какое напряжение в фонарике светодиодном
Поговорим про… фонарики?
Приветствую, %username%!
Это небольшой ликбез на тему сегодняшнего состояния отрасли портативного освещения.
Disclaimer
К показанным фонарям и остальному железу я отношения не имею. Их рекламой данный пост не является.
Поехали, начнем с современных светодиодов
Светодиоды
На сегодняшний день самой большой популярностью пользуются светодиоды фирмы Cree.
У них на сегодняшний день самое лучшее соотношение Лм/вт и при этом есть отличные нейтральные и теплые варианты, в том числе с высоким Cri. Правда, что касается именно «теплого лампового света» и высоких Cri, тут не так давно на рынке появились диоды от японской фирмы Nichia, которые, по отзывам видевших как они светят людей, выдают просто чудесный свет(нейтральный/теплый, Cri >90), пригодный даже для постоянного использования дома.
Конечно, пока что чем «теплее», тем ниже эффективность диода. Поэтому в основном в фонарях используются более холодные или нейтральные версии.
При этом даже холодный Cree в дешевом фонаре будет гораздо приятней на вид и гораздо, гораздо ярче чем ваша старая светодиодная лейка.
И так. Из всего многообразия в современных фонарях в 99% случаях стоят диоды Cree либо XP-G/XP-G2
либо XM-L/XM-l2.
Те, что с приставкой 2 построены на новой технологии SC³ и выдают в среднем на 10-20% больше света, чем те, что без нее.
В частности, один XP-G2 может выдавать
5 ваттах. Это эквивалент 50ваттной лампы накаливания
А один XM-L2 примерно тысячу при десяти. Это уже 75-80ваттная лампочка.
При этом размер XP-G2/Nichia всего 3.45×3.45 мм. а XM-L2 5×5мм. Честно, я когда первый раз увидел XP-G, жарящий на всю катушку, не поверил своим глазам.
Драйверы
Всю эту мощь надо как то питать. Этим занимаются специальные LED драйверы, которые бывают линейные, импульсные, программируемые и еще куча других слов. Другими словами — DC-DC преобразователи с управлением по МК.
Например, на картинке выше — штучный экземпляр ручной работы, импульсный драйвер диаметром всего 17 мм, обеспечивающий постоянную яркость во время работы и с КПД около 95-97%. Разработка и сборка, кстати, Российско-Украинская )
В большинстве китайских, да и российских фонарей стоят обычные линейники, которые плавно гасят диод в зависимости от остаточного напряжения на батарейке. В фонарях посерьёзней драйвер «высасывает» из аккумулятора столько мощности сколько возможно для обеспечения постоянной яркости. Особо хитрые потом еще переходят в пониженные режимы, чтобы выключение не было сюрпризом.
и многое, многое другое.
На этом кадре из фильма Oblivion на винтовке видна оптика модуля с тремя светодиодами, в народе «трипла». Разработка конкретно этого светомодуля, между прочим, дело рук московской конторы Lux-RC (+ их партнеров из Oveready(отвечают за корпуса фонарей)).
Фонарик в начале темы тоже спроектирован Lux-RC. Выдает 6000 люмен с 4х аккумуляторов, имеет активное охлаждение.
Оптика
Тут всё и сложнее и проще. Типичный угол свечения для светодиодов — 120 градусов. К тому же, источник свечения — квадрат со стороной 3.45 или 5 мм.
Собрать их в узкий пучок можно, например линзой. Но, линзованные фонари негерметичны, не дают практически никакой засветки и в линзах теряется очень большая часть света. Флешаголики не одобряют )
Поэтому, если хочется качества и дальнобойности, то вам прямая дорога к фонарям с глубоким рефлектором, например тот же Thrunite catapult V3, с которым Тёма поедет в свою следующую экспедицию.
Если надо что то для повседневных нужд, то это уже больше дело вкуса. Есть и мятые рефлекторы и TIR оптика, можно получить практически любой угол хотспота/засветки.
Питание
Все серьезные фонари питаются литиевыми аккумуляторами формата 18650 (18мм диаметр, 65 мм длина). Они на сегодняшний день являются самыми технологически передовыми из всех. А так же не слишком сильно оттягивают карман
Например, Panasonic NCR18650B имеет на борту 3400mAh, Sanyo ZTA около 3000. Так же, начали появляться (те же Sanyo, Samsung, LG) аккумуляторы с максимальным напряжением заряда 4.35V вместо 4.2. Им нужны, соответственно, другие зарядники.
От одного 18650 хороший фонарь может выдавать 1000 нейтральных стабилизированных люмен в течение часа.
Add:
Забыл сказать, что есть 18650 как с встроенной защитой от переразряда (маленькая платка на плюсовом контакте) так и без нее. Если в фонаре такая защита встроена, то нет необходимости переплачивать за protected версии. Ну и иногда защищенные 18650 не влезают в фонарь, так что лучше заранее этот момент прояснить.
bonus
Аккумуляторы формата 18650 используются в повербанках, от которых можно питать телефон\планшет по USB. Например, вот такой на 4 аккумулятора
Умеет выдавать 2A и в случае использования 4х панасоников на 3400 его общая емкость будет около 13500 mAh
Если вам роднее формат AA/AAA, то из Ni-MH аккумуляторов лучшими считаются Sanyo Eneloop. У них очень низкий саморазряд и приличная ёмкость. Не такая, конечно, как у литиевых, но для EDC/домашнего дежурного использования вполне подойдет.
С одного не литиевого AA лучшие фонари снимают порядка 280 люмен. Такой, например как SC52w от Zebralight
Существуют и литиевые аккумуляторы формата AA(14500) но они распространены меньше и пойдут только в те фонари, где это отдельно оговорено.
Охлаждение
Самый, пожалуй, сложный момент. Далеко не все производители задумываются о качественном теплоотводе для фонарей.
(фонарь FL33 на картинке выше — приятное, но довольно дорогое и эксклюзивное исключение)
Сильный нагрев светодиода ведет к уменьшению светового потока и его постепенной деградации. Так же, это не самым приятным образом сказывается на электронной начинке. Это не сильно критично, если вы «жарите» диод не на полную и не очень долго. Но вообще не будет лишним почитать обзоры и отзывы на профильных форумах.
Модификации
Ну, то есть, под замену может пойти всё, кроме корпуса. Есть даже спец магазины, которые торгуют чисто корпусами\головами и т. п.
Так что, если дружите с паяльником, можете сами себе собрать фонарь под свои хотелки.
Советы
Если просто хочется понять и увидеть как светят современные фонарики, вам подойдет любой на XP-G(2)/XM-L(2) с DX и прочих китайских магазинов. Их марки обычно заканчиваются на «Fire», поэтому их так и называют — «разнофаеры» (только чур не путать с дорогущими американскими SureFire). Там же можно купить недорогие(но и качества от них не ждите) 18650. На первое время хватит, но чтоб не портить впечатление от пользования, на питании и зарядке лучше не экономить.
Если хочется чего то большего, то велкам на профильные форумы вроде фонаревки. Там тусуются как флешаголики, так и разработчики. Можно почитать обзоры, посмотреть бимшоты, поучаствовать в холиварах и сделать свой выбор. Ну или заказать себе кастомный фонарь, как это в итоге сделал я.
Какие светодиоды применяются для фонариков
Чтобы понять, какой светодиод лучше для фонарика, нужно ознакомиться с разновидностями данного элемента. Если требуется освещение темных помещений или улицы, выбор можно остановить на ярком фонарике со светодиодами белого свечения. Этого будет достаточно, чтобы видеть дорогу перед собой примерно на 15-20 метров.
Когда речь идёт о портативном осветительном приборе, который должен справляться с более сложными задачами, нужно обратить внимание на показатели светового потока. Например, дорогой и мощный фонарь сможет осветить большое пространство за счет усиленного луча.
Виды фонариков со светодиодами
Выделяют несколько разновидностей фонариков, в которых используются светодиоды, а именно:
Говоря о светодиодах, в зависимости от разновидности фонаря в них устанавливают чипы типа SMD, LED или сверхъяркие пятимиллиметровые диоды для фонарей сигнального типа. Именно последними чипами раньше оснащались практически все светодиодные фонари.
Их главное преимущество – это низкая энергопотребляемость и компактность. Первые мощные фонарики оснащались несколькими сигнальными диодами, установленными на одну плоскость. У каждого из них был свой отражатель, который направлял световой поток в одну точку с остальными. Данная конструкция применяется до сих пор для поисковых приборов.
Типы светодиодов в фонариках
С каждым годом на рынке появляется все больше фонарей с улучшенными светодиодами. Наиболее популярными и качественными считаются чипы от фирмы Cree inc., такие как XR-E, XP-E, XP-G, XM-L. Кроме этого, спросом пользуются последние модели светодиодов XP-E2, XP-G2, XM-L2, их можно встретить в фонариках среднего и маленького размера.
Светодиоды от фирмы Cree, которые часто применяются в фонариках, делятся на несколько групп по цветовой температуре, а именно:
Говоря о светодиодах MT-G2 и MK-R от фирмы Luminus, их устанавливают в большие поисковые фонари, работающие на 2-х аккумуляторах.
Также светодиоды делят по яркости. Данный параметр определяется с помощью специального кода. Выбирая светодиоды, стоит учитывать их габариты, а также участок светоизолирующих кристаллов. Если он невелик, это говорит о том, что фонарик светит далеко, когда луч сконцентрирован в одной точке. Для получения широкого рассеянного света понадобится большой отражатель, что скажется на габаритах и массе изделия.
Какой светодиод самый яркий и мощный для фонарика
Пытаясь подобрать светодиод для фонарика с повышенными характеристиками яркости, стоит знать, что такие параметры не обеспечивают высокую дальнобойность. Однако прирост данных характеристик положительно отразится на показателе.
Главную роль всегда играет светодиод в связке с оптикой. Устройство с показателем 500 Люмен иногда светит дальше, чем фонарик с 5000 Лм. Если требуется самый яркий и одновременно дальнобойный фонарь, стоит акцентировать внимание на устройствах, которые собраны на основе светодиода XHP70, выдающего 6000 Люмен.
Выбор светодиодов для фонарика
Выбирая диод для фонаря, следует учитывать следующее:
Для сборки мощного фонарика рекомендуется устанавливать светодиоды от фирмы Cree из линейки XM-L и XM-L2. В прожекторные модели лучше покупать чипы из серии MKR и MT-G2. Для самого яркого фонаря приобретают диоды Luminus SST.
Также необходимо учесть угол свечения. Светодиоды серии XR, XM и XP имеют угол от 90 до 120°, а световой поток составит 280 Лм. Мощность прибора в данном случае не превысит 2 Вт. Поскольку самое мощное изделие требует силы тока до 13000 мА, его показатель может достигать 40 Вт. В фонарь иногда устанавливается несколько разновидностей аккумуляторов, а именно:
Если это карманный фонарик, подойдут обычные пальчиковые батарейки. В профессиональные модели устанавливают аккумулятор. Самым лучшим вариантом считаются литий-ионные, обладающие большей мощностью при компактных размерах, а также отличающиеся высокой теплоотдачей. Единственный их минус – быстрая разрядка при низких температурах.
Замена светодиодов в фонарике
Когда удалось разобраться с выбором светодиода, можно приступать к процессу его замены. Фонарики в большинстве случаев отличаются только количеством диодов и разновидностью корпуса, поэтому замена производится по одинаковому принципу. Для работы следует подготовить следующее:
Нужно учесть, что в процессе могут понадобиться дополнительные материалы и инструменты. Для начала необходимо разобрать фонарь. На первом этапе извлекаются источники питания (батарейки или аккумуляторы). Если это карманный или поисковый фонарь, скорее всего, аккумуляторный отсек находится сзади за крышечкой.
Далее можно приступать к снятию защитного стекла. Для этого нужно открутить крышку передней части. Стекло иногда снимается отдельно или прикрепляется к самой крышке. Затем удаляется отражатель. Его необходимо просто извлечь или открутить.
Следующий этап – снятие диодов. Иногда они совмещены с отражателем. В таком случае отсоединить их достаточно просто, так как плата подсоединяется маленькими винтами к рефлектору. Если это более дорогой фонарик, его придется разбирать с помощью шестигранного ключа. Контакты отпаиваются с помощью паяльника, а светодиод аккуратно снимается пинцетом.
Советуем посмотреть видео: Замена светодиодов в фонаре.
Перед покупкой светодиода для замены стоит учесть, что подложка должна соответствовать конфигурации и габаритам извлекаемого элемента. В противном случае мастеру придется делать прорези для проводов. Не стоит забывать и о предназначении фонарика. Так, для рассеянного света или повышения характеристик дальнобойности подходят разные модели диодов.
Как определить какой светодиод в фонарике?
Как определить перегоревший светодиод?
Есть более простой метод — прозванивание LED-диодов. Мультиметр используется для проверки транзисторов.
…
Проверка мультиметром
Какой светодиод стоит в фонарике?
На сегодняшний день на рынке доступно множество фонарей с улучшенными свойствами. Самыми востребованными считаются светодиоды от фирмы Cree Inc.: XR-E, XP-E, XP-G, XM-L. Сегодня популярны также новейшие XP-E2, XP-G2, XM-L2 — их в основном применяют в некрупных фонарях.
Как проверить светодиод в фонарике?
Замыкая красный щуп на анод, а черный на катод исправный светодиод должен засветиться. При смене полярности щупов на экране тестера должна оставаться цифра 1. Свечение излучающего диода во время проверки будет небольшой и на некоторых светодиодах при ярком освещении может быть незаметно.
Как узнать силу тока для светодиода?
Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов. Тестирование проводится следующим образом: Щупы мультиметра подключаются плюсовым выводом к аноду, а минусовым к катоду.
Сколько вольт надо подать на светодиод?
Оно обычно имеет параметры 5-6 вольт, 0,2-0,5 А. Зачастую его очень удобно использовать для питания светодиодов, потому что зарядное устройство стабилизирует ток. Но об этом позже, в следующих статьях. Нам важны два параметра — рабочее напряжение светодиода и ток.
Как проверить светодиоды в Лэд лампе?
Как проверить тестером лед лампу?
Как проверить диоды в светодиодной лампе?
Для проверки светодиода мультиметром необходимо перевести прибор в режим прозвона диодов, далее:
Какой светодиод самый яркий?
При этом каждый имеет свои особенности: различную мощность и выходную яркость. 5630 (5730) LED и 5050 имеют широкое окно для выхода света, что позволяет уменьшить потери излучения на выходе. По этой причине 5630 (5730) LED самый яркий среди рассмотренных светодиодов и имеет наибольшую эффективность Люмен/Ватт.
Какой самый мощный светодиод для фонарика?
Luminus SST-90 — сверхмощный светодиод с максимально достижимым световым потоком в 2300Лм. До недавнего времени самые мощные серийные светодиодные фонари использовали именно этот светодиод. Да и сейчас, если вам необходим самый мощный фонарь на одном светодиоде, то SST-90 пожалуй единственный распространенный вариант.
Какие светодиоды стоят в китайских фонариках?
Какие светодиоды Cree в фонариках устанавливаются наиболее часто? Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.
Как проверить светодиод мультиметром на плате?
Просто включите мультиметр в режим прозвонки диодов, и проверьте свой светодиод, прикоснувшись к его выводам щупами тестера. Исправный светодиод даже немного засветится, а на дисплее мультиметра вы увидите значение падения напряжения на P-N-переходе в вольтах.
Как проверить фонарик мультиметром?
Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера. В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному.
Ремонт и модернизация светодиодных фонарей
Для безопасности и возможности продолжать активную деятельность в темное время суток человек нуждается в искусственном освещении. Первобытные люди раздвигали темень, поджигая ветки деревьев, далее придумали факел и керосинку. И только после изобретения французским изобретателем Джорджем Лекланше в 1866 году прототипа современной батарейки, а в 1879 году Томсоном Эдисоном лампы накаливания, у Дэвида Майзела появилась возможность запатентовать 1896 году первый электрический фонарь.
С тех пор в электрической схеме новых образцов фонарей ничего не изменялось, пока в 1923 году российский ученый Олег Владимирович Лосев не нашёл связь люминесценции в карбиде кремния и p-n-переходе, а в 1990 году ученым не удалось создать светодиод с большей светоотдачей, позволяющий заменить лампочку накаливания. Применение светодиодов вместо ламп накаливания, благодаря низкому энергопотреблению светодиодов, позволило многократно увеличить время работы фонарей при той же емкости батареек и аккумуляторов, повысить надежность фонариков и практически снять все ограничения на область их использования.
Внешний осмотр фонаря произвел положительное впечатление. Качественное литье корпуса, удобная ручка и выключатель. Стержни вилки для подключения к бытовой сети для зарядки аккумулятора сделаны выдвижными, что исключает необходимость хранения сетевого шнура.
Внимание! При разборке и ремонте фонаря, если он подключен к сети следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.
Как разобрать светодиодный аккумуляторный фонарь Lentel GL01
Хотя фонарик подлежал гарантийному ремонту, но вспоминая свои хождения при при гарантийном ремонте отказавшего электрочайника (чайник был дорогим и в нем перегорел ТЭН, поэтому своими руками его отремонтировать не представлялось возможным), решил заняться ремонтом самостоятельно.
Разобрать фонарь оказалось легко. Достаточно повернуть на небольшой угол против часовой стрелки кольцо, фиксирующее защитное стекло и оттянуть его, затем отвинтить несколько саморезов. Оказалось кольцо фиксируется на корпусе с помощью байонетного соединения.
После снятия одной из половинок корпуса фонарика появился доступ ко всем его узлам. Слева на фотоснимке видна печатная плата со светодиодами, к которой прикреплен с помощью трех саморезов рефлектор (отражатель света). В центре расположен аккумулятор черного цвета с неизвестными параметрами, имеется только маркировка полярности выводов. Правее аккумулятора находится печатная плата зарядного устройства и индикации. Справа установлена сетевая вилка с выдвижными стержнями.
При внимательном рассмотрении светодиодов оказалось, что на излучающих поверхностях кристаллов всех светодиодов имелись черные пятна или точки. Стало ясно даже без проверки светодиодов мультиметром, что фонарик не светит по причине их перегорания.
Почерневшие области имелись также на кристаллах двух светодиодов, установленных в качестве подсветки на плате индикации зарядки аккумулятора. В светодиодных лампах и лентах обычно выходит из строя один светодиод, и работая как предохранитель, защищает остальные от перегорания. А в фонаре вышли из строя все девять светодиодов одновременно. Напряжение на аккумуляторе не могло увеличиться до величины, способной вывести светодиоды из строя. Для выяснения причины пришлось начертить электрическую принципиальную схему.
Поиск причины отказа фонаря
Электрическая схема фонаря состоит из двух функционально законченных частей. Часть схемы, расположенная левее переключателя SA1, выполняет функцию зарядного устройства. А часть схемы, изображенная справа от переключателя, обеспечивает свечение.
Светодиод HL1, включенный последовательно с токоограничивающим резистором R2 в противоположном направлении с правым верхним диодом моста, как, оказалось, светится всегда при вставленной вилке в сеть, даже если аккумулятор неисправен или отсоединен от схемы.
Переключатель режимов работы SA1 служит для подключения к аккумулятору отдельных групп светодиодов. Как видно из схемы получается, что если фонарь подключен к сети для зарядки и движок переключателя находится в положении 3 или 4, то напряжение с зарядного устройства аккумулятора попадает и на светодиоды.
Если человек включил фонарик и обнаружил, что он не работает, и, не зная, что движок выключателя обязательно необходимо установить в положение «выключено», о чем в инструкции по эксплуатации фонаря ничего не сказано, подключит фонарь к сети на зарядку, то за счет броска напряжения на выходе зарядного устройства на светодиоды попадет напряжение, значительно превышающее расчетное. Через светодиоды потечет ток, превышающий допустимый и они перегорят. При старении кислотного аккумулятора за счет сульфатации свинцовых пластин напряжение заряда аккумулятора возрастает, что тоже приводит к перегоранию светодиодов.
Еще одно схемное решение, которое удивило, это параллельное включение семи светодиодов, что недопустимо, так как вольтамперные характеристики даже светодиодов одного типа отличаются и поэтому проходящий ток через светодиоды тоже будет не одинаковым. По этой причине при выборе номинала резистора R4 из расчета протекания через светодиоды максимально допустимого тока, один из них может перегружаться и выйти из строя, а это приведет к перегрузке по току параллельно включенных светодиодов, и они тоже перегорят.
Переделка (модернизация) электрической схемы фонаря
Стало очевидным, что поломка фонаря связана с ошибками, допущенными разработчиками его электрической принципиальной схемы. Чтобы отремонтировать фонарь и исключить его повторную поломку необходимо его переделать, заменив светодиоды и внести незначительные изменения в электрическую схему.
Для того чтобы индикатор заряда аккумулятора действительно сигнализировал о его зарядке, необходимо светодиод HL1 включить последовательно с аккумулятором. Для свечения светодиода необходим ток несколько миллиампер, а выдаваемый ток зарядным устройством должен составлять около 100 мА.
Для обеспечения этих условий достаточно отсоединить HL1-R2 цепочку от схемы в местах, указанных красными крестиками и параллельно с ней установить дополнительный резистор Rd номиналом 47 Ом мощностью не менее 0,5 Вт. Ток заряда, протекая через Rd будет создавать на нем падение напряжения около 3 В, которое обеспечить необходимый ток для свечения индикатора HL1. Заодно точку соединения HL1 и Rd необходимо подключить к выводу 1 переключателя SA1. Таким простым способом будет исключена возможность подачи напряжения с зарядного устройства на светодиоды EL1-EL10 во время заряда аккумулятора.
Для выравнивания величины токов, протекающих через светодиоды EL3-EL10, необходимо исключить из схемы резистор R4 и последовательно с каждым светодиодом включить отдельный резистор номиналом 47-56 Ом.
Электрической схема после доработки
Внесенные в схему незначительные изменения повысили информативность индикатора заряда недорогого китайского светодиодного фонаря и многократно повысили его надежность. Надеюсь, что производители светодиодных фонарей после прочтения этой статьи внесут изменения в электрические схемы своих изделий.
После модернизации электрическая принципиальная схема приняла вид, как на чертеже выше. Если необходимо освещать фонариком продолжительное время и не требуется большой яркости его свечения, то можно дополнительно установить токоограничивающий резистор R5, благодаря которому время работы фонарика без подзарядки увеличится в два раза.
Ремонт светодиодного аккумуляторного фонаря
После разборки в первую очередь нужно восстановить работоспособность фонаря, а потом уже заниматься модернизацией.
Проверка светодиодов мультиметром подтвердила их неисправность. Поэтому все светодиоды пришлось выпаять и освободить от припоя отверстия для установки новых диодов.
Судя по внешнему виду, на плате были установлены ламповые светодиоды из серии HL-508H диаметром 5 мм. В наличии имелись светодиоды типа HK5H4U от линейной светодиодной лампы с близкими техническими характеристиками. Они и пригодились для ремонта фонаря. При запайке светодиодов на плату нужно не забывать соблюдать полярность, анод должен быть соединен с плюсовым выводом аккумулятора или батарейки.
После замены светодиодов печатная плата была подключена к схеме. Яркость свечения некоторых светодиодов из-за общего токоограничивающего резистора несколько отличалась от других. Для устранения этого недостатка необходимо удалить резистор R4 и заменить его семью резисторами, включив последовательно с каждым светодиодом.
Таблица зависимости величины протекающего через светодиод тока от номинала резистора при U=3,6 B | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Величина сопротивления, Ом | 32 | 34 | 39 | 44 | 47 | 52 | 57 | 61 | 70 | 75 | 85 |
Сила тока, мА | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 |
Для выбора резистора, обеспечивающего оптимальный режим работы светодиода, была измерена зависимость величины тока, протекающего через светодиод, от величины последовательно включенного сопротивления при напряжении 3,6 В, равному напряжению аккумуляторной батареи фонаря.
Исходя из условий применения фонаря (в случае перебоев подачи в квартиру электроэнергии) большой яркости и дальности освещения не требовалось, поэтому резистор был выбран номиналом 56 Ом. С таким токоограничивающим резистором светодиод будет работать в легком режиме, и потребление электроэнергии будет экономным. Если от фонаря требуется выжать максимальную яркость, то следует применить резистор, как видно из таблицы, номиналом 33 Ом и сделать два режима работы фонарика, включив еще один общий токоограничивающий резистор (на схеме R5) номиналом 5,6 Ом.
Чтобы включить последовательно с каждым светодиодом резистор, необходимо предварительно подготовить печатную плату. Для этого на ней нужно перерезать по одной любой токоведущей дорожке, подходящей к каждому светодиоду и сделать дополнительные контактные площадки. Токоведущие дорожки на плате защищены слоем лака, который необходимо соскоблить лезвием ножа до меди, как на фотоснимке. Затем оголенные контактные площадки залудить припоем.
Подготавливать печатную плату для монтажа резисторов и припаивать их лучше и удобнее, если плату закрепить на штатном рефлекторе. В этом случае поверхность линз светодиодов не будет царапаться, и удобнее будет работать.
Подключение диодной платы после ремонта и модернизации к аккумулятору фонаря показало достаточную для освещения и одинаковую яркость свечения всех светодиодов.
Не успел отремонтировать предыдущий фонарь, как в ремонт попал второй, с такой же неисправностью. На корпусе фонарика информации о производителе и технических характеристиках не нашел, но судя по почерку изготовления и причине поломки, производитель тот же, китайский Lentel.
По дате на корпусе фонарика и на аккумуляторе удалось установить, что фонарю уже четыре года и со слов его хозяина фонарь работал безотказно. Очевидно, что прослужил фонарик долго благодаря предупреждающей надписи «Не включать во время зарядки!» на откидной крышке, закрывающей отсек, в котором спрятана вилка для подключения фонаря к электросети для зарядки аккумулятора.
В этой модели фонаря светодиоды включены в схему по правилам, последовательно с каждым установлен резистор номиналом 33 Ом. Величину резистора легко узнать по цветовой маркировке с помощью онлайн калькулятора. Проверка мультиметром показала, что все светодиоды неисправны, резисторы тоже оказались в обрыве.
Анализ причины отказа светодиодов показал, что за счет сульфатации пластин кислотного аккумулятора его внутреннее сопротивление увеличилось и как следствие, напряжение его зарядки возросло в несколько раз. Во время зарядки фонарик был включен, ток через светодиоды и резисторы превысил предельный, что и привело к выходу их из строя. Пришлось заменить не только светодиоды, но и все резисторы. Исходя из выше оговоренных условиях эксплуатации фонаря были для замены выбраны резисторы номиналом 47 Ом. Величину резистора для любого типа светодиода можно рассчитать с помощью онлайн калькулятора.
Переделка схемы индикации режима зарядки аккумулятора
Фонарь отремонтирован, и можно приступать к внесению изменений в схему индикации зарядки аккумулятора. Для этого необходимо перерезать дорожку на печатной плате зарядного устройства и индикации таким образом, чтобы цепочку HL1-R2 со стороны светодиода отсоединить от схемы.
Далее нужно параллельно цепочке HL1-R2 подключить резистор Rd, проходя через который ток зарядки аккумулятора будет создавать необходимое падение напряжения для обеспечения свечения светодиода HL1.
Свинцово-кислотный AGM аккумулятор был доведен до глубокого разряда, и попытка зарядить его штатным зарядным устройством не привела к успеху. Пришлось аккумулятор заряжать с помощью стационарного блока питания с функцией ограничения тока нагрузки. На аккумулятор было подано напряжение 30 В, при этом он в первый момент времени потреблял ток всего несколько мА. Со временем ток начал возрастать и через несколько часов увеличился до 100 мА. После полной зарядки аккумулятор был установлен в фонарь.
Зарядка глубоко разряженных свинцово-кислотный AGM аккумуляторов в результате долгого хранения повышенным напряжением позволяет восстановить их работоспособность. Способ проверен мною на AGM аккумуляторах не один десяток раз. Новые аккумуляторы, не желающие заряжаться от стандартных зарядных устройств, при зарядке от постоянного источника при напряжении 30 В восстанавливаются практически до первоначальной емкости.
Аккумулятор был несколько раз разряжен включением фонарика в рабочий режим и заряжен с помощью штатного зарядного устройства. Измеренный ток заряда составил 123 мА, при напряжении на выводах аккумулятора 6,9 В. К сожалению аккумулятор был изношен и его хватало для работы фонаря в течение 2 часов. То есть емкость аккумулятора составляла около 0,2 А×часа и для продолжительной работы фонаря необходима его замена.
HL1-R2 цепочка на печатной плате была удачно размещена, и понадобилось под углом перерезать всего одну токоведущую дорожку, как на фотоснимке. Ширина реза должна быть не менее 1 мм. Расчет номинала резистора и проверка на практике показала, что для стабильной работы индикатора зарядки аккумулятора необходим резистор номиналом 47 Ом мощностью не менее 0,5 Вт.
На фотоснимке представлена печатная плата с запаянным токоограничивающим резистором. После такой доработки индикатор заряда аккумулятора светится только в случае, если действительно происходит заряд аккумулятора.
Модернизация переключателя режимов работы
Для завершения работы по ремонту и модернизации фонарей необходимо выполнить перепайку проводов на выводах переключателя.
В моделях ремонтируемых фонарей для включения применен четырех позиционный переключатель движкового типа. Средний вывод на приведенной фотографии является общим. При положении движка переключателя в крайнем левом положении общий вывод подключается к левому выводу переключателя. При перемещении движка переключателя из крайнего левого положения на одну позицию вправо, общий его вывод подключается ко второму выводу и при дальнейшем перемещении движка последовательно к 4 и 5 выводам.
К среднему общему выводу (смотри фотографию выше) нужно припаять провод, идущий от положительного вывода аккумулятора. Таким образом, появится возможность подключать аккумулятор к зарядному устройству или светодиодам. К первому выводу можно припаять провод, идущий от основной платы со светодиодами, ко второму можно припаять токоограничивающий резистор R5 величиной 5,6 Ом для возможности переключения фонарика в энергосберегающий режим работы. К крайнему правому выводу припаять проводник, идущий от зарядного устройства. Таким образом будет исключена возможность включить фонарь во время зарядки аккумулятора.
Ремонт и модернизация
светодиодного аккумуляторного фонаря-прожектора «Фотон PB-0303»
Попал мне в ремонт еще один экземпляр из ряда светодиодных фонарей китайского производства под названием Светодиодный фонарь-прожектор «Фотон PB-0303». Фонарь при нажатии на кнопку включения не реагировал, попытка зарядить аккумулятор фонаря с помощью зарядного устройства к успеху не привела.
Светодиодный фонарь Фотон обладает хорошей ремонтопригодностью. Для получения доступа к электрической схеме достаточно открутить пластмассовое кольцо, удерживающее защитное стекло, вращая кольцо против часовой стрелки, если смотреть на светодиоды.
При ремонте любых электроприборов поиск неисправности всегда начинается с источника питания. Поэтому первым делом было измерено с помощью мультиметра, включенного в режим измерения постоянного напряжения, напряжение на выводах кислотного аккумулятора. Оно составил 2,3 В, вместо 4,4 В положенных. Аккумулятор был полностью разряжен.
При подключении зарядного устройства напряжение на клеммах аккумулятора не изменялось, стало очевидным, что зарядное устройство не работает. Фонариком пользовались, пока аккумулятор полностью не разрядился, а затем он продолжительное время не эксплуатировался, что и привело к глубокой разрядке аккумулятора.
Осталось проверить исправность светодиодов и остальных элементов. Для этого был снять отражатель, для чего были откручены шесть саморезов. На печатной плате находилось всего три светодиода, ЧИП (микросхема) в виде капельки, транзистор и диод.
От платы и аккумулятора пять проводов уходило в ручку. Для того, чтобы разобраться в их подключении понадобилось ее разобрать. Для этого нужно крестовой отверткой открутить внутри фонаря два винта, которые были расположены рядом с отверстием, в которые уходили провода.
Для отсоединения ручки фонаря от его корпуса ее необходимо сдвинуть в сторону от винтов крепления. Делать это нужно аккуратно, чтобы не оторвать от платы провода.
Как оказалось в ручке не было радиоэлектронных элементов. Два белых провода были припаяны к выводам кнопки включения/выключения фонаря, а остальные к разъему для подключения зарядного устройства. К 1 выводу разъема (нумерация условная) был припаян провод красного цвета, который вторым концом был припаян к плюсовому входу печатной платы. Ко второму контакту был припаян сине-белый проводник, который вторым концом был припаян к минусовой площадке печатной платы. К 3 выводу был припаян зеленый провод, второй конец которого был припаян к минусовому выводу аккумулятора.
Электрическая принципиальная схема
Разобравшись с проводами, спрятанными в ручке можно начертить электрическую принципиальную схему фонаря Фотон.
С отрицательного вывода аккумулятора GB1 напряжение подается на вывод 3 разъема Х1 и далее с его вывода 2 через сине-белый проводник поступает на печатную плату.
Разъем Х1 устроен таким образом, что когда штекер зарядного устройства в него не вставлен, то выводы 2 и 3 соединяются между собой. Когда штекер вставляется, то выводы 2 и 3 разъединяются. Таким образом, обеспечивается автоматическое отключение электронной части схемы от зарядного устройства, исключающей возможность случайного включения фонаря во время зарядки аккумулятора.
С положительного вывода аккумулятора GB1 напряжение подается на D1 (микросхема-чип) и эмиттер биполярного транзистора типа S8550. ЧИП выполняет только функцию триггера, позволяющего кнопкой без фиксации включать или выключать свечение светодиодов EL (⌀8 мм, цвет свечения – белый, мощность 0,5 Вт, ток потребления 100 мА, падение напряжения 3 В.). При первом нажатии на кнопку S1 с микросхемы D1 на базу транзистора Q1 подается положительное напряжение, он открывается и на светодиоды EL1-EL3 поступает питающее напряжение, фонарь включается. При повторном нажатии на кнопку S1, транзистор закрывается и фонарь выключается.
С технической точки зрения такое схемное решение безграмотно, так как повышает стоимость фонаря, снижает его надежность, и в дополнение за счет падения напряжения на переходе транзистора Q1 теряется до 20% емкости аккумулятора. Такое схемное решение оправдано при наличии возможности регулировки яркости светового луча. В данной модели вместо кнопки достаточно было поставить механический выключатель.
Вызвало удивление, что в схеме светодиоды EL1-EL3 подключены параллельно к аккумулятору как лампочки накаливания, без токоограничивающих элементов. В результате при включении через светодиоды проходит ток, величина которого ограничена только внутренним сопротивлением аккумулятора и при его полном заряде ток может превысить допустимый для светодиодов, что приведет выходу их из строя.
Проверка работоспособности электрической схемы
Для проверки исправности микросхемы, транзистора и светодиодов от внешнего источника питания с функцией ограничения тока было подано с соблюдением полярности напряжение постоянного тока 4,4 В непосредственно на выводы питания печатной платы. Величина ограничения тока была выставлена 0,5 А.
После нажатия кнопки включения светодиоды засветили. После повторного нажатия – погасли. Светодиоды и микросхема с транзистором оказались исправными. Осталось разобраться с аккумулятором и зарядным устройством.
Восстановление кислотного аккумулятора
Температура корпуса аккумулятора была в пределах нормы, что свидетельствовало о том, что ток зарядки идет не на выделение тепла, а на накопление энергии. После заряда аккумулятора и доработки схемы, о которой речь пойдет ниже, были проведены испытания. Фонарь с восстановленным аккумулятором просветил беспрерывно 16 часов, после чего начала падать яркость луча и поэтому он был выключен.
Описанным выше способом мне приходилось неоднократно восстанавливать работоспособность глубоко разряженных малогабаритных кислотных аккумуляторов. Как показала практика, восстановлению подлежат только исправные аккумуляторы, о которых на некоторое время забыли. Кислотные аккумуляторы, которые выработали свой ресурс, восстановлению не подлежат.
Ремонт зарядного устройства
Измерение величины напряжения мультиметром на контактах выходного разъема зарядного устройства показало его отсутствие.
Судя по стикеру, наклеенному на корпус адаптера, он представлял собой блок питания, выдающий нестабилизированное постоянное напряжение величиной 12 В с максимальным током нагрузки 0,5 А. В электрической схеме не было элементов, ограничивающих величину тока зарядки, поэтому возник вопрос, а почему в качестве зарядного устройства использовался обыкновенный блок питания?
Когда адаптер был вскрыт, то появился характерный запах горелой электропроводки, что свидетельствовало о том, что обмотка трансформатора сгорела.
Прозвонка первичной обмотки трансформатора показала, что она в обрыве. После разрезания первого слоя ленты, изолирующего первичную обмотку трансформатора, был обнаружен термопредохранитель, рассчитанный на температуру срабатывания 130°С. Проверка показала, что как первичная обмотка, так и термопредохранитель неисправны.
Ремонт адаптера был экономически нецелесообразен, так как необходимо перемотать первичную обмотку трансформатора и установить новый термопредохранитель. Заменил его аналогичным, который был под рукой, на напряжение постоянного тока 9 В. Гибкий шнур с разъемом пришлось перепаять от сгоревшего адаптера.
На фотографии представлен чертеж электрической схемы сгоревшего блока питания (адаптера) светодиодного фонаря «Фотон». Адаптер для замены был собран по такой же схеме, только с выходным напряжением 9 В. Такого напряжения вполне достаточно для обеспечения требуемого тока заряда аккумулятора с напряжением 4,4 В.
Для интереса подключил фонарь к новому блоку питания и измерял ток зарядки. Величина его составила 620 мА, и это при напряжении 9 В. При напряжении 12 В ток был порядка 900 мА, значительно превышающий нагрузочную способность адаптера и рекомендуемый ток заряда аккумулятор. По этой причине от перегрева и сгорела первичная обмотка трансформатора.
Доработка электрической принципиальной схемы
светодиодного аккумуляторного фонаря «Фотон»
Для устранения схемотехнических нарушений с целью обеспечения надежной и долговременной работы в схему фонаря были внесены изменения и выполнена доработка печатной платы.
На фотографии представлена электрическая принципиальная схема переделанного светодиодного фонаря «Фотон». Синим цветом, показаны дополнительно установленные радиоэлементы. Резистор R2 ограничивает ток заряда аккумулятора до 120 мА. Для увеличения тока зарядки нужно уменьшить номинал резистора. Резисторы R3-R5 ограничивают и выравнивают ток, протекающий через светодиоды EL1-EL3 при свечении фонаря. Светодиод EL4 с последовательно включенным токоограничивающим резистором R1 установлен для индикации процесса зарядки аккумулятора, так как разработчиками конструкции фонаря об этом не позаботились.
Для установки на плате токоограничивающих резисторов печатные дорожки были перерезаны, как показано на фотографии. Ограничивающий ток заряда резистор R2 был припаян одним концом к контактной площадке, к которой до этого был припаян положительный провод, идущий от зарядного устройства, а отпаянный провод припаян ко второму выводу резистора. К этой же контактной площадке был припаян дополнительный провод (на снимке желтого цвета), предназначенный для подключения индикатора зарядки аккумулятора.
Резистор R1 и светодиод индикаторный EL4 были размещены в ручке фонаря, рядом с разъемом для подключения зарядного устройства X1. Вывод анода светодиода был припаян к выводу 1 разъема X1, а ко второму выводу, катоду светодиода токоограничивающий резистор R1. Ко второму выводу резистора был припаян провод (на фото желтого цвета), соединяющий его с выводом резистора R2, припаянного к печатной плате. Резистор R2, для простоты монтажа, можно было разместить и в ручке фонарика, но так как он при зарядке нагревается, то решил его разместить в более свободном пространстве.
При доработке схемы применены резисторы типа МЛТ мощностью 0,25 Вт, кроме R2, который рассчитан на 0,5 Вт. Светодиод EL4 подойдет любого типа и цвета свечения.
На этой фотографии показана работа индикатора зарядки во время зарядки аккумулятора. Установка индикатора позволила не только следить за процессом зарядки аккумулятора, но и контролировать наличие напряжения в сети, исправность блока питания и надежность его подключения.
Чем заменить сгоревший ЧИП
Если вдруг ЧИП – специализированная микросхема без маркировки в светодиодном фонаре «Фотон», или аналогичном, собранном по подобной схеме, выйдет из строя, то для восстановления работоспособности фонаря ее можно успешно заменить механическим выключателем.
Для этого нужно удалить из платы микросхему D1, а вместо транзисторного ключа Q1 подключить обыкновенный механический выключатель, как показано на выше приведенной электрической схеме. Выключатель на корпусе фонаря можно установить вместо кнопки S1 или в любом другом подходящем месте.
Ремонт с модернизацией
светодиодного фонаря Keyang KY-9914
Посетитель сайта Марат Пурлиев из Ашхабада поделился в письме результатами ремонта светодиодного фонаря Keyang KY-9914. В дополнение представил фотографию, схемы, подробное описание и дал согласие на публикацию информации, за что я выражаю ему свою признательность.
Спасибо Вам за статью «Ремонт и модернизация светодиодных фонарей Lentel, Фотон, Smartbuy Colorado и RED своими руками».
Воспользовавшись примерами ремонта, я отремонтировал и модернизировал фонарь Keyang KY-9914, в котором сгорели четыре светодиода из семи, и выработал ресурс аккумулятор. Светодиоды сгорели из-за переключения переключателя во время зарядки аккумулятора.
В доработанной электрической схеме изменения выделены красным цветом. Неисправный кислотный аккумулятор я заменил на три последовательно включенных бывших в употреблении пальчиковых АА аккумуляторов Sanyo Ni-NH 2700, которые оказались под рукой.
После переделки фонаря ток потребления светодиодов в двух положениях переключателя составил 14 и 28 мА, а ток заряда аккумуляторов 50 мА.
Ремонт и переделка светодиодного фонаря
14Led Smartbuy Colorado
Перестал включаться светодиодный фонарь Smartbuy Colorado, хотя три батарейки типоразмера ААА были установлены новые.
Влагонепроницаемый корпус был выполнен из анодированного алюминиевого сплава, имел длину 12 см. Фонарик выглядел стильно и был удобен в эксплуатации.
Как проверить в светодиодном фонаре батарейки на пригодность
Ремонт любого электроприбора начинается с проверки источника питания, поэтому, несмотря на то, что в фонарь были установлены новые батарейки, ремонт следует начинать с их проверки. В фонаре Smartbuy батарейки устанавливаются в специальный контейнер, в котором с помощью перемычек соединены последовательно. Для того чтобы получить доступ к батарейкам фонарика нужно разобрать, вращая против часовой стрелки заднюю крышку.
Батарейки в контейнер необходимо устанавливать, соблюдая обозначенную на нем полярность. На контейнере тоже обозначена полярность, поэтому его нужно заводить в корпус фонаря стороной, на которой нанесен знак «+».
В первую очередь необходимо визуально проверить все контакты контейнера. Если на них имеются следы окислов, то контакты необходимо зачистить до блеска с помощью наждачной бумаги или соскоблить окисел лезвием ножа. Для исключения повторного окисления контактов их можно смазать тонким слоем любого машинного масла.
Далее нужно проверить пригодность батареек. Для этого, прикоснувшись щупами мультиметра, включенного в режим измерения постоянного напряжения, необходимо измерять напряжение на контактах контейнера. Три батарейки включены последовательно и каждая из них должна выдавать напряжение 1,5 В, следовательно напряжение на выводах контейнера должно составлять 4,5 В.
Если напряжение меньше указанного, то необходимо проверить правильность полярности батареек в контейнере и измерять напряжение каждой из них индивидуально. Возможно, села только одна из них.
Если с батарейками все в порядке, то нужно вставить, соблюдая полярность контейнер в корпус фонаря, закрутить крышку и проверить его на работоспособность. При этом надо обратить внимание на пружину в крышке, через которую передается питающее напряжение на корпус фонаря и с него прямо на светодиоды. На ее торце не должно быть следов коррозии.
Как проверить исправность выключателя
Если батарейки хорошие и контакты чистые, но светодиоды не светят, то нужно проверить выключатель.
В фонаре Smartbuy Colorado установлен кнопочный герметичный выключатель с двумя фиксированными положениями, замыкающий провод, идущий от положительного вывода контейнера батареек. При первом нажатии на кнопку выключателя его контакты замыкаются, а при повторном – размыкаются.
Так как в фонаре установлены батарейки, то проверить выключатель можно тоже с помощью мультиметра, включенного в режим вольтметра. Для этого нужно вращением против часовой стрелки, если смотреть на светодиоды, открутить его переднюю часть и отложить в сторону. Далее одним щупом мультиметра прикоснуться к корпусу фонарика, а вторым к контакту, который находится в глубине по центру пластиковой детали, показанной на фотографии.
Вольтметр должен показать напряжение 4,5 В. Если напряжение отсутствует нужно нажать кнопку выключателя. Если он исправен, то напряжение появится. В противном случае нужно ремонтировать выключатель.
Проверка исправности светодиодов
Если на предыдущих шагах поиска неисправность обнаружить не удалось, то на следующем этапе нужно проверить надежность контактов, подающих питающее напряжение на плату со светодиодами, надежность их пайки и исправность.
Печатная плата с запаянными в нее светодиодами фиксируется в головной части фонаря с помощью стального подпружиненного кольца, через которое по корпусу фонаря одновременно подается на светодиоды питающее напряжение от минусового вывода контейнера батареек. На фотографии кольцо показано со стороны, которой оно прижимает печатную плату.
Стопорное кольцо зафиксировано довольно крепко, и извлечь его удалось только с помощью приспособления, показанного на фотографии. Такой крючок можно выгнуть из стальной полоски своими руками.
После извлечения стопорного кольца печатная плата со светодиодами, которая изображена на фото, легко извлеклась из головной части фонаря. Сразу бросилось в глаза отсутствие токоограничивающих резисторов, все 14 светодиодов были включены параллельно и через выключатель непосредственно к батарейкам. Подключение светодиодов непосредственно к батарейке недопустима, так как величина протекающего через светодиоды тока ограничивается только внутренним сопротивлением батареек и может вывести светодиоды из строя. В лучшем случае сильно сократит срок их службы.
Так как в фонаре все светодиоды были включены параллельно, то проверить их с помощью мультиметра, включенного в режим измерения сопротивления не представлялось возможным. Поэтому на печатную плату было подано питающее постоянное напряжение от внешнего источника величиной 4,5 В с ограничением тока до 200 мА. Все светодиоды засветились. Стало очевидным, что неисправность фонаря заключалась в плохом контакте печатной платы с фиксирующим кольцом.
Ток потребления светодиодного фонаря
Для интереса измерял ток потребления светодиодами от батареек при включении их без токоограничительного резистора.
Ток составил более 627 мА. В фонарике установлены светодиоды типа HL-508H, рабочий ток которых не должен превышать 20 мА. 14 светодиодов включены параллельно, следовательно, суммарный ток потребления не должен превышать 280 мА. Таким образом, ток, протекающий через светодиоды, превысил номинальный более чем в два раза.
Такой форсированный режим работы светодиодов недопустим, так как ведет к перегреву кристалла, и как следствие, преждевременный выход светодиодов из строя. Дополнительным недостатком является быстрый разряд батареек. Их хватит, если раньше не перегорят светодиоды, не более чем на час работы.
Конструкция фонарика не позволяла впаять токоограничительные резисторы последовательно с каждым светодиодом, поэтому пришлось установить один общий на все светодиоды. Номинал резистора пришлось определять экспериментально. Для этого фонарик был запитан от штатных батареек и в разрыв положительного провода был включен амперметр последовательно с резистором номиналом 5,1 Ом. Ток составил около 200 мА. При установке резистора 8,2 Ом ток потребления составил 160 мА, что, как показала проверка, вполне достаточно для хорошего освещения на расстоянии не менее 5 метров. На ощупь резистор не нагревался, поэтому подойдет любой мощности.
Переделка конструкции
После проведенного исследования стало очевидным, что для надежной и долговечной работы фонаря необходимо дополнительно установить ограничивающий ток резистор и продублировать дополнительным проводником соединение печатной платы с светодиодами и фиксирующим кольцом.
Если раньше надо было, чтобы отрицательная шина печатной платы касалась корпуса фонаря, то в связи с установкой резистора, понадобилось исключить касание. Для этого с печатной платы по всей ее окружности, со стороны токоведущих дорожек с помощью надфиля был сточен угол.
Для исключения касания прижимного кольца к токоведущим дорожкам при фиксации печатной платы на нее были приклеены клеем «Момент» четыре резиновых изолятора толщиной около двух миллиметров, как показано на фотографии. Изоляторы можно изготовить из любого диэлектрического материала, например пластмассы или плотного картона.
Резистор был заранее припаян к прижимному кольцу, а к крайней дорожке печатной платы припаян отрезок провода. На проводник была надета изолирующая трубка, и затем провод припаян ко второму выводу резистора.
Далее печатная плата была зафиксирована прижимным кольцом, после чего головная часть фонаря была прикручена к его корпусу.
После простой модернизации фонаря своими руками он стал стабильно включаться и световой луч хорошо освещать предметы на расстоянии более восьми метров. Дополнительно срок службы батареек увеличился более чем в три раза, и многократно повысилась надежность работы светодиодов.
Анализ причин отказов отремонтированных китайских светодиодных фонарей показал, что все они вышли из строя из-за безграмотно разработанных электрических схем. Осталось только выяснить, сделано это намеренно, чтобы сэкономить на комплектующих и сократить срок эксплуатации фонарей (чтобы больше покупали новые), или в результате безграмотности разработчиков. Я склоняюсь к первому предположению.
Ремонт светодиодного фонаря RED 110
Попал в ремонт фонарик со встроенным кислотным аккумулятором китайского производителя торговой марки RED. В фонаре имелось два излучателя: – с лучом в виде узкого пучка и излучающий рассеянный свет.
На фотографии представлен внешний вид фонаря RED 110. Фонарь мне сразу понравился. Удобная форма корпуса, два режима работы, петля для подвески на шею, выдвигающаяся вилка подключения к сети для зарядки. В фонаре секция светодиодов рассеянного света светила, а узкого пучка – нет.
Для ремонта сначала было откручено кольцо черного цвета, фиксирующее рефлектор, а затем выкручен один саморез в зоне петли. Корпус легко разделился на две половинки. Все детали были закреплены на саморезах и легко снимались.
Схема зарядного устройства была выполнена по классической схеме. Из сети через токоограничивающий конденсатор емкостью 1 мкф напряжение подавалось на выпрямительный мост из четырех диодов и далее на выводы аккумулятора. Напряжение с аккумулятора на светодиод узкого луча подавалось через токоограничивающий резистор 460 Ом.
Все детали были смонтированы на односторонней печатной плате. Провода были припаяны непосредственно к контактным площадкам. Внешний вид печатной платы представлен на фотографии.
10 светодиодов бокового света были соединены параллельно. Напряжение питания на них подавалось через общий токоограничивающий резистор 3R3 (3,3 Ом), хотя по правилам для каждого светодиода нужно устанавливать отдельный резистор.
При внешнем осмотре светодиода узкого пучка дефектов обнаружено не было. При подаче питания через включатель фонарика с аккумулятора напряжение на выводах светодиода присутствовало, и он нагревался. Стало очевидным, что кристалл пробит, и это подтвердила прозвонка мультиметром. Сопротивление составило при любом подключении щупов к выводам светодиода 46 Ом. Светодиод был неисправен и требовалась его замена.
Для удобства работы от платы светодиода был отпаяны провода. После освобождения выводов светодиода от припоя оказалось, что светодиод намертво держится всей плоскостью обратной стороны на печатной плате. Для его отделения пришлось закрепить плату в настольных висках. Далее острый конец ножа установить в место соединения светодиода с платой и легонько ударить по ручке ножа молотком. Светодиод отскочил.
Маркировка на корпусе светодиода, как обычно, отсутствовала. Поэтому необходимо было определить его параметры и подобрать подходящий для замены. По габаритным размерам светодиода, напряжению аккумулятора и величине токоограничивающего резистора было определено, что для замены подойдет светодиод мощностью 1 Вт (ток 350 мА, падение напряжения 3 В). Из Справочной таблицы параметров популярных SMD светодиодов для ремонта был выбран светодиод LED6000Am1W-A120 белого свечения.
Печатная плата, на которой установлен светодиод выполнена из алюминия и одновременно служит для отвода тепла от светодиода. Поэтому при установке его необходимо обеспечить хороший тепловой контакт за счет плотного прилегания задней плоскости светодиода к печатной плате. Для этого перед запайкой на места контакта поверхностей была нанесена термопаста, которая применяется при установке радиатора на процессор компьютера.
При установке светодиода необходимо соблюдать полярность. Правда в этом случае, если будет допущена ошибка, то можно будет поменять местами подающие напряжение провода. Светодиод припаян и можно проверить его работу и измерять потребляемый ток и падение напряжения.
Ток протекающий через светодиод составил 250 мА, падение напряжения 3,2 В. Отсюда потребляемая мощность (нужно умножить ток на напряжение) составила 0,8 Вт. Можно было увеличить рабочий ток светодиода уменьшив сопротивление 460 Ом, но я этого делать не стал, так как яркость свечения была достаточной. Зато светодиод будет работать в более легком режиме, меньше нагреваться и увеличится время работы фонарика от одной зарядки.
Проверка нагрева светодиода проработавшего в течении часа показала эффективный отвод тепла. Он нагрелся до температуры не более 45°С. Ходовые испытания показали достаточную дальность освещения в темноте, более 30 метров.
Замена кислотного аккумулятора в светодиодном фонаре
Вышедший из строя в светодиодном фонаре кислотный аккумулятор можно заменить как аналогичным кислотным, так и литий-ионным (Li-ion) или никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА.
В ремонтируемых китайских фонарях были установлены свинцово-кислотные AGM аккумуляторы разных габаритных размеров без маркировки напряжением 3,6 В. По расчету емкость этих аккумуляторов составляет от 1,2 до 2 А×часов.
В продаже можно найти аналогичный кислотный аккумулятор российского производителя для ИБП 4V 1Ah Delta DT 401, который имеет напряжение на выходе 4 В при емкости 1 А×часа, стоимостью пару долларов. Для замены достаточно просто, соблюдая полярность, перепаять два провода.
Технические характеристики аккумулятора Delta DT 401 | ||
---|---|---|
Параметр | Единица измерения | Величина |
Номинальное напряжение | В | 4,0 |
Номинальная емкость (25⁰С) | Ач | 1,0 |
Максимальный зарядный ток | А | 0,3 |
Количество циклов зарядки, не менее | раз | 400 |
Саморазряд емкости в месяц при 25°С | % | 3 |
Рабочий диапазон температур | °С | -15 |
50
Через несколько лет эксплуатации светодиодный фонарь Lentel GL01, ремонт которого описан в начале статьи, опять принесли мне в ремонт. Диагностика показала, что выработал свой ресурс кислотный аккумулятор.
Был куплен для замены аккумулятор Delta DT 401, но оказалось, что его геометрические размеры были больше, чем неисправного. Штатный аккумулятор фонарика имел размеры 21×30×54 мм и был выше на 10 мм. Пришлось дорабатывать корпус фонарика. Поэтому прежде, чем покупать новый аккумулятор убедитесь, что он вместится в корпус фонаря.
Был удален упор в корпусе и ножовкой по металлу отпилена часть печатной платы, с которой предварительно был выпаян резистор и один светодиод.
После доработки новый аккумулятор хорошо установился в корпус фонаря и теперь, надеюсь, прослужит не один год.
Замена кислотного аккумулятора
аккумуляторами типоразмера АА или ААА
Если нет возможности приобрести аккумулятор 4V 1Ah Delta DT 401, то его можно успешно заменить тремя любыми пальчиковыми никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА емкостью от 1 А×часа, которые имеют напряжение 1,2 В. Для этого достаточно соединить последовательно, соблюдая полярность, три аккумулятора проводами методом пайки. Однако экономически такая замена нецелесообразна, так как стоимость трех качественных пальчиковых аккумуляторов типоразмера АА может превышать стоимость покупки нового светодиодного фонаря.
Но где гарантия, что в электрической схеме нового светодиодного фонаря не имеются ошибки, и не придется его тоже дорабатывать. Поэтому считаю, что замена свинцового аккумулятора в доработанном фонаре целесообразна, так как обеспечит надежную работу фонаря еще несколько лет. Да и всегда будет приятно пользоваться фонариком, отремонтированным и модернизированным своими руками.
Замена кислотного аккумулятора Li-ion
Замене батареек или аккумуляторов в светодиодном фонаре посвящена отдельная статья «Как заменить свинцовый аккумулятор литий-ионным».
Задать вопрос автору статьи, оставить комментарий
Здравствуйте.
Занимаюсь подводной охотой, сейчас вышли новые светодиоды XHP70, у меня есть два фонаря, в которых установлено по одному светодиоду Т6. Возможна ли замена их в моих фонарях на новые XHP70 и какая стоимость работы и запчастей, заранее благодарен.
Здравствуйте, Евгений.
Оптимальный ток потребления светодиода Т6 составляет 0,7 А, а светодиодной сборки XHP70 – 4,0 А. Следовательно, потребуется замена не только светодиода, но и драйвера, то есть практически замена всей электроники фонаря.
Возможность отвести тепло от светодиода ХНР70 штатным радиатором, установленным в фонаре тоже под вопросом. В дополнение время работы фонаря со штатным аккумулятором уменьшится в 6 раз, то есть вместо 2 часов фонарь будет работать 20 минут.
Таким образом, после модернизации нет гарантий надежной работы фонаря в связи с возможным перегревом светодиода. В дополнение стоимость такой переделки может превысить стоимость нового фонаря с светодиодом XHP70.
Здравствуйте, Александр Николаевич.
Есть в собственности фонарь «Облик 6002». Использовал редко. Более 2-х лет не включал. Сейчас не светит. Включил зарядку, но пока реакции нет. Как быть?
Прочел вашу статью, но там много «мудрёного», а я не специалист по электротехнике, а врач. Жду ваш совет. Спасибо!
Здравствуйте, Степан Тимофеевич.
Аккумуляторы имеют свойство со временем терять емкость, особенно если находятся в разряженном состоянии. Это как раз Ваш случай. Нужно заменить аккумулятор, а если нет такой возможности, то купить новый фонарь.
Здравствуйте, Владимир!
Спасибо за высокую оценку сайта и представленную сему фонаря YJ-2828.