,0 +8,3 = 33,3 мили.
_________________

Таблица 2.3, также помещённая в МТ-2000, дает возможность непосредственно получить полную дальность видимости ориентира по его высоте и высоте глаза наблюдателя.
Вот она:

какое расстояние видимости горизонта на море

Эта таблица расчитана по формуле:

Дп= 2,08 (√h + √e)

Также, в МТ-2000 есть такая штука как Номограмма 2.4. «Географическая дальность видимости предметов». С её помощью можно определить расстояние, на котором будет виден объект с той или иной высоты наблюдения.

какое расстояние видимости горизонта на море

Расположив линейку на номограмме таким образом, чтобы указанные в крайних столбцах известные высоты оказались на одной лини, отметить значение среднего столбца, находящееся на этой же прямой. Оно и покажет искомое расстояние.

На морских картах и в навигационных пособиях показывается дальность видимости Дк ориентиров для постоянной высоты глаза наблюдателя, равной 5 метров.

какое расстояние видимости горизонта на море

Дальность же открытия и скрытия предметов в море для наблюдателя, высота глаза которого не равна 5 м, не будет соответствовать дальности видимости Дк, показанной на карте.

В таких случаях дальность видимости ориентиров, показанную на карте или в пособиях, необходимо исправлять поправкой:

Чтобы рассчитать дальность видимости ориентира при высоте глаза е ≠ 5 м, надо к дальности, показанной на карте или в навигационном пособии, алгебраически прибавить поправку ΔДк.

Для удобства на походе можно рекомендовать штурману иметь на мостике поправки, заранее рассчитанные для различных уровней глаза наблюдателя, находящегося на различных надстройках корабля (палуба, ходовой мостик, сигнальный мостик, места установки пелорусов гирокомпаса и т. п.).

Пример 2.

На карте у маяка показана дальность видимости Дк = 18 миль, Рассчитать дальность видимости Дп этого маяка с высоты глаза 12 м и высоту маяка h.

Решение.

По табл. 2.1 МТ находим

Д5 = 4,7 мили, Де = 7,2 мили.

Следовательно, дальность видимости маяка с е =12 м будет равна

По формуле Дк = Дh + Д5 определим

Дh =Дк—Д5 = 18—4,7 =13,3 мили.

По табл. 2.1. МТ обратным входом находим h = 41 м.
________________

Всё изложенное о дальности видимости предметов в море относится к дневному времени, когда прозрачность атмосферы соответствует среднему ее состоянию. Во время переходов штурман должен учитывать возможные отклонения состояния атмосферы от средних условий, накапливать опыт оценки условий видимости, с тем чтобы научиться предвидеть возможные изменения в дальности видимости предметов в море.

В ночное время дальность видимости маячных огней определяется оптической дальностью видимости.

Оптическая дальность видимости огня зависит от силы источника света, от свойств оптической системы маяка, прозрачности атмосферы и от высоты установки огня. Оптическая дальность видимости может быть больше или меньше дневной видимости одного и того же маяка или огня; эта дальность определяется экспериментальным путем из многократных наблюдений. Оптическая дальность видимости маяков и огней подбирается для ясной погоды. Обычно светооптические системы подбирают так, чтобы оптическая и дневная географическая дальности видимости были одинаковыми. Если эти дальности отличаются одна от другой, то на карте указывается меньшая из них.

Дальность видимости горизонта и дальность видимости предметов для реальной атмосферы можно определить опытным путем с помощью радиолокационной станции или по обсервациям.

Источник

Содержание

Систематически наблюдая какой-либо удалённый объект на суше или на поверхности моря, можно заметить, что в некоторые моменты он виден весьма отчётливо, в другие моменты, наоборот, он виден настолько неясно, что различаются лишь его контуры или отдельные его крупные части, а иногда он становится невидимым. В таких случаях говорят о хорошей или плохой видимости. Одним из основных факторов, определяющих условия хорошей и плохой видимости, является фактор мутности и оптические свойства атмосферы.

Для разных целей нашей жизни важно знать, на каком расстоянии перестают различаться визуально очертания предметов за воздушной завесой. Обычно это расстояние называют дальностью видимости или просто видимостью. В очень чистом воздухе, например, арктического происхождения, дальность видимости может достигать сотен километров. В воздухе, содержащем много продуктов конденсации или пыли и дыма, дальность видимости может ухудшаться до десятков и даже нескольких метров.

