какое ограничение всегда учитывается в любой постановке транспортной задачи

Какой метод лежит в основе динамической транспортной задачи

— сведение задачи к статической

Выберите правильный вариант: функциональная динамическая транспортная задача кроме расходов на перевозку включает в себя

— затраты на хранение грузов у поставщиков и потребителей

Каким математическим методом можно решить классическую транспортную задачу

Какие значения могут принимать коэффициенты при переменных в ограничениях транспортной задачи

Какое количество переменных будет в классической транспортной задачи с двумя поставщиками и тремя потребителями

В задаче транспортного типа целесообразно применять для решения следующих вопросов

-согласованный подвоз груза к предприятию

-управление дорожными маршрутами

Скольким критериям соответствует найденный оптимальный план перевозок транспортной задачи из трех поставщиков и двух потребителей

Задача транспортного типа включает в себя

Что необходима и достаточно для разрешимости классической транспортной задачи

-запасы груза должны равняться потребностям

В задачах распределения порожних кольцевых маршрутов потребителями являются

Что позволяет определить динамическая транспортная задача

— затраты на минимальные необходимые резервы груза у потребителя

Какие ограничения всегда учитываются в любой постановке транспортной задачи

— не отрицательность переменных

Какую сущность отображает коэффициент замещения постановке MODUS

-величина, на которую изменилась пропускная способность в местах переброски

Какое количество ограничений будет в классической транспортной задаче с двумяпоставщиками и тремя потребителями

Какая постановка транспортной задачи не учитывает переходные процессы во времени

-статическая транспортная задача

Какие затраты не входят в целевую функцию в динамической транспортной задачи

-затраты на перераспределение пропускной способности

Переходные процессы в структуреперевозок возникают по следующей причине

— изменение в работе поставщиков и потребителей

Каким образом в транспортной задаче учитывается пропускная способность

-ограничением на переменные

Целевую функцию ДТЗЗУ не входят

-затраты на перераспределение пропускной способности

-на изменение режима работы

Сколько видов связей адаптации выделяют в постановке MODUS

Какую смысловую нагрузку несет в себе понятие переменная в транспортной задаче

Укажите основной не достаток оптимизационных задач для расчета жд станции

-слишком грубое представление о технологии

Что позволяют динамические резервы

-функционировать с мин резервами груза и вагонов

При каких условиях транспортная задача гарантированно будет обладатьцелочисленным решением

-при целочисленных объемах производства и потребления

65. в результате полученного оптимального решения классической транспортной задачизначение одной из переменных =0

— перевозка груза не выгодна

В классической транспортной задаче требуется найти такой план перевозок прикотором

-мин затраты на перевозку

Какие типы ограничений существуют в классической транспортной задаче

Что главным образом влияет на продолжительность расчета транспортной задачи наЭВМ

-количество переменных и ограничений

Сколько ограничений возникнет в классической транспортной задаче из m поставщиков и n потребителей

Какие виды транспортных издержек можно применять в одной транспортной задаче

В классической транспортной задаче количество поставщиков и потребителей

-зависит от полигона транспортной сети

Чему всегда должен быть равен такт моделирования в оптимизационных транспортныхзадачах

— зависит от полигона и возможностей ЭВМ

Какая постановка транспортной задачи лежит в основе согласованного подвода груза к морским портам

-метод динамического согласования

В качестве критерия оптимальности транспортной задачи не допустимо использовать

-локомотивы и вагоны

Дата добавления: 2018-02-15 ; просмотров: 6114 ; Мы поможем в написании вашей работы!

Источник

Транспортная задача линейного программирования

Транспортная задача линейного программирования

Транспортная задача линейного программирования относится к перечню классических задач, решаемых в практике деятельности людей. Эта задача методами классической математики не решается. В задаче необходимо отыскивать экстремум целевой функции. В задаче целевая функция – линейная. Ограничения на переменные (их может быть очень много) описываются также линейными зависимостями. Казалось бы чего проще. Но как раз ограничения и порождают трудности, связанные не просто с поиском max и min при отсутствии ограничений, а с необходимостью учета таких ограничений. Искать требуется не просто экстремум, а условный экстремум. Методы решения задачи позволяют учитывать особенности структуры задачи и даже отказаться от симплексного метода решения в чистом виде.

I. Основные параметры, термины и обозначения

Для ощущения масштаба задачи приведу парочку изображений того, что рассматривается в транспортной задаче линейного программирования.

какое ограничение всегда учитывается в любой постановке транспортной задачиВсе суда на одной карте в режиме онлайн

какое ограничение всегда учитывается в любой постановке транспортной задачиВсе самолеты мира в режиме онлайн

В теории в тексте задачи Хичкока ничего не говорится о равенстве имеющегося общего запаса судов в портах отправления и общей потребности в судах в портах прибытия (назначения). Если такого равенства нет, то система ограничений несовместна. В случае равенства

какое ограничение всегда учитывается в любой постановке транспортной задачи

транспортная задача называется «сбалансированной». Задачи, в которых условие баланса не задано, должны быть приведены к «сбалансированному» виду. Это можно выполнить использованием «фиктивных» перевозок. Рассматриваем два случая:

какое ограничение всегда учитывается в любой постановке транспортной задачи какое ограничение всегда учитывается в любой постановке транспортной задачи

какое ограничение всегда учитывается в любой постановке транспортной задачи

Метод содержит три последовательных этапа:

Формирование опорного плана;

Проверка опорного плана на оптимальность;

Переход к новому опорному плану, если предыдущий не оптимален.

II. Формирование опорного плана перевозок

Рассмотрим способ получения начального опорного плана транспортной задачи, названный способом северо-западного (С-З) угла. Способ заключается в заполнении ячеек таблицы m×n значениями переменной xij, таким образом, чтобы удовлетворялись условия задачи. При этом план решения Х[m, n] может быть и не оптимальным, но обязательно должен быть допустимым.

В этом способе формируют опорный план, двигаясь по таблице: сверху вниз по строкам и слева направо вдоль строки. Начинают с левого верхнего угла (ячейки), куда вписывают значение x11 =min<a1, b1>.Первые строка и столбец из рассмотрения далее исключаются.

Затем, если a1 > b1, то определяется остаток (a1 b1) продукта на первом пункте отправления и его запас реализуется на 2-м пункте назначения. Остаток потребностей 2-го пункта назначения удовлетворяется за счет 2-го пункта отправления, остатки которого направляются в 3-й пункт назначения и т.д. Ниже метод будет иллюстрирован числовым примером.

Пример 1. Построение опорного плана методом Северо-Западного угла

какое ограничение всегда учитывается в любой постановке транспортной задачи

Требуется найти план Х [m,n] перевозок, удовлетворяющий условиям на целевую функцию Q и переменные хij задачи Q.

РЕШЕНИЕ Построить исходный опорный план способом северо-западного угла. Строим симплексную таблицу: Таблица 3. Опорный план задачи

какое ограничение всегда учитывается в любой постановке транспортной задачи

В таблице способом северо-западного угла получен опорный план. Базисные переменные (их число = 6): x11 = 40, x12= 20, x22= 40, x23= 40, x33= 40, x34= 60. Свободные переменные: x13= x14= x21= x24= x31= x32= 0 (их число равно 6).

Ячейки таблицы, соответствующие базисным переменным, называют базисными, остальные – свободными. Далее в алгоритме будем следовать идее симплекс метода. Суммарная стоимость перевозок Q, соответствующая плану Х[m,n], получает представление

Q = d11∙x11 + d12∙x12 + d22∙x22 + d23 ∙x23+ d33 ∙x33+ d34 ∙x34 = = 5∙40 + 2∙20 + 10∙40 + 2∙40 + 8∙40 + 5∙60 = 200+40+400 + 80 + 320+ 300 = 1340 ед

какое ограничение всегда учитывается в любой постановке транспортной задачи

Каждому из таких уравнений соответствует какая-либо базисная переменная хij Система уравнений с потенциалами содержит m+n неизвестных потенциалов, число же уравнений равняется числу базисных ячеек таблицы, т.е. (m + n – 1). Следовательно, один из потенциалов можно задать произвольно, положив его равным, например, нулю.

Решая далее систему уравнений для потенциалов, находим значения потенциалов строк и столбцов, все фиктивные стоимости dij и коэффициенты γij. Если для всех свободных клеток γrs ≤ 0, то перевод в базис любой свободной переменной не уменьшит значения целевой функции и, следовательно, выбранный опорный план не является оптимальным. Если же некоторые γrs >0, то данный план можно улучшить путем перевода в базис свободной переменной, соответствующей max γrs, а также путем исключения из базиса, принадлежащей ему переменной, первой обращающейся в нуль. Переход к новому опорному плану и поиск оптимального плана рассмотрим на примере. Другой способ формирования опорного плана предложен Фогелем. Этот способ при первом чтении можно пропустить, так как дальше он в тексте не используется.

Пример 2. Способ аппроксимации Фогеля

В большинстве случаев этот способ дает опорный план наиболее близкий к оптимальному. Удобен для матриц большой размерности. Используется концепция штрафов, взимаемых за выбор не самого оптимального с точки зрения транспортных издержек маршрута. Штраф по каждой строке и каждому столбцу определяется из анализа маршрутов с различными показателями издержек (как разность двух различных уровней транспортных издержек). Первой заполняется клетка матрицы (таблицы), в которой фиксируется самый крупный штраф. После заполнения клетки штрафы пересчитываются и так до тех пор, пока все ресурсы не будут распределены. Исходные данные для этого примера заполняют таблицу слева вверху.

Этапы алгоритма: 1. Вычисление разностей в каждой строке и в каждом столбце между наименьшей стоимостью и ближайшей к ней по величине. Разности по строкам записываются справа в столбце разностей, разности по столбцам – внизу в строке разностей. Например, для строк А1 разность равна А1В2 – А1В3 = 38 – 24 = 14 и т. д.

какое ограничение всегда учитывается в любой постановке транспортной задачи

2. Поиск из всех разностей, как по строкам, так и по столбцам максимальный. В нашем примере максимальная разность равна 38 и находится в строке А2. Обведем максимальную разность рамкой.

3. Размещение в клетку, где находится наименьшая стоимость (А2В2 = 18) (строка с наибольшей разностью), максимально возможного количества ресурсов. Оно равно 20, т.е. всему ресурсу отправителя А2. Поскольку все ресурсы отправителя А2 исчерпаны, строку А2 исключаем из дальнейших расчетов, для чего отметим все клетки этой строки точками.

4. Вычисление разностей столбцам и строкам, не принимая во внимание стоимость в клетках, имеющих ресурсы и клетках с точкой (исключенную строку или столбец) и определение максимальной разности в строке или столбце (В3 = 76).

5. Поиск минимального элемента в строке или в столбце с максимальной разностью (А1В3 = 24) и размещения в данную клетку максимально возможного количества ресурса, возвращение к этапу №4 и т.д. Окончательно

ЦФ Q=23∙19 + 7∙3 + 20∙18 + 2∙10 + 14∙24 + 1∙100 +3∙48 = = 437 + 21 + 360 + 20 +3 36 + 100 + 272 =1546 ед. Это значение соответствует опорному плану Фогеля.

III. Транспортная задача линейного программирования

Как основной метод решения транспортной задачи используется метод потенциалов. Ни симплексный метод, ни распределительный метод здесь не рассматриваются. У них имеются свои плюсы и минусы, но объем изложения достаточно велик. Возможно этому позднее я уделю внимание и время, но пока отвечаю на пожелание читателя Хабра.

Исходные данные задачи удобно представить двумя матрицами.

какое ограничение всегда учитывается в любой постановке транспортной задачи

Требуется найти план Х [m,n] перевозок, удовлетворяющий условиям на целевую функцию Q и переменные хij задачи

Решение задачи:

1. Формирование начального опорного плана способом Северо-Западного угла.

2. Проверка опорного плана на оптимальность

Является ли найденный опорный план оптимальным? Ответ может быть получен после составления и решения системы уравнений для потенциалов. Определим систему уравнений для потенциалов и вычислим их значения:

α1 + β1 = d11 = 2;
α1 + β2 = d12 = 3;
α2 + β2 = d22 = 3;
α2 + β3 = d23 = 1;
α2 + β4 = d24 = 2;
α3 + β4 = d34 = 2.

Каждое из этих значений соответствует одной базисной ячейке. Одну из неизвестных в системе можно задавать произвольно. Пусть β1 = 0. Тогда после решения системы получены значения потенциалов: α1= 2, α2= 2, α3= 2, β1 =0, β2=1, β3 =–1, β4 =0,

Формируем матрицу фиктивных стоимостей D'[m, n] и матрицу Г [m, n].

какое ограничение всегда учитывается в любой постановке транспортной задачи

Выделяем в Г [m, n] свободные ячейки, содержащие γrs. Проверяем наличие положительных переменных γi,j > 0. Так как в матрице (в свободных ячейках) имеем γ32 = 2 > 0, то исходный опорный план может быть улучшен, он не является оптимальным.

3. Переход к новому (улучшенному) опорному плану

Переменную x32 =x следует ввести в базис. Обозначим ее предварительно через x без индексов. С учетом того, что х должна быть положительна х > 0. Найдем значение max x при условии сохранения баланса перевозок. Для этого воспользуемся начальным опорным планом. Будем добавлять переменную х в ячейки таблицы так, чтобы сохранялись условия баланса перевозок

какое ограничение всегда учитывается в любой постановке транспортной задачиМодификация начального опорного плана

Обозначим ее предварительно через x без индексов. С учетом того, что х должна быть положительна х > 0. Найдем значение max x при условии сохранения баланса перевозок. Для этого воспользуемся начальным опорным планом. Будем добавлять переменную х в ячейки таблицы так, чтобы сохранялись условия баланса перевозок Очевидно, что наибольшее x определяется теми xij в базисных клетках, из которых этот х вычитается. Следовательно, x11 = min<х22, х34> = <10, 40>= 10. При x >10 перевозка х22 становится отрицательной. Переменную х22 исключаем из базиса и переводим ее в разряд свободных переменных. Далее повторяются рекурсивно три пункта алгоритма.

Получаем из модифицированного плана новый опорный план

В нем объемы перевозок распределены иначе чем в начальном опорном плане.

какое ограничение всегда учитывается в любой постановке транспортной задачиНовый опорный план

Суммарная стоимость перевозок для этого опорного плана получает представление:
Q = d11 ∙x11 + d12∙x12 + d23∙x23 + d32∙x32 + d24∙x24+ d34∙x34 =
=2∙70 + 3∙20 + 2∙10 + 1∙20 + 1∙10 + 2∙30 = 140 + 60 + 20 + 20 + 10 + 60 = 310 ед.
Затраты на перевозки при этом плане уменьшились на 330 – 310 = 20 ед.

Является ли найденный опорный план оптимальным? Ответ может быть получен после составления и решения системы уравнений для потенциалов.

2. Проверка опорного плана на оптимальность

Определим систему уравнений для потенциалов и вычислим их значения:
α1 + β1 = d11 = 2;
α1 + β2 = d12 = 3;
α2 + β3 = d23 = 1;
α2 + β4 = d24 = 2;
α3 + β2 = d32 = 1;
α3 + β4 = d34 = 2.

Каждое из этих значений соответствует одной базисной ячейке. Одну из неизвестных в системе можно задавать произвольно. Пустьα1 = 0. Тогда после решения системы получены значения потенциалов: α1= 0, α2= 2, α3= –2, β1 =2, β2=3, β3 = 3, β4 =4.

Формируем матрицу фиктивных стоимостей D'[m, n] и матрицу Г [m, n].

какое ограничение всегда учитывается в любой постановке транспортной задачи

Свободные ячейки матрицы Г [m, n] содержат γi,j > 0 (γ14 = 1>0). План не оптимален.

3. Переход к новому (улучшенному) опорному плану

Из свободных переменных с xij > 0, выбираем одну x14 для введения ее в базис. Обозначим ее как и ранее через x без индексов. С учетом того, что х должна быть положительна х > 0. Найдем значение max x при условии сохранения баланса перевозок. Для этого воспользуемся очередным опорным планом. Будем добавлять переменную х в ячейки таблицы так, чтобы сохранялись условия баланса перевозок

какое ограничение всегда учитывается в любой постановке транспортной задачимодифицированный план

Очевидно, что наибольшее x определяется теми xij в базисных клетках, из которых этот х вычитается. Следовательно, x11 = min<х12, х34> = <20, 30>= 20. При х12 >20 перевозка х12 становится отрицательной. Переменную х12 исключаем из базиса и переводим ее в разряд свободных переменных. Переходим к новой итерации

1. Получаем из модифицированного плана новый опорный план.

В нем объемы перевозок распределены иначе чем в предшествующем опорном плане.

какое ограничение всегда учитывается в любой постановке транспортной задачи

Суммарная стоимость перевозок для этого опорного плана получает представление:
Q = d11 ∙x11 + d14∙x14 + d23∙x23 + d32∙x32 + d24∙x24+ d34∙x34 =
=2∙70 + 3∙20 + 1∙20 + 2∙10 + 1∙30 + 2∙10 = 140 + 60 + 20 + 20 + 30 + 20 = 290 ед.
Затраты на перевозки при этом плане уменьшились на 310 – 290 = 20 ед. Является ли найденный опорный план оптимальным? Ответ может быть получен после составления и решения системы уравнений для потенциалов.

2. Проверка опорного плана на оптимальность

Определим систему уравнений для потенциалов и вычислим их значения:
α1 + β1 = d11 = 2;
α1 + β4 = d14 = 3;
α2 + β3 = d23 = 1;
α2 + β4 = d24 = 2;
α3 + β2 = d32 = 1;
α3 + β4 = d34 = 2. Каждое из этих значений соответствует одной базисной ячейке. Одну из неизвестных в системе можно задавать произвольно. Пусть β1 = 0. Тогда после решения системы получены значения потенциалов: α1= 2, α2= 2, α3= 2, β1 =0, β2=1, β3 =–1, β4 =0.

Формируем матрицу фиктивных стоимостей D'[m, n] и матрицу Г [m, n].

какое ограничение всегда учитывается в любой постановке транспортной задачи

При переходе к новому опорному плану проверяем наличие положительных свободных переменных γi,j >0. Но таких переменных не оказалось. Отсюда следует вывод, что полученный последним модифицированный план является оптимальным и ему соответствует значение линейной формы
Q’= 2∙70 + 3∙20 + 1∙20 + 2∙10 + 1∙30 + 2∙10 = 290.

Заключение

Вся теория исследования операций с позиций математики решает неклассические задачи оптимизации целевых функций. Отличие от классики в том, что те ограничения на переменные, которые исследователи вынуждены накладывать в рамках моделей, созданы и вызваны реальностью. Отыскивать требуется экстремумы функций при многих ограничениях, так называемые условные экстремумы. Классика не позволяет этого делать. Взятие производных и приравнивание их нулю «не видит» ограничений. Лучшее, что там имеется это функция Лагранжа, но ее использование также весьма ограничено. Транспортные задачи частный, но важный случай в исследовании операций. Надеюсь, что читатель разобравшись в приведенных примерах, лучше стал понимать логику задачи и сумеет самостоятельно постигать интересующие его вопросы по другим публикациям в учебниках и журнальных статьях.

Ваулин А. Е. Методы цифровой обработки данных.– СПб.: ВИККИ им. А. Ф. Можайского, 1993.– 106 с.

Гэри М., Джонсон Д. Вычислительные машины и трудно решаемые задачи. М.: Мир, 1982.

Корбут А.А., Финкельштейн Ю. Ю. Дискретное программирование М. Наука. Гл. ред. физ.-мат. лит. 1969.

Макаров И. М. и др. Теория выбора и принятия решений.– М.: Наука, 1982.– 328 с.

Пфанцагль И. Теория измерений. – М.: Наука, 1988.–384 с.

Таха Х. А. Введение в исследование операций. 7-е изд. М.: Изд. дом «Вильямс», 2005.

Фишберн П. С. Теория полезности для принятия решений. – М.: Наука,1978. –352 с.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *