какое расстояние между меридианами на карте

Как измерить расстояние на карте с помощью градусной сетки?

С помощью карты можно определять расстояние между точками на земной поверхности, но точность таких вычислений невысока.

Ситуация относительно проста, если точки лежат на одном меридиане. Все меридианы имеют одинаковую длину. Можно подсчитать, что одному градусу широты соответствует примерно 111,3 км реальной длины. Поэтому надо найти разницу в долготе между точками и умножить ее на 111,3 км. Например, если точка А находится на северной широте 50°, а Б располагается на северной широте 32°, и при этом у них совпадает долгота, то расстояние между ними составит.

111,3х(50° – 32°) = 111,3х16 = 1780,8 км

Ситуация меняется, когда одна точка имеет северную, а другая – южную широту. В этом случае широты уже надо складывать. Так, если бы точка Б из предыдущего примера располагалась бы на южной широте 32°, то расстояние от А до Б составило бы:

111,3х(50° + 32°) = 111,3х82 = 9126,6 км

Ситуация усложняется, когда точки находятся на разных меридианах, но на одной параллели. Если у обеих точек долгота западная (или, наоборот, восточная), то сначала надо найти разницу их долгот. Если же одна точка имеет восточную, а другая западную долготу, то их надо суммировать. Далее результат надо умножить на длину 1° параллели. Эта длина у параллелей различна и зависит от их широты. Можно воспользоваться таблицей ниже:

Широта параллелиДлина ее дуги величиной в 1°
111,3
110,9
10°109,6
15°107,6
20°104,6
25°102,1
30°96,5
35°91,3
40°85,4
45°78,8
50°71,7
55°64,0
60°55,8
65°47,2
70°38,2
75°28,9
80°19,4
85°9,7
90°0

Например, нужно найти расстояние между точками, имеющими координаты:

А – 60° с. ш, 39° з. д.
Б – 60° с. ш, 25° з. д.

Широты у них одинаковы, поэтому смотрим на долготу. Она у обеих точек западная, поэтому надо найти их разницу:

39° – 25° = 14°

Полученный результат надо умножить на длину 1° параллели, широта которой составляет 60°. По табличке определяем, что на широте 60° дуга в 1° имеет длину 55,8 км. Перемножаем два числа:

14°х 55,8 км = 781,2 км

Список использованных источников

Источник

Длина дуги параллелей и меридианов на эллипсоиде Красовского,
с учетом искажений от полярного сжатия Земли

Для определения расстояния по туристической карте, в километрах между пунктами, число градусов умножают на длину дуги 1° параллели и меридиана (по долготе и широте, в системе географических координат), точные расчётные значения которых берутся из таблиц. Приблизительно, с определённой погрешностью, их можно посчитать по формуле, на калькуляторе.

Пример из школьного урока географии (по старому учебнику и из учебного пособия для факультативного курса)

Определить частный масштаб мелкомасштабной (1:1 000 000, 1:6000000, 1:20000000 и мельче) карты земной поверхности (атлас для VI класса) в районе Казани и Свердловска (ныне – Екатеринбург, смотреть список переименованных городов). Оба эти города располагаются, приблизительно, на широте 56° СШ.
Долгота Казани – 49° ВД, Екатеринбурга – 60°ВД.
Расстояние между ними на карте – 1,1 см (определяется с помощью измерительного циркуля и линейки с миллиметровыми делениями).
Длина дуги параллели в 1° для широты 56°СШ – равна 62394 метров.

m = 1 / (68 633 400 / 1,1)

Ответ: частный масштаб (m) – в 1 см 624 км.

Главный масштаб (подписанный в зарамочном
оформлении этой карты) – 1 / 75 000 000 (1 см 750км).

Частный м-б может быть и больше и меньше главного, в зависимости от расположения выбранного участка на карте.

Пример перевода числовых значений географических координат из десятых долей в градусы и минуты.

Приближенная долгота города Свердловска – 60.8° (шестьдесят целых и восемь десятых градуса) восточной долготы.
8 / 10 = X / 60
X = (8 * 60) / 10 = 48 (из пропорции находим числитель правой дроби).
Итог: 60.8° = 60° 48′ (шестьдесят градусов и сорок восемь минут).

Чтобы добавить символ градуса ( ° ) – нажмите Альт+248 (цифрами в правой цифровой панели клавиатуры; в ноутбуке – с нажатой спец.кнопкой Fn или включив NumLk). Так делается в операционных системах Windows и Linux, а в ОС Mac – с помощью клавиш Shift+Option+8

Координаты широты всегда указываются перед координатами долготы (и печатая на компьютере, и записывая на бумаге).