Дальность видимости может быть определена как:

Первое расстояние называется дистанцией обнаружения объекта, второе — дистанцией потери видимости. Разность между этими двумя характеристиками видимости определяет некоторый интервал расстояний, в котором видимость объекта становится ненадёжной, — это зона неуверенной видимости. Значения видимости оценивают обычно в километрах, но при очень плохой видимости (менее 1 км) — в метрах.

Установлено, что дальность видимости зависит от большого числа факторов, в том числе:

Определение дальности видимости объектов в ночное время визуально представляет собой сложную задачу, зависящую в основном от состояния зрительных функций глаза. Наблюдения за видимостью одиночного огня в ночное время и во время сумерек определяется величиной его блеска, т. е. той освещённостью Е, которую он создаёт на зрачке глаза. Эта освещённость зависит:

какое расстояние видимости горизонта на море

Очевидно, что наблюдение за видимостью огня (в том числе навигационного) будет возможно до тех пор, пока E больше порога световой чувствительности глаза, т. е. той минимальной освещённости Е0, которую может воспринимать глаз. При практическом определении дальности видимости огней (сигнальных) ночью особые затруднения возникают при необходимости определения их цвета. В этом случае приобретает значение цветовой порог, под которым понимается освещённость, соответствующая моменту распознавания цвета. Красный цвет распознаётся всегда легче и притом почти одновременно с его обнаружением.

Метеорологическая дальность видимости

При выполнении наблюдений на морских судах метеорологической дальностью видимости (горизонтальной видимостью) называется:

Метеорологическая дальность видимости выражается в метрах, километрах, кабельтовых и милях.

Объекты, по которым наблюдатель определяет в море метеорологическую дальность видимости, могут быть как естественными (поверхность моря с линией горизонта, очертания берегов, отдельные мысы, горы, леса и т. д.), так и искусственными (суда, береговые сооружения, огни и пр.). Метеорологическая видимость этих объектов оценивается либо визуально (по видимому контрасту наблюдаемого объекта и фона), либо дополнительно по данным радиолокационной станции.

Наблюдения за метеорологической дальностью видимости на судах следует производить с пеленгаторной палубы в направлениях, исключающих влияние на их результаты дыма из труб судна, бликов от водной поверхности.

Если при определении метеорологической дальности видимости она неодинакова в разных направлениях, то необходимо оценивать её значение и в том направлении, где она наименьшая.

Определение метеорологической дальности видимости в открытом море (океане)

При плавании в открытом море или океане, когда в поле зрения наблюдателя отсутствуют какие-либо объекты, определение метеорологической дальности видимости осуществляется по резкости видимости линии горизонта и высоте расположения глаз наблюдателя над уровнем моря (она складывается из высоты места наблюдений и роста наблюдателя). В этом случае следует учитывать рекомендации вахтенному штурману, выполняющему наблюдения на судне, по оценке значения метеорологической дальности видимости линии горизонта, в зависимости от высоты расположения глаз наблюдателя и словесной характеристики линии наблюдаемого горизонта (табл. 6.1).

какое расстояние видимости горизонта на море

Если линия горизонта не видна совсем, то значение метеорологической дальности видимости следует оценивать либо по видимости деталей поверхности моря (по видимости очертаний волн, барашков, тех или иных объектов или предметов в направлении горизонта), руководствуясь развитой способностью человека к глазомерной оценке расстояния, либо по наблюдаемым атмосферным явлениям в соответствии с рекомендуемыми данными оценки по шкале значений метеорологической дальности видимости объектов в море (океане) (табл. 6.2).

какое расстояние видимости горизонта на море

Примеры оценки метеорологической дальности видимости в открытом море:

1. Оценка метеорологической дальности видимости производится с пеленгаторной палубы. Высота уровня наблюдения с учётом высоты расположения глаз наблюдателя равна 13 м.

При выполнении наблюдений было установлено, что:

2. Оценка метеорологической дальности видимости производится с пеленгаторной палубы. Высота уровня наблюдения с учётом высоты расположения глаз наблюдателя равна 5 м.

При выполнении наблюдений было обнаружено, что:

3. Оценка метеорологической дальности видимости производится с пеленгаторной палубы. Высота уровня наблюдения с учётом высоты расположения глаз наблюдателя равна 15 м.

При выполнении наблюдений было обнаружено, что:

Определение метеорологической дальности видимости по видимым объектам

Объекты в море (океане), попадающие в поле зрения наблюдателя (как естественные, так и искусственные), отличаются большим разнообразием контрастов и угловых размеров. Например, береговая линия, навигационные знаки, размеры видимых судов в зависимости от их курса могут изменяться в широких пределах.

При определении метеорологической дальности видимости видимыми объектами считаются те, которые различимы на фоне неба, хотя бы в виде малозаметного пятна (детали, контуры объекта при этом могут быть неразличимы).

Для определения метеорологической дальности видимости по видимым объектам необходимо:

В том случае, если объект виден чётко, то определённое до него расстояние принимается равным метеорологической дальности видимости в море (океане).

Если объект виден нечётко и трудно различить его контуры, то значение метеорологической дальности видимости будет меньше расстояния до этого объекта на одну градацию. Градации значений метеорологической дальности видимости приведены в действующем коде КН–01с (код для составления гидрометеорологических радиограмм на судах).

При визуальных оценках расстояний до видимого объекта необходимо выработать навыки такой оценки путём многократных сравнений результатов визуальных определений расстояний до объектов с результатами определений этих же расстояний по карте или РЛС.

Примеры оценки метеорологической дальности видимости по видимым объектам:

1. В дневное время на горизонте стал вырисовываться контур острова. Осадки и дымка отсутствовали. Расстояние до объекта, определённое с помощью РЛС, оказалось равным 15 км. Это расстояние принимаем равным значению метеорологической дальности видимости — 15 км, с учётом значения видимости до видимого объекта.

2. В условиях дневного освещения при следовании по курсу движения в дымке стал вырисовываться берег. По данным РЛС и прокладки курса на карте расстояние до берега составило 4 км. Метеорологическую дальность видимости в дымке в данном случае можно оценить как среднюю — с градацией от слабой до умеренной по «Шкале значений метеорологической дальности видимости (км) для объектов в море (океане)» (табл. 6.2).

Определение метеорологической дальности видимости в тёмное время суток

В сумерки и ясные ночи, а также во время белых ночей при плавании в высоких широтах Северного и Южного полушарий бывает достаточно светло и метеорологическая дальность видимости определяется в этих условиях так же, как днём. Она оценивается по степени видимости элементов поверхности моря, линии горизонта или разных объектов.

В случае определения метеорологической дальности видимости в тёмное время суток объекты для ночных наблюдений не должны являться источниками света или находиться в поле зрения других искусственных источников света (например, освещённая электрическим светом часть акватории, берега, навигационного знака или другое судно).

Объекты, которые используются для определения метеорологической дальности видимости в тёмное время суток, должны иметь естественное освещение, т. е. быть освещены отражённым светом луны или звёздами.

В тёмное время суток, когда естественная освещённость водной поверхности и других объектов в море и на суше мала, оценивать метеорологическую дальность видимости следует по виду и интенсивности наблюдаемых атмосферных явлений с помощью «Шкалы значений метеорологической дальности видимости (км) объектов в море (океане)» (табл. 6.2) или распространять на тёмное время суток сведения о метеорологической дальности видимости, полученные в последний срок наблюдений за видимостью светлого времени. При определении метеорологической дальности видимости необходимо помнить следующее:

Примеры определения метеорологической дальности видимости в тёмное время суток:

1. В 18.00 UTS (Всемирного скоординированного времени), в начале ночи, было определено, что значение метеорологической дальности видимости было 10 км. В сроке от 18.00 UTS до 00.00 UTS отмечалось следующее: ночь тёмная, линия горизонта не видна, сплошная облачность, не видно естественных источников освещения (звёзд и луны), но явлений, ухудшающих видимость (тумана, дымки, осадков), в рассматриваемый период времени не наблюдалось. Срок в 00.00 UTS совпадает с серединой ночи. В этой ситуации за метеорологическую дальность видимости принимаем её значение, определённое в 18.00 UTS, т. е. 10 км.

2. В 18.00 UTS (Всемирного скоординированного времени) было определено, что значение метеорологической дальности видимости было 10 км. В сроке от 23.00 до 24.00 UTS отмечались сильный дождь и слабая дымка, при этом видимость значительно ухудшилась. С учётом «Шкалы значений метеорологической дальности видимости объектов (км) в море (океане)» (табл. 6.2) можно определить, что при очень сильном дожде видимость может составлять от 1 до 2 км, а при слабой дымке — от 2 до 4 км. Поскольку в момент наблюдений отмечалось несколько атмосферных явлений, то при оценке метеорологической дальности видимости наблюдатель – вахтенный штурман учитывает то явление, которое больше ухудшает горизонтальную видимость в приводном слое атмосферы. Таким образом, за метеорологическую дальность видимости мы берём меньшее из отмеченных значений, которое составляет 1 км.

Зрительные средства навигационного оборудования и дальность видимости

Под навигационным оборудованием подразумевают совокупность рационально спроектированных и размещённых на берегу и в прибрежных водах различных технических средств, предназначенных для решения следующих навигационных задач:

Требования к навигационному оборудованию определяются с учётом навигационно-гидрографических особенностей в отдельных зонах открытого моря, прибрежного и стеснённого плавания.

Зона открытого моря — это акватория, лежащая за пределами зрительного и радиолокационного наблюдения естественных и береговых ориентиров. Основным способом судовождения в этой зоне является счисление пути судна с периодическими определениями его места.

Прибрежная зона — акватория шириной 30–50 морских миль, лежащая вдоль материкового берега, берегов архипелагов и отдельных островов. В пределах этой зоны возможно зрительное и радиолокационное наблюдение береговых естественных и искусственных ориентиров. Условия плавания в этой зоне требуют от судоводителя повышенной точности судовождения с учётом навигационно-гидрографических и метеорологических условий по сравнению с открытым морем.

Зона стеснённого плавания — это каналы, проливы, узкости, шхеры, устьевые участки судоходных рек, акватории портов и т. п., по которым движение осуществляется по строго определённому пути, а на особо сложных участках — только при лоцманской проводке.

Системы навигационного оборудования по месту их расположения бывают береговые, плавучие и космические.

Береговые системы навигационного оборудования представляют собой сооружения, конструкции или устройства, устанавливаемые на суше или на гидротехнических основаниях в море. Они являются стационарными и их место точно определено координатами. Оснащение этих систем представляет собой мощное и эффективное оборудование, которое обеспечивает значительную дальность действия и надёжность навигационного обеспечения (маяки, знаки, огни, бани, створы, естественные пункты, объекты и сооружения).

Плавучие предостерегающие знаки — это сооружения, способные держаться на плаву (плавмаяки, буи, бакены, вехи), устанавливаемые на якорях в пунктах с точно определёнными координатами. Они предназначены для ограждения от той или иной навигационной опасности.

В системе космического навигационного оборудования космические средства делятся на естественные (светила, которые могут определяться визуально) и искусственные источники излучения радиоволн с космических платформ.

В незамерзающих морях и районах океанов все виды средств навигационного оборудования действуют круглый год. В тех же районах и акваториях, где водная поверхность покрывается льдом в зимний период, плавучие средства навигационного оборудования выставляют в начале навигации и снимают с её окончанием. С учётом наиболее полного обеспечения безопасности мореплавания устанавливаются три режима работы средств навигационного оборудования: непрерывно, по расписанию и по заявкам.

В зависимости от технических принципов построения средства навигационного оборудования разделяются на зрительные, радиотехнические, звукосигнальные, гидроакустические и электромагнитные.

К зрительным средствам навигационного оборудования относятся:

Они устанавливаются на акваториях морей, океанов и различных участках суши, а также на внутренних водных путях с целью их зрительного восприятия как в дневное, так и в ночное время суток. Зрительные средства навигационного оборудования для использования в тёмное время суток оборудуются светооптическими аппаратами, создающими круговое направление или секторное освещение, с определённым характером или светом огня.

Зона действия любого зрительного средства навигационного оборудования — это район моря или океана, в пределах которого возможно измерение навигационных параметров по этому средству навигационного оборудования. Рабочей зоной этого средства называют ту часть зоны, в пределах которой возможно определение места судна с заданной точностью.

Зоны действия и рабочие зоны средств навигационного оборудования ограничиваются дальностью и сектором действия навигационных ориентиров.

За дальность действия навигационных ориентиров для зрительных средств навигационного оборудования принимают расчётную дальность видимости огней ночью или днём при наиболее вероятных для данного района моря значениях прозрачности атмосферы, т. е. с повторяемостью не ниже 65 %.

Обслуживаемые маяки, светящиеся знаки и огни обычно включаются с заходом, а выключаются с восходом солнца в конкретном пункте или определённой акватории. Но на некоторых обслуживаемых средствах навигационного оборудования световой сигнал действует круглосуточно. Источники света большой мощности, установленные в районах интенсивного судоходства и на подходах к некоторым портам, действуют и днём, и ночью. Для оценки дальности действия зрительных средств навигационного оборудования используются следующие характеристики видимости:

Географическая дальность видимости (Дп) — расстояние в морских милях, на котором объект заданной высоты появляется из-за линии видимого горизонта. Для маяка или навигационного знака такая дальность видимости складывается из дальности видимого горизонта с высоты е (м) глаза наблюдателя и высоты h (м) наблюдаемого маяка и определяется по известной из навигации формуле

какое расстояние видимости горизонта на море

При определении географической дальности видимости маяков и других навигационных знаков их высоты принимают на морях без приливов — от среднего уровня моря, на морях с приливами — от среднего уровня полных сизигийных вод. Высоту маячных сооружений определяют от основания как расстояние от уровня спланированной территории до вершины купола фонарного сооружения, а при отсутствии фонарного сооружения — до верхней площадки башни. Высотой огня от основания считается расстояние от спланированной территории до центра огня.

Метеорологическая дальность видимости (S) определяется как наибольшее расстояние, на котором под воздействием атмосферной дымки теряется видимость абсолютно чёрной поверхности, имеющей при этом расстоянии угловые размеры не менее 0,3º и проектирующейся на фоне неба у горизонта. Такая метеорологическая дальность видимости зависит от прозрачности атмосферы и порога контрастной чувствительности глаза:

какое расстояние видимости горизонта на море

где ε — порог контрастной чувствительности глаза (безразмерная величина), τ — коэффициент прозрачности атмосферы.

Оптическая дальность видимости — наибольшее расстояние, с которого глазу наблюдателя становится виден наблюдаемый объект. Такая дальность видимости определяется силой света огня, прозрачностью атмосферы, геометрическими размерами сооружения, яркостью фона, окраской, контрастом фона местности и маяка (знака) и остротой зрения наблюдателя.

Различают ночную и дневную оптическую дальность видимости.

Ночная оптическая дальность видимости — наибольшее расстояние от маяка, с которого освещённость, создаваемая на зрачке глаза наблюдателя маячным огнём, равна пороговой освещённости.

Дневная оптическая дальность видимости объекта — наибольшее расстояние, с которого объект, доступный для наблюдения при данных условиях погоды, полностью сливается с фоном и становится невидимым.

На навигационных картах и в руководствах для плавания приводится меньшая из дальности видимости огней (в милях): оптическая дальность видимости (ночью), полученная расчётным путём при τ = 0,8/1 милю; географическая дальность видимости (днём), вычисленная для высоты глаза наблюдателя над уровнем моря 5 м.

Для получения цветных огней на светооптические аппаратуры маяков и знаков устанавливаются светофильтры. С их помощью создаются также цветные секторы огней.

По чистоте цвета и цветовому порогу чувствительности глаза человека лучшим для определения огня является красный светофильтр и поэтому красный огонь применяется чаще всего. Зелёный светофильтр по своим качествам несколько уступает красному, но также имеет широкое применение в навигационном оборудовании. Оранжевый светофильтр применяется главным образом на буях, ограждающих кабели или обозначающих якорные и карантинные стоянки. На маяках этот светофильтр не используют по причине того, что этот цвет на значительном расстоянии или удалении трудно отличить от жёлтого или красного цвета.

В практике навигационного оборудования для определения дневной дальности видимости при проектировании маяков принимаются в расчёт только геометрические размеры сооружения — высота и ширина. На самом же деле, дневная дальность видимости маяка (Дп) зависит также от ряда других факторов — коэффициента прозрачности атмосферы τ, освещённости, цвета окраски маяка, остроты зрения наблюдателя, наличия и отсутствия облачности и явлений, ухудшающих видимость. Поэтому Дп составляет, как правило, 50–60 % от метеорологической дальности видимости S в данный момент.

Литература

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *