какое оборудование относится к источникам питания рельсовых цепей
Рельсовая цепь: определение, виды и основные параметры
Опубликовано 21.06.2021 · Обновлено 26.10.2021
Железнодорожный путь является сложным инженерным сооружением, и не так очевидно, что он еще используется в системах централизации и блокировки, а также, на электрифицированных участках, рельсовые плети являются «второй контактной сетью», доводя низший потенциал для пропуска обратного тягового тока. Рельсы — это токопроводящие элементы электрической цепи, причем, как правило, одновременно нескольких. О том, что же такое рельсовые цепи, как они работают, какие существуют виды и их основные параметры — расскажем в данном материале.
Эта статья предназначена для студентов железнодорожных ВУЗов или профессиональных железнодорожников, а также для технически-продвинутых романтиков. Для обывателей, желающих понять, что же такое рельсовая цепь и для чего она нужна, есть материал здесь.
Что такое Рельсовая цепь?
Рельсовой цепью называется электрическая цепь, включающая источник питания и потребителей (в числе которых может быть путевое реле), в качестве токопроводящих элементов которой выступают рельсовые нити пути.
На базе рельсовых цепей строятся многие системы железнодорожной автоматики и телемеханики: автоблокировка, АЛСН (автоматическая локомотивная сигнализация непрерывного действия), централизация стрелочных переводов и сигналов светофоров, системы диспетчерского контроля, переездная сигнализация и другие.
Таким образом можно выделить основное предназначение рельсовых цепей:
Выше представлена инфографика, с классификацией рельсовых цепей. Далее разберем подробно, что представляет из себя каждая из них.
Для разделения различных рельсовых цепей применяется так называемый изолирующий стык, или изостык, в котором по-сути установлена диэлектрическую прокладку между двумя рельсами.
Рельсовые цепи по принципу действия
Базово рельсовые цепи делятся на две категории: нормально замкнутые (1) и нормально разомкнутые (2). Как известно любая электрическая цепь должна включать источник электродвижущей силы и потребителей электрической энергии. В любых рельсовых цепях всегда присутствует источник питания и приемник, однако в зависимости от принципа действия рельсовой цепи их взаиморасположение может быть различным. В нормально-разомкнутых цепях источник питания и приемник расположены на одном конце рельсовой цепи, в то время как в нормально-замкнутых цепях источник и приемник находятся на противоположных концах цепи.
Нормально-замкнутая рельсовая цепь
В нормально-замкнутых РЦ в тот момент, когда ни одна колесная пара подвижного состава не находится на контролируемом участке, катушка путевого реле находится под током и сигнализирует свободность участка и целостность цепи.
Такие цепи могут работать в четырех режимах:
Катушка реле, расположенная на противоположном конце цепи от источника питания, оказывается под напряжением, таким образом сердечник катушки втягивается, замыкая контакты реле и сигнализируя свободное состояние контролируемого участка. Путевое реле должно надежно удерживать якорь в притянутом состоянии (при непрерывном питании) или надежно срабатывать от каждого импульса (при импульсном питании).
Неблагоприятными условиями в данном режиме работы являются: минимальное напряжение источника, минимальное сопротивление изоляции и максимальное сопротивление рельсов.
В данном режиме одна колесная пара замыкает рельсовую цепь шунтируя ее за счет низкого сопротивления колесной пары. Весь ток начинает протекать через колесную пару, создавая своего рода короткое замыкание, а для исключения высоких токов которого используется дополнительное сопротивление (на схеме R0). Соответственно электрический ток в катушке сигнального реле прекращается, и реле переходит в состояние «Занятость участка».
Неблагоприятными условиями являются: максимальное напряжение источника, минимальное сопротивление рельсов, максимальное сопротивление изоляции.
Шунтовая чувствительность рельсовой цепи должна быть не менее 0,06 Ом.
Неблагоприятными условиями являются: максимальное напряжение источника, минимальное сопротивление рельсов, критическое сопротивление изоляции.
Данный режим соответствует наезду колесной пары поезда на входной конец рельсовой цепи.
Ток в рельсах под приемными катушками локомотива должен быть не менее расчетного, необходимого для надежной работы устройств АЛС на локомотиве.
Минимальный расчетный ток д.б. не менее:
Неблагоприятные условия совпадают с нормальным режимом работы.
Нормально-разомкнутая рельсовая цепь
В таких цепях при отсутствии колесной пары на контролируемом участке, путевое реле обесточено. Источник питания и реле находятся рядом друг с другом на одном конце цепи, при этом к одному полюсу питания подключается одна рельсовая плеть, а противоположная подключается к катушке реле, второй вывод которой подключается к другому полюсу питания.
В момент наезда на контрольный участок колесная пара замыкает электрическую цепь, и в катушке реле появляется ток. Есть данные о том, что такие цепи обладают большим быстродействием при определении занятости участка. Это происходит из-за того, что якорь реле быстрее притягивается к катушке, нежели под действием пружины, возвращается в исходное состояние. Но однозначным преимуществом нормально-разомкнутой рельсовой цепи является экономия кабелей, так как в качестве проводов используются непосредственно рельсы. Одновременно с этим такая цепь лишена важного качества — возможности контролировать свою целостность и исправность элементов, и это ограничивает ее использование только сортировочными горками.
Параметры рельсовых цепей
Рельсовые цепи работают на различных схемах питания, с разным характером подачи сигнального тока, от чего зависят их параметры. В качестве сигнального применяется как постоянный, так и переменный ток. В случае с переменным током его частота варьируется от 25, 50 Гц, либо частоты от 420 — 780 Гц и 4,5 — 5,5 кГц, в тональном режиме работы.
При передаче сигнального тока от источника к потребителю на преодоление электрического сопротивления среды приходится тратить часть энергии, помимо сопротивления рельсовых нитей имеют место токи утечки, возникающие через низкое сопротивление изоляции. Рельсовая цепь хоть и изолирована от земли, все же конкретное сопротивление этой изоляции зависит от балласта, на котором лежит путь, от материала шпал, загрязнения пути, температуры и влажности среды (наличия осадков), зазора между балластом и подошвой рельса. Железобетонные шпалы обладают меньшим сопротивлением изоляции и уступают шпалам из дерева, по этому применяются дополнительные резиновые прокладки между рельсом и шпалой. Минимальное сопротивление изоляции в норме должно быть не менее 1 Ом*км, зимой 100 Ом*км. Удельное сопротивление зависит от частоты тока и тем выше, чем выше частота.
Также источник питания может работать в нескольких режимах: непрерывном, импульсном и кодовом. Последний применяется для передачи сигналов автоматической локомотивной сигнализации. Действующие показания светофора кодируются специальным устройством, и передаются по рельсам на приемные катушками, установленные на любом локомотиве или самоходном подвижном составе.
Обратный тяговый ток
Любая рельсовая нить для электродвижущего подвижного состава выполняет роль низшего потенциала по отношении к контактной сети. Токи, протекающие от локомотива к тяговой подстанции, достигают огромных значений, и безусловно могут повлиять на работу рельсовых цепей. Обратный тяговый пропускается по одной нити рельсовой цепи в случае с однониточными рельсовыми цепями, или по двум рельсовым нитям, в двухниточных рельсовых цепях. Основной проблемой является разделение разных рельсовых цепей, соединенных для прохождения тягового тока. И если в однониточных цепях тяговый ток попеременно может передаваться по одной из нитей, то в двухниточных цепях приходится устанавливать разделяющие дроссель-трансформаторы. Стоит отметить, что в однониточных цепях невозможна передача сигналов АЛСН, а значит их применение сильно ограничено.
» data-medium-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-300×188.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-1000×625.jpg» width=»1000″ height=»625″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-1000×625.jpg» alt=»Дроссель-трансформатор обратного тягового тока рельсовой цепи» data-srcset=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-300×188.jpg 300w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-1000×625.jpg 1000w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-768×480.jpg 768w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-1536×960.jpg 1536w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-2048×1280.jpg 2048w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-520×325.jpg 520w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-720×450.jpg 720w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-320×200.jpg 320w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /> Дроссель-трансформатор
» data-medium-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-300×188.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-1000×625.jpg» width=»1000″ height=»625″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-1000×625.jpg» alt=»Дроссель-трансформатор внутри, что внутри коробок вдоль железнодорожных путей» data-srcset=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-300×188.jpg 300w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-1000×625.jpg 1000w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-768×480.jpg 768w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-1536×960.jpg 1536w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-2048×1280.jpg 2048w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-520×325.jpg 520w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-720×450.jpg 720w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-320×200.jpg 320w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /> Дроссель-трансформатор с открытой крышкой
Параметры дроссель-трансформаторов
Первые цифры в названии определяют полное сопротивление переменному сигнальному току частотой 50 Гц (0,2 и 0,6), вторые цифры определяют номинальный тягового тока, на который рассчитана основная обмотка (500 и 1000 А на каждый рельс).
Основная обмотка дроссель-трансформатора выполнена из медной шины большого сечения и имеет малое сопротивление постоянному тяговому току (от 0,0008 до 0,0024 Ом).
У дроссель-трансформатора ДТ-0,2 дополнительная обмотка имеет несколько выводов, что позволяет устанавливать различные коэффициенты трансформации (7, 10, 13, 17, 23, 30, 33, 40). Основная обмотка содержит 14 витков из медной шины сечением 100 мм2 для ДТ-0,2-500 и 221 мм2 для ДТ-0,2-1000. Поскольку в рельсовых цепях практически применяют дроссель-трансформаторы ДТ-0,2 с коэффициентом трансформации 17 или 40, с 1985 г. завод выпускает ДТ-0,2, имеющие только один коэффициент трансформации (17 или 40). Дроссель-трансформаторы с коэффициентом 40 имеют на крышке маркировку n=40, а с коэффициентом 17— не имеют маркировки.
У дроссель-трансформатора ДТ-0,6 дополнительная обмотка имеет только два вывода, коэффициент трансформации равен 15. Основная обмотка содержит 16 витков медной шины сечением 100 и 243 мм2 для ДТ-0,6-500 и ДТ-0,6-1000 соответственно.
Основные элементы рельсовой цепи
Рельсовые соединители
Стальной штепсельный рельсовый стыковой соединитель состоит из двух стальных проволок диаметром 5 мм, заваренных по концам в штепселя конической формы. Длина соединителя в развернутом виде 1276 мм.
Стальной приварной рельсовый соединитель состоит из куска стального троса диаметром 6 мм, заваренного по концам в стальные наконечники (манжеты). Длина соединителя в выпрямленном состоянии 200 мм, масса 36 г. Стальные приварные соединители устанавливают на участках без электротяги.
На электрифицированных участках применяют приварные медные рельсовые соединители Такие соединители предназначены для уменьшения сопротивления не только сигнальному, но и тяговому току. Соединитель представляет собой гибкий медный трос длиной 200 мм, заваренный по концам в стальные наконечники (манжеты).
Изолирующие стыки
» data-medium-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-300×188.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-1000×625.jpg» width=»1000″ height=»625″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-1000×625.jpg» alt=»изолирующий стык рельсовой цепи, изостык, стык покрашенный краской» data-srcset=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-300×188.jpg 300w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-1000×625.jpg 1000w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-768×480.jpg 768w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-1536×960.jpg 1536w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-2048×1280.jpg 2048w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-520×325.jpg 520w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-720×450.jpg 720w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-320×200.jpg 320w» data-sizes=»(max-width: 1000px) 100vw, 1000px» />
Изолирующие стыки устанавливают для электрического разделения смежных рельсовых цепей. Изолирующий стык состоит из двух металлических накладок фасонной формы, стянутых болтами. Болты изолированы от рельса изолирующими втулками. Между накладками и рельсами установлены изолирующие прокладки, а между торцами смежных рельсов — стыковая изолирующая прокладка. Изолирующий стык крепят навесу без сдвоенных шпал.
На участках бесстыкового пути устраивают высокопрочный стык с пазухами между накладками и рельсом, заполненными изолирующей композицией. При помощи болтов обеспечивается необходимое сжатие склеиваемых поверхностей на период отвердения клеевого шва.
Схемы рельсовых цепей
Рельсовая цепь постоянного тока с импульсным питанием
В импульсных рельсовых цепях постоянного тока путевое реле всегда размещают на выходном конце блок-участка — импульсы для питания реле посылаются по ходу поезда.
Кодовые рельсовые цепи переменного тока 50 Гц без дроссель-трансформаторов
Применяют на перегонах участков без электротяги с учетом последующей электрификации или там, где не предусмотрен переход на электротягу, но имеется надежный источник электроснабжения переменного тока 50 Гц от основной и резервной линий.
Рельсовая цепь постоянного тока с непрерывным питанием
Для контроля замыкания изолирующих стыков предусматривают чередование полярности тока в смежных рельсовых цепях.
Рельсовые цепи постоянного тока с непрерывным питанием используются только на станциях участков, не подверженных влиянию блуждающих токов.
Рельсовые цепи переменного тока
Двухниточная рельсовая цепь с дроссель-трансформаторами и фазочувствительным путевым реле ДСШ-12 или ДСР-12
Двухниточная рельсовая цепь с дроссель-трансформаторами и фазочувствительным путевым реле ДСШ-12 или ДСР-12
Однониточные рельсовые цепи переменного тока 50 Гц
Разветвленные рельсовые цепи
В случае кодирования бокового пути размещение стрелочных соединителей по типовой схеме изоляции не обеспечивает нормальной работы устройств АЛС в маршрутах приема поездов на боковой путь и отправления с бокового пути.
Используемая литература
Автор:
Иван Беляев, ЖД-эксперт
Рельсовые цепи – назначение, классификация, основные элементы
Рельсовой цепью называетсяэлектрическая цепь, проводниками которой служат рельсовые нити пути. Рельсовые цепи являются основным элементом всех устройств железнодорожной автоматики и телемеханики: автоблокировки, автоматической локомотивной сигнализации, электрической централизации стрелок и сигналов, диспетчерского контроля движения поездов, автоматической переездной сигнализации и ряда других систем
Назначение: рельсовые цепи служат для контроля свободного или занятого состояния участка пути на перегонах и станциях, контроля целостности рельсовых линий, передачи кодовых сигналов с путевых устройств на локомотив и между путевыми устройствами.
Классификация РЦ:
1. По принципу действия:
Под нормальным состоянием рельсовой цепи подразумевается такое состояние, когда рельсовая цепь свободна от подвижного состава.
В нормально замкнутой рельсовой цепи путевое реле и источник питания включены на разных ее концах. Поэтому при свободном состоянии рельсовой цепи путевое реле находится под током, контролируя свободность рельсовой цепи и исправность всех ее элементов, а при занятии рельсовой цепи подвижным составом реле отпускает якорь, чем фиксируется ее занятость.
В нормально разомкнутой рельсовой цепи путевое реле нормально не возбуждено, т.к. источник питания и само путевое реле размешаются на одном конце рельсовой цепи. Прохождение тока и возбуждение путевого реле происходит только при нахождении на рельсовой цепи поезда. При свободном состоянии в нормально разомкнутой рельсовой цепи исправность элементов не контролируется, поэтому такие рельсовые цепи применяются лишь на сортировочных горках и в схемах фиксации проследования поезда в системах полуавтоматической блокировки.
Т.к. в нормально замкнутой рельсовой цепи при свободном ее состоянии имеется контроль исправности всех ее элементов, то такие рельсовые цепи являются основным видом рельсовых цепей в устройствах автоматики и телемеханики, и дальнейшая классификация рельсовых цепей будет относиться к нормально замкнутым рельсовым цепям.
2. По роду питающего тока:
Рельсовые цепи постоянного тока применяются только на участках с автономной тягой.
Рельсовые цепи переменного тока получили наибольшее распространенно. Они применяются как на участках с электрической тягой, так и с автономной. Рельсовые цепи переменного тока различаются между собой частотой подаваемого в рельсы сигнального тока.
При электротяге постоянного тока в качестве сигнального тока в рельсовых цепях переменного тока используется ток частотой 50 Гц. На участках с электротягой переменного тока применяются рельсовые цепи с частотой сигнального тока 25 или 75 Гц.
3. По способу подачи сигнального тока в рельсы различают РЦ с:
В РЦ с непрерывным питанием при свободной РЦ сигнальный ток непрерывно поступает в рельсы, и ПР находится в возбужденном состоянии. В РЦ с импульсным питанием при свободной РЦ сигнальный ток поступает в рельсы периодически равномерными импульсами и путевое реле работает в импульсном режиме. В рельсовых цепях с кодовым питанием при свободной РЦ сигнальный ток поступает в рельсы в виде кодового сигнала, содержащего один, два или три импульса различной продолжительности, и путевое реле работает в кодовом режиме в такт принимаемым кодам.
4. По способу пропуска обратного тягового тока в обход изолирующих стыков различают:
B однониточных рельсовых цепях тяговый ток пропускается по одной рельсовой нити пути. Для пропуска тягового тока между нитями, относящимися к смежным рельсовым цепям, устанавливаются косые тяговые соединители К. Однониточные рельсовые цепи наиболее подвержены влиянию тягового тока, что снижает надежность их работы. Такие рельсовые цепи применяют на станциях па неответственных путях при длине рельсовой цепи до 500 м.
Основные элементы:
— источник питания – трансформатор и аккумуляторная батарея;
— стыковые соединители – стальные (автономная тяга) и медные (электрифицированные участки); штепсельные и приварные;
— изолирующие стыки для электрического разделения смежных рельсовых цепей;
— путевое реле, установленное в релейном шкафу, и регулируемый резистор;
— кабельные стойки, через которые путевое реле и источники питания подключаются к рельсовым нитям.
5 Основные элементы рельсовых линий и аппаратура рельсовых цепей
Основные элементы рельсовых линий и аппаратура рельсовых цепей
Рельсовая цепь состоит из рельсовой линии и подключаемой к ней аппаратуры передающего (питающего) и приемного (релейного) концов.
Рельсовая линия является основной частью всякой РЦ, по которой передаются сигналы от передатчика (источника питания) к приемнику (путевое реле). Составными частями рельсовой линии являются рельсовые нити пути, стыковые соединители, изолирующие стыки, кабельные стойки и дроссель-трансформаторы. Последние устанавливают на участках с электрической тягой для обеспечения протекания тягового тока в обход изолирующих стыков.
Для лучшей передачи сигналов рельсовые нити, используемые в качестве проводов рельсовой линии, должны обладать по возможности малым электрическим сопротивлением. Рельсовые нити в стыках рельсов соединены накладками. Если внутренняя поверхность накладок или рельсов покроется ржавчиной, то стык будет иметь повышенное сопротивление. На сопротивление стыка влияет также степень затяжки болтов и ряд других факторов. Поэтому сопротивление стыка может меняться в широких пределах (от тысячных долей до единиц ома). Для обеспечения устойчивой работы рельсовых цепей на стыках рельсов устанавливают стальные или медные рельсовые стыковые соединители, стабилизирующие сопротивление стыка. В зависимости от способа присоединения к рельсам они подразделяются на штепсельные и приварные.
Стальной штепсельный рельсовый стыковой соединитель (рис. 1. а) состоит из двух стальных проволок диаметром 5 мм, заваренных по концам в штепселя конической формы. Длина соединителя в развернутом виде 1276 мм. Концы проволок загнуты спиралью для удобства установки и с целью исключения их повреждения при угонах рельсов и вибрациях, вызванных прохождением подвижного состава.
Для установки соединителей в шейке рельсов по обе стороны накладок высверливают отверстия диаметром 9,8 мм, в которые забивают штепселя. Расстояние между отверстиями равно 940 мм. Штепсель соединителя считается правильно забитым, если он ушел в рельс приблизительно на половину конусной части. В дальнейшем, в процессе эксплуатации, при ослаблении штепселя подбивают, используя оставшуюся свободной конусную часть. Штепсельный соединитель укрепляют держателями (клипсами), чтобы он не повредился колесами подвижного состава. Масса соединителя с двумя держателями 450 г. Штепсельные соединители применяют только на неэлектрифицированных линиях. При новом проектировании и строительстве устройств автоматики эти соединители не применяются.
Рекомендуемые файлы
Рис. 1. Схемы стального штепсельного и приварного соединителей
Ранее вместо стыковых соединителей на ряде участков дорог применяли графитовую смазку стыковых накладок и торцовых поверхностей рельсов. Однако опыт эксплуатации показал, что стыковые соединители обеспечивают более высокую надежность работы рельсовых цепей. Графитовую смазку используют на некоторых линиях лишь как дополнительное средство уменьшения сопротивления в стыках рельсов, а также в процессе укладки рельсовых плетей временно до приварки соединителей. Сопротивление одного стыка с приварным медным соединителем в соответствии с действующими техническими требованиями должно быть не более сопротивления целого рельса длиной 3 м.
Отказы в работе стальных соединителей приварного типа обусловлены в основном тем, что они отрываются в местах приварки от рельсов вследствие недостатков в технологии приварки и ненадежного контакта между тросом и наконечником.
Разработаны и находятся на стадии эксплуатационных испытаний рельсовые стыковые соединители фартучного и втулочного типов, обладающие более высокой надежностью действия. Испытываются также пружинные тарельчатые шайбы, предназначенные взамен стыковых соединителей. Их устанавливают взамен обычных шайб при скреплении рельсов накладками.
Стрелочные соединители устанавливают в станционных разветвленных рельсовых цепях для соединения наружных рельсов стрелочного перевода, рельсов у усовиков крестовины, крестовин с рельсами, примыкающими к усовикам, и рельсов в пятке остряков. При автономной тяге устанавливают стрелочные гибкие соединители из оцинкованного троса, заваренного по концам в штепселя.
Применяются три типа стрелочных штепсельных соединителей: тип I длиной 600 м, II—1200 мм и III—3300 мм. Штепселя соединителей типов I и II такие же, как и штепселя рельсовых стыковых соединителей. Штепсель соединителя типа III имеет резьбу для крепления в шейке рельса гайками.
На станциях линий с электротягой применяют стрелочные соединители из медного провода с площадью поперечного сечения 70 мм 2 при электротяге постоянного тока или 50 мм 2 при электротяге переменного тока, заваренные по концам в стальные конические болты для крепления в шейке рельса гайками. В зависимости от места присоединения используются соединители различной длины. Кроме стрелочных, на станциях с электротягой в однониточных рельсовых цепях устанавливают тяговые соединители для соединения между собой тяговых нитей одного пути (косые перемычки) и соединения рельсовых нитей разных путей при их объединении для равномерного распределения тягового тока.
Изолирующие стыки устанавливают для электрического разделения смежных РЦ; их изготовляют с металлическими накладками и изолирующими прокладками (рис. 2, а). Изолирующий стык состоит из двух металлических накладок фасонной формы 1 и 4, стянутых болтами 5. Болты изолированы от рельса изолирующими втулками 6. Между накладками и рельсами установлены изолирующие прокладки 2 и 3, а между торцами смежных рельсов — стыковая изолирующая прокладка. Изолирующий стык крепят навесу без сдвоенных шпал, так же как и обычный неизолирующий стык.
Рис. 2. Схема изолирующего стыка
На участках бесстыкового пути устраивают высокопрочный стык (рис. 2, б) с пазухами между накладками 1, 3 и рельсом, заполненными изолирующей композицией 2. При помощи болтов 4 обеспечивается необходимое сжатие склеиваемых поверхностей на период отвердения клеевого шва.
В станционных рельсовых цепях с рельсами типа Р43 делают изолирующие стыки с лигнофолевыми прокладками, которые монтируют на сдвоенных шпалах, а на участках вновь оборудуемых рельсовых цепей — только с металлическими накладками.
Под воздействием проходящих поездов изолирующие стыки испытывают большую механическую нагрузку и поэтому часто повреждаются. Все более широкое распространение находят клееболтовые изолирующие стыки, обладающие более высокой прочностью и надежностью работы в условиях эксплуатации.
Кабельные стойки (рис. 3, а) применяют, как правило, на участках без электротяги по концам рельсовых цепей. Кабельные стойки служат для соединения проводников (стальных тросов), идущих от рельсов, с жилами кабеля, проложенного от релейного шкафа автоблокировки.
Рис. 3. Кабельная стойка
Кабельная стойка состоит из чугунной головки 1, соединенной со стальной трубой 2. Кабель заводят внутрь трубы и разделывают в головке. Жилы кабеля подсоединяют к зажимам фарфоровой колодки. Для подсоединения стальных тросов от рельсов на стенке кабельной стойки укрепляют два болта, изолированные от стенок фибровыми втулками 3 (рис. 3, б). Болты с зажимами фарфоровой колодки соединяются внутри кабельной стойки проводниками.
На линиях с электрической тягой постоянного тока устанавливают путевые дроссель-трансформаторы ДТ-0,2-1000; ДТ-0,6-1000; ДТ-0,2-500 и ДТ-0,6-500. Их можно применять и на линиях с электротягой переменного тока. Первые цифры в обозначении дроссель-трансформатора указывают его полное сопротивление переменному сигнальному току частотой 50 Гц (0,2 и 0,6), вторые—значение номинального тягового тока, на пропускание которого рассчитана основная обмотка (500 и 1000 А на каждый рельс).
Основная обмотка дроссель-трансформатора выполнена из медной шины большого сечения и имеет малое сопротивление постоянному тяговому току (от 0,0008 до 0,0024 Ом в зависимости от типа дроссель-трансформатора).
Основными деталями дроссель-трансформаторов ДТ-0,2 и ДТ-0,6 (рис. 5) являются чугунный корпус 6 с муфтой 1, сердечник 3 и ярмо 4, собранные из листовой электротехнической стали; основная обмотка с выводами 5; дополнительная обмотка с выводами 2. Между сердечником и ярмом имеется воздушный зазор 1—3 мм, наличие которого обеспечивает стабильность сопротивления дроссель-трансформатора переменному сигнальному току при подмагничивании его неуравновешенным тяговым током.
Рис. 5. Конструкция дроссель-трансформатора
Кривая зависимости сопротивления дроссель-трансформатора ДТ-0,6 от силы тягового тока показана на рис. 6. При токе асимметрии 240 А сопротивление основной обмотки снижается не более чем на 10%.
Рис. 6. Зависимость полного сопротивления ДТ-0,6 и ДТ-1-150
Аппаратуру рельсовых цепей подключают к дополнительной обмотке дроссель-трансформатора кабелем, который соединяют с дополнительной обмоткой в муфте 1 (см. рис. 5), укрепленной на корпусе дроссель-трансформатора
На участках с электрической тягой переменного тока частотой 50 Гц применяют дроссель-трансформаторы ДТ-1-150 (одиночной установки) и 2ДТ-1-150 (сдвоенной установки), рассчитанные на тяговый ток 150 А в каждой рельсовой нити (общий ток через средний вывод 300 А). Эти дроссель-трансформаторы имеют такую же конструкцию, как ДТ-0,2 и ДТ-0,6, но меньшие размеры и массу. Их основная обмотка выполнена из медной шины меньшего сечения, размеры магнитопровода также уменьшены. Магнитопровод не имеет воздушного зазора, поэтому сопротивление этих дроссель-трансформаторов при воздействии неуравновешенного тягового тока изменяется в широких пределах (см. рис. 6). Полное сопротивление дроссель-трансформатора переменному току частотой 50 Гц при токе 1 А составляет примерно 2 Ом, а при токе 13 А—примерно 1 Ом. На частоте переменного сигнального тока 75 Гц и напряжении 0,5 В полное сопротивление основной обмотки составляет 1,5 Ом, а на частоте сигнального тока 25 Гц и напряжении 0,3 В— 0,5 Ом.
Для обеспечения нормальной работы РЦ необходимо, чтобы входное сопротивление дроссель-трансформатора вместе с подключаемой аппаратурой со стороны рельсов было стабильным. Стабилизация сопротивления по концам РЦ с дроссель-трансформатором ДТ-1-150 достигается подключением аппаратуры со стабильными параметрами.
Дроссель-трансформатор сдвоенной установки 2ДТ-1-150 имеет внутри общего кожуха два отдельных магнитопровода с основными и дополнительными обмотками. Средние точки основных обмоток соединены внутри кожуха, поэтому при подключении этих дроссель-трансформаторов не требуется установка средней междроссельной перемычки. Объединенный средний вывод используют для подключения заземлений, отсасывающих фидеров тяговых подстанций, при объединении средних точек соседних путей для выравнивания обратных тяговых токов в двухниточных РЦ, а также для соединения с тяговыми нитями однониточных РЦ на станциях.
Рис. 7. Схемы обмоток дроссель-трансформаторов ДТ-1-150 и 2ДТ-1-150
Основная аппаратура рельсовых цепей.
Путевые трансформаторные ящики предназначены для установки трансформаторов, реле и резисторов, предохранителей, применяемых в схемах рельсовых цепей. В них разделывают сигнальный кабель и устанавливают перемычки для подключения приборов к рельсам.
Реакторы РОБС-1, РОБС-3 и РОБС-4 (реакторы однофазные, броневые, сухие) применяют в рельсовых цепях переменного тока в качестве ограничителей тока при шунтировании питающего конца рельсовой цепи и обеспечения шунтового эффекта.
Резисторы применяют в качестве ограничителей в РЦ постоянного и переменного тока. Регулируемый резистор типа 7156 является проволочным безиндукционным. Его изготовляют из оксидированной константановой проволоки, намотанной на фарфоровые изоляторы. Резистор имеет движок с контактной пружиной; перемещением движка по направляющей планке изменяют сопротивление. Резисторы типа 7157 изготовляют также нерегулируемыми с номинальными сопротивлениями 13; 19,5 и 200 Ом.
В РЦ кодовой автоблокировки переменного тока 25 Гц устанавливают резистор типа 21220 сопротивлением 200 Ом и мощностью 150 Вт. Он состоит из двух последовательно соединенных эмалированных резисторов ПЭВ-75 сопротивлением 100 Ом и мощностью 75 Вт каждый. Применяют также проволочные резисторы с различными сопротивлениями, размещенные на двухштырных колодках.