Задача. Определить длину параллели на заданной широте, например, 50°
с помощью таблиц длин дуг (референц-эллипсоид Красовского)
www.kakras.ru/mobile/book/dlina-dugi.html

Решение. Из таблицы («Длина дуги параллели в 1°»), для широты 50 градусов, находим соответствующее значение для дуги 1° – 71697 метров.
В окружности – 360 градусов, поэтому, умножаем табличное значение на 360
71697 * 360 = 25 810 920 метров

В сервисе maps.google.ru, поддерживаемые форматы определяются правилами

Примеры, как будет правильно:

Полная форма записи угла (градусы, минуты, секунды с долями):
41° 24′ 12.1674″, 2° 10′ 26.508″

Сокращённые формы записи угла:
Градусы и минуты с десятичными долями – 41 24.2028, 2 10.4418
Десятичные градусы (DDD) – 41.40338, 2.17403

Сервис Гугл-мап имеет онлайн-конвертер для преобразований координат и перевода их в нужный формат.

В качестве десятичного разделителя числовых величин, на сайтах в Интернет и в компьютерных программах – рекомендуется использовать точку.

Числовое значение большой экваториальной полуоси – a
современных земных эллипсоидов и референц-эллипсоида Красовского

Референц-эллипсоид Ф.Н.Красовского, применявшийся в СССР (с 1942 года)
в системах отсчета СК-42 и в РФ (СК-42/95, до 1 января 2017 г.)
a= 6 378 245

ГСК-2011 – эллипсоид и Российская геодезическая система координат 2011 года,
для осуществления геодезических и картографических работ.
a= 6 378 136.5

WGS-84 – современный Международный общеземной эллипсоид отсчетной системы,
почти идентичен ITRF(2008)
a= 6 378 137

Таблицы дуг в 1°, 1′, 1″

Чтобы убедиться, что таблица рассчитана по Красовскому,
посчитаем для нулевой широты (экватор), зная числовое значение
большой экваториальной полуоси для референц-эллипсоида Красовского
a= 6 378 245 метров

1 градус дуги параллели на широте 0°(экватор) =
= ( 2 * 3,14159. * 6378245 ) / 360 = 111321

Приведённые на странице таблицы, будут ещё актуальны, в качестве учебных материалов (к имеющимся учебникам), при использовании старых, советских времён, карт и для приблизительных вычислений.

Длина дуги параллели в 1°, 1′ и 1″ по долготе (по линии запад-восток), метров

Широта, градусДлина дуги параллели в 1° по долготе, мДлина дуги паралл в 1′,мДлина дуги пар. в 1″,м
0111321185531
1111305185531
2111254185431
3111170185331
4111052185131
5110901184831
6110716184531
7110497184231
8110245183731
9109960183331
10109641182730
11109289182130
12108904181530
13108487180830
14108036180130
15107552179330
16107036178430
17106488177530
18105907176529
19105294175529
20104649174429
21103972173329
22103264172129
23102524170928
24101753169628
25100952168328
26100119166928
2799257165428
2898364163927
2997441162427
3096488160827
3195506159227
3294495157526
3393455155826
3492386154026
3591290152225
3690165150325
3789013148425
3887834146424
3986628144424
4085395142324
4184137140223
4282852138123
4381542135923
4480208133722
4578848131422
4677465129122
4776057126821
4874627124421
4973173122020
5071697119520
5170199117019
5268679114519
5367138111919
5465577109318
5563995106718
5662394104017
5760773101317
585913498616
595747695816
605580193016
615410890215
625239987315
635067484514
644893381614
654717678613
664540575713
674362172712
684182269712
694001166711
703818763611
713635260610
723450557510
73326475449
74307805139
75289024828
76270164508
77251224197
78232193876
79213103556
80193943235
81174722915
82155442594
83136122274
84116751953
8597351623
8677911302
875846972
883898651
891949321
900

Упрощённая формула расчёта дуг параллелей (без учета искажений от полярного сжатия):

l пар = l экв * cos(Широта).

Длина дуги меридиана в 1°, 1′ и 1″ по широте (по линии север-юг), метров

Широта, градусДлина дуги меридиана в 1° по широте, мв 1′, м1″,м
0110579184331
5110596184331
10110629184431
15110676184531
20110739184631
25110814184731
30110898184831
35110989185031
40111085185131
45111182185331
50111278185531
55111370185631
60111455185831
65111531185931
70111594186031
75111643186131
80111677186131
85111694186231
90

какое расстояние между меридианами на карте
Рисунок. 1-секундные дуги меридианов и параллелей (упрощённая формула).

Практический пример использования таблиц. Например, если на карте не указан численный масштаб и нет масштабной линейки, но есть линии градусной картографической сетки – можно графически определить расстояния, из расчёта, что один градус дуги соответствует числовой величине протяжённости, полученной из таблицы. В направлениях «север-юг» (между горизонтальными линиями географической сетки на карте) – значения длин дуг меняются, от экватора до полюсов Земли, незначительно и составляют, приблизительно, 111 километров в одном градусе. Далее, вычислив, сколько содержится в сантиметровом отрезке, можно определить протяжённость произвольного профиля.

Международная морская миля (действует с 1929 года), применяемая в географии и в навигационных расчётах, для определения расстояний, равна 1852 метра, что, примерно, соответствует одной минуте дуги земного меридиана на сороковых широтах.

Список использованной литературы и ссылки на Интернет-ресурсы

Андреев Н.В. Топография и картография: Факультативный курс. М., Просвещение, 1985

Учебник по математике. Формулы для вычисления длины окружности по её диаметру или радиусу.

Туристический минисправочник по прикладной топографии – определение расстояния между двумя соседними параллелями по «размеру градуса». Здесь можно найти ответ на вопрос из задачи – сколько километров в одном градусе по линии долготы?

Источник

Эта статья перенесена сюда!

Шарообразная форма Земли и суточное вращение определяют существование на земной поверхности двух неподвижных точек – полюсов. Через полюсы проходит воображаемая земная ось, вокруг которой вращается Земля.

На картах и глобусах проводят самую большую окружность – экватор, плоскость которого перпендикулярна земной оси. Экватор делит Землю на северное и южное полушария. Длина дуги 1° экватора 40075,7 км : 360° = 111,3км.

Параллельно плоскости экватора можно условно расположить множество плоскостей. При пересечении их с поверхностью земного шара образуются малые окружности – параллели. Они проводятся на глобусе или карте на определенном расстоянии от экватора и ориентированы с запада на восток. Длина окружностей параллелей равномерно уменьшается от экватора к полюсам. Напомним, что наибольшая она на экваторе, а на полюсах равна нулю.

Длина дуг параллелей и меридианов на эллипсоиде Красовского

Длина дуги параллели в 1° по долготе, м

Длина дуги параллели в 1° по долготе, м

Длина дуги параллели в 1° по долготе, м

Параллели и меридианы образуют градусную сеть. Наиболее точное представление о градусной сети можно получить по глобусу. На географических картах расположение параллелей и меридианов зависит от картографической проекции. Чтобы убедиться в этом, можно сравнить различные карты, например карты полушарий, материков, России, российских регионов и др.

Положение любой точки на земном шаре определяют при помощи географических координат: широты и долготы.

Географическая широта – расстояние вдоль меридиана в градусах от экватора до какой-либо точки земного шара. За начало отсчета широты принят экватор – нулевая параллель. Широта изменяется от 0° на экваторе до 90° на полюсе. К северу от экватора отсчитывают северную широту (с. ш.), к югу от экватора – южную (ю. ш.). На картах параллели надписывают на боковых рамках, а на глобусе – на 0° и 180° меридианах. Например, Харьков расположен на 50° параллели к северу от экватора – его географическая широта 50° с. ш.; острова Кермадек – в Тихом океане на 30° параллели к югу от экватора, их широта примерно 30° ю. ш.

Если на карте или глобусе пункт расположен между двумя обозначенными параллелями, то его географическую широту определяют дополнительно по расстоянию между этими параллелями. Например, чтобы вычислить широту Иркутска, расположенного на карте России между 50° и 60° с. ш., через пункт проводят прямую линию, соединяющую обе параллели. Затем ее условно делят на 10 равных частей – градусов, так как расстояние между параллелями 10°. Иркутск находится ближе к 50° параллели.

На практике географическую широту определяют по высоте Полярной звезды при помощи прибора секстанта, в школе для этой цели используют вертикальный угломер, пли эклиметр.

Географическая долгота – расстояние вдоль параллели в градусах от начального меридиана до какой-либо точки земного шара. За начало отсчета долготы принят гринвичский меридиан – нулевой, который проходит недалеко от Лондона (там, где расположена Гринвичская обсерватория). К востоку от нулевого меридиана до 180° отсчитывают восточную долготу (в. д.), к западу – западную (з. д.). На картах меридианы надписывают на экваторе или верхней и нижней рамках карты, а на глобусе – на экваторе. Меридианы, как и параллели, проводят через одинаковое число градусов. Например, Санкт-Петербург расположен на 30 меридиане к востоку от нулевого меридиана, его географическая долгота 30° в. д.; Мехико – на 100 меридиане к западу от нулевого меридиана, его долгота 100° з. д.

Если пункт расположен между двумя меридианами, то его долготу уточняют по расстоянию между ними. Например, Иркутск расположен между 100° и 110° в. д., но ближе к 100°. Через пункт проводят линию, соединяющую оба меридиана, ее условно делят на 10° и отсчитывают число градусов от 100° меридиана до Иркутска. Следовательно, географическая долгота Иркутска примерно 104°.

Географическую долготу на практике определяют по разнице во времени между данным пунктом и нулевым меридианом или другим известным меридианом. Географические координаты записывают в целых градусах и минутах с указанием широты и долготы. При этом 1º = 60 мин (60′), а0,1° = 6′, 0,2°=12′ и т. д.

Источник

Какое расстояние между меридианами на карте

какое расстояние между меридианами на карте
какое расстояние между меридианами на картекакое расстояние между меридианами на картекакое расстояние между меридианами на картекакое расстояние между меридианами на карте

Определение расстояний на поверхности Земли

Размеры и форма Земли
Форма Земли отличается от шара и имеет несколько сплющенную форму, близкую к сфероиду (эллипсоиду вращения), но истинная фигура Земли отличается и от сфероида, и от трехосного эллипсоида и не может быть представлена ни одной из известных математических фигур.
Поэтому, говоря о фигуре Земли, имеют в виду не физическую форму земной поверхности, с океанами и материками, с их возвышенностями и впадинами, а так называемую поверхность геоида.

Поверхность
, нормалями к которой в любой из ее точек являются отвесные линии, называется уровенной поверхностью, или поверхностью равновесия. Уровенных поверхностей, как внутри Земли, так и охватывающих земную поверхность, или пересекающихся с ней, можно провести бесчисленное множество.
Та поверхность равновесия, которая совпадает в открытом океане с поверхностью покоящейся свободной воды, называется геоидом.

Для решения многих задач навигации и составления карт мелкого масштаба Землю принимают за сферу (шар).
Положение точки па земной сфере определяется сферическими координатами: сферической широтой и сферической долготой (в картографии применяют термин «географические координаты«).
Сферическая широта точки А — угол φ А между плоскостью экватора и направлением R на данную точку из центра земной сферы.
Сферическая долгота точки А — угол λ А , заключенный между плоскостью нулевого (Гринвичского) меридиана и плоскостью меридиана данной точки.

Средний радиус Земли R = 6371210 м.
Экваториальный радиус Земли RЭ = 6378,245 м.
Полярный радиус Земли RП = 6356,830 м.
Длина дуги меридиана (дуги экватора, дуги окружности большого круга) в 1°, 1′ и 1″ равна соответственно:
111 197 м (111,2 км), 1852 м (1,852 км) и 30,9 м.

какое расстояние между меридианами на картекакое расстояние между меридианами на карте

Законы сферической тригонометрии позволяют рассчитывать расстояния между точками, расположенными на сфере.
Кратчайшее расстояние между двумя точками на земной поверхности (если принять ее за сферу) определяется зависимостью:

где φ А и φ B — широты, λ А , λ B — долготы данных пунктов, d — расстояние между пунктами, измеряемое в радианах длиной дуги большого круга земного шара.
Расстояние между пунктами, измеряемое в километрах, определяется по формуле:

где R = 6371 км — средний радиус земного шара.

Таблица расстояний (с точностью 1 км), рассчитанными по этим формулам,
для пунктов Эвенкийского автономного округа (Эвенкийского муниципального района):

уточнения внесены 25.03.2010ТураБайкитВанавара
Красноярск1007662738
Агата426
Географический центр РФ, Виви364
Ессей467
Кислокан201
Нидым21
Ногинск439
Тембенчи99
Тура350450
Тутончаны313
Учами186
Чиринда363
Эконда293
Юкта293
Байкит350352
Бурный197
Кузьмовка236
Куюмба82
Мирюга220
Ошарово177
Полигус101
Суломай274
Суринда114
Таимба203
Усть-Камо121
Ванавара450352
Кербо242
Муторай147
Оскоба100
Стрелка-Чуня159
Тунгусский метеорит (эпицентр)64
Чемдальск102

Для расчета расстояния между пунктами, расположенными в разных полушариях (северное-южное, восточное-западное), знаки (±) у соответствующих параметров (широт или долгот) должны быть разными.

Пример: (см. таблицу ниже)
для вычисления расстояния между Турой и Сиднеем (Австралия) применяем формулу:
cos(d) = sin(φ А )·sin(−φ B ) + cos(φ А )·cos(−φ B )·cos(λ А λ B ) = −0,27462.

d = 1,848988
Расстояние L = d·R = 11 779,9 км.

для вычисления расстояния между Турой и Нью-Йорком (США) применяем формулу:
cos(d) = sin(φ А )·sin(φ B ) + cos(φ А )·cos(φ B )·cos(λ А + λ B ) = 0,259532.

Расстояние L = d·R = 8 334,92 км.

В таблице расстояния определены с точностью 1 км.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *