какое напряжение должно быть на конденсаторе

Особенности конденсаторов

Конденсатор – один из самых важных элементов электрической цепи. Он накапливает внутри себя электрический заряд и передает его другим элементам электрической цепи. О том, что представляет собой конденсатор и как определить на нём напряжение, рассказывается ниже.

Что такое конденсатор

Конденсатор – это двухполюсное устройство, имеющее постоянное или переменное емкостное значение и малую проводимость. Это элемент цепи, служащий накопителем энергии, что формирует электрическое поле; пассивный электронный компонент любого подключения. Содержит в себе несколько металлических электродов или обкладок, между которыми находится диэлектрик. Может иметь пакетную, трубчатую, дисковую, литую секционированную и рулонную конструкцию.

Конденсатор имеет в плоскую или цилиндрическую форму. Плоское устройство состоит из относительно далеко расположенных друг от друга пластин, а цилиндрический – из нескольких полых коаксиальных проводящих цилиндров с радиусами r1 и r2 (основное условие – r1 > r2).

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Термин из учебного пособия

Характеристики конденсаторов

Главной характеристикой прибора является емкость, то есть, количество энергии, которое он может накопить в виде электронов. Общее число зарядов на пластинах определяет величину емкости конденсатора.

Обратите внимание! Емкость зависит от площади обкладок и диэлектрической проницаемости материала. Чем больше площадь конденсаторных пластин, тем больше заряженных частиц могут поместиться на них и тем выше показатель емкости.

Из важнейших характеристик также можно назвать удельную емкость, плотность, номинальную силу заряда и полярность. Из дополнительных параметров можно указать количество фаз, метод установки конденсатора, рабочую температуру, активный электрический ток переменного или постоянного типа.

В электротехнике существуют также понятия негативных факторов, искажающих рабочие свойства колебательного контура. К ним относятся электрическое сопротивление и эквивалентная последовательная индуктивность. В качестве примера негативного критерия можно привести показатель, показывающий падение заряда после отключения электричества.

В чем измеряется напряжение конденсаторов

Напряжение отражается на корпусе оборудования и показывает то, при какой силе энергии оно работает. Измеряется напряжение конденсаторов в фарадах. Это единица, названная в честь Майкла Фарадея. Один фарад – это кулон, или заряд, прошедший через проводник за одну секунду при силе тока в один ампер. Как правило, фарады и кулоны не используются для измерения на практике, потому что чаще применяются дробные величины – микро-, нано- и пикофарады.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Измерение силы заряда двухполюсника

Что влияет на напряжение конденсаторов

Чтобы возник заряд, двухполюсник должен быть подключен к электрической цепи с постоянным током. Для этой цели может быть использован генератор, каждый из которых обладает внутренним сопротивлением. Во время короткого замыкания заряжается прибор, и между его обкладками появляется заряд. Поэтому на вольтаж конденсаторов влияет внутреннее сопротивление. Также, на него оказывают влияние температурные колебания – чем выше нагрев, тем ниже номинальный показатель напряжения.

Важно! На напряжение конденсаторов оказывает большое влияние ток утечки. Вопреки сложившемуся мнению, диэлектрик пропускает небольшое количество электротока, что приводит к потере начального заряда с течением времени, и напряжение в итоге незначительно падает.

Как вычислить напряжение и вольтаж

Чтобы определить мощность, напряжение и вольтаж двухполюсников, можно использовать мультиметр или специальную формулу для теоретических расчётов. Чтобы проверить мультиметром силу заряда и количество вольт, необходимо вставить щупы в измеряемое оборудование, переключить прибор на режим омметра, нажать на соответствующую клавишу проверки и получить запрашиваемый показатель.

Обратите внимание! Сила заряда при проверке быстро падает, поэтому правильной будет та цифра, которая появилась на индикаторе мультиметра в самом начале измерений.

Формулы измерения напряжения конденсаторов

Численный показатель напряжения равен электродвижущей силе. Также он определяется, как емкость, поделенная на величину заряда, исходя из формулы определения его величины. В соответствии с ещё одним правилом, напряжение равно току утечки, поделенному на изоляционное сопротивление.

В целом, конденсатор – это устройство для аккумулирования электрического заряда, состоящее из нескольких пластинчатых электродов, которые разделены с помощью диэлектриков. Устройство имеет электрод, измеряемый в фарадах. Один фарад равен одному кулону. На напряжение устройства влияет ток, показатели которого можно вычислить через описанные выше формулы.

Источник

Практические аспекты применения конденсаторов

Конденсаторы, как и все электрические компоненты, имеют ограничения, которые необходимо учитывать для надежности и правильной работы схемы.

Рабочее напряжение конденсатора

Рабочее напряжение: поскольку конденсаторы представляют собой не более чем два проводника, разделенных изолятором (диэлектриком), вы должны обратить внимание на максимально допустимое на нем напряжение. Если приложено слишком высокое напряжение, номинальное значение «пробоя» диэлектрического материала может быть превышено, что приведет к внутреннему короткому замыканию конденсатора.

Полярность конденсатора

Полярность: некоторые конденсаторы изготавливаются таким образом, что они могут выдерживать приложенное напряжение только одной полярности, но не другой. Это связано с их конструкцией: диэлектрик представляет собой микроскопически тонкий слой изоляции, нанесенный во время изготовления на одну из пластин с помощью постоянного напряжения. Они называются электролитическими конденсаторами, и их полярность четко обозначена.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 1 – Полярность конденсатора

Изменение полярности напряжения на электролитическом конденсаторе может привести к разрушению этого сверхтонкого диэлектрического слоя, что приведет к разрушению устройства. Однако толщина этого диэлектрика позволяет получать чрезвычайно высокие значения емкости при относительно небольшом размере корпуса. По той же причине электролитические конденсаторы имеют тенденцию иметь низкое номинальное напряжение по сравнению с другими типами конструкций конденсаторов.

Эквивалентная схема конденсатора

Эквивалентная схема: поскольку пластины в конденсаторе имеют некоторое сопротивление, и поскольку ни один диэлектрик не является идеальным изолятором, не существует такой вещи, как «идеальный» конденсатор. В реальной жизни конденсатор имеет как последовательное сопротивление, так и параллельное сопротивление (сопротивление утечки), взаимодействующие с его чисто емкостными характеристиками:

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 2 – Эквивалентная схема конденсатора

К счастью, относительно легко изготовить конденсаторы с очень маленьким последовательным сопротивлением и очень высоким сопротивлением утечки!

Физические размеры конденсатора

Для большинства применений в электронике минимальный размер является целью для разработки компонентов. Чем меньшие по размеру компоненты можно изготовить, тем большая схема может быть встроена в меньший корпус, при этом, как правило, также уменьшается вес. В случае конденсаторов существуют два основных ограничивающих фактора для минимального размера устройства: рабочее напряжение и емкость. И эти два фактора, как правило, противоречат друг другу. Для любого конкретного выбранного диэлектрического материала единственный способ увеличить номинальное напряжение конденсатора – это увеличить толщину диэлектрика. Однако, как мы видели, это приводит к уменьшению емкости. Емкость можно восстановить, увеличив площадь пластины, но это делает компонент больше. Вот почему вы не можете судить о емкости конденсатора в фарадах просто по размеру. Конденсатор любого заданного размера может быть относительно высоким по емкости и с низким рабочим напряжением, или наоборот, или иметь некоторый компромисс между двумя этими крайностями. Посмотрим для примера следующие две фотографии:

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 3 – Масляный конденсатор высокого напряжения

Это довольно большой конденсатор по физическим размерам, но он имеет довольно низкое значение емкости: всего 2 мкФ. Тем не менее, его рабочее напряжение довольно высокое: 2000 вольт! Если бы этот конденсатор был перепроектирован так, чтобы между его пластинами был более тонкий слой диэлектрика, то могло бы быть достигнуто, по крайней мере, стократное увеличение емкости, но за счет значительного снижения его рабочего напряжения. Сравните приведенную выше фотографию с приведенной ниже. Конденсатор, показанный на нижнем рисунке, представляет собой электролитический компонент, по размерам подобный приведенному выше, но с очень отличающимися значениями емкости и рабочего напряжения:

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 4 – Электролитический конденсатор

Более тонкий слой диэлектрика дает ему гораздо большую емкость (20000 мкФ) и резко снижает рабочее напряжение (постоянное напряжение 35 В, напряжение 45 В в пике).

Вот некоторые образцы конденсаторов разных типов, все по размеру меньше, чем показанные ранее:

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 5 – Керамические конденсаторы какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 6 – Пленочные конденсаторы какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 7 – Электролитические конденсаторы какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 8 – Танталовые конденсаторы

Электролитические и танталовые конденсаторы являются полярными (чувствительны к полярности) и всегда помечаются как таковые. У электролитических конденсаторов отрицательные (-) выводы отмечаются стрелками на корпусе. У некоторых полярных конденсаторов полярность обозначена на положительном выводе. У большого электролитического конденсатора на 20 000 мкФ, показанного выше, положительный (+) вывод помечен знаком «плюс». Керамические, майларовые, пленочные и воздушные конденсаторы не имеют маркировки полярности, потому что эти типы являются неполярными (они не чувствительны к полярности).

Конденсаторы являются очень распространенными компонентами в электронных схемах. Внимательно посмотрите на следующую фотографию – каждый компонент, обозначенный на печатной плате буквой «С», является конденсатором:

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 9 – Конденсаторы на сетевой карте

Некоторые конденсаторы на плате – это стандартные электролитические конденсаторы: C30 (верхняя часть платы, в центре) и C36 (левая сторона, 1/3 от вершины). Некоторые другие представляют собой особый вид электролитических конденсаторов, называемый танталовым, потому что именно этот тип металла используется для изготовления пластин. Танталовые конденсаторы имеют относительно высокую емкость для своих физических размеров. На плате, показанной выше, танталовые конденсаторы: C14 (чуть ниже слева от C30), C19 (непосредственно под R10, который ниже C30), C24 (нижний левый угол платы) и C22 (внизу справа).

Примеры еще меньших по размеру конденсаторов можно увидеть на этой фотографии:

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе Рисунок 10 – Конденсаторы на жестком диске

Конденсаторы на этой печатной плате из соображений экономии места являются «устройствами поверхностного монтажа», как и все резисторы. В соответствии с соглашением о маркировке компонентов конденсаторы могут быть идентифицированы по меткам, начинающимся с буквы «C».

Источник

Конденсатор

Электрический конденсатор (англ. capacitor) — это устройство, которое может накапливать электрический заряд и хранить его некоторое время. Конденсаторы можно найти практически в любом электронном устройстве. Они бывают разных типов и размеров.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

На электрических схемах конденсаторы обозначают двумя параллельными черточками. При этом, у полярных конденсаторов около положительного электрода дополнительно ставится плюсик.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

Для чего нужен конденсатор?

У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.

1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.

2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время. Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).

3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.

4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.

И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!

Устройство простейшего конденсатора

Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.

Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.

Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.

Полярные и неполярные конденсаторы

Очень важным является разделение конденсаторов на полярные и неполярные.

Приборы на основе оксидов: электролитические алюминиевые и танталовые обычно являются полярными, а значит если перепутать их полярность — они выйдут из строя. Причём этот выход из строя будет сопровождаться бурной электрохимической реакций вплоть до взрыва конденсатора.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

На полярных конденсаторах всегда имеется маркировка. Как правило на электролитических конденсаторах на корпусе контрастной полосой отмечается отрицательный вывод (катод), у танталовых (в желтых прямоугольных корпусах) полоской помечается положительный вывод (анод). Если есть сомнения в маркировке, то лучше найти документацию на этот конденсатор и убедиться.

Неполярные же конденсаторы можно включать в цепь какой угодно стороной. К примеру, многослойные керамические конденсаторы — неполярные.

Ёмкость и напряжение конденсатора

Теперь обратим внимание на две важные характеристики конденсатора: ёмкость и номинальное напряжение.

Ёмкость конденсатора характеризует способность конденсатора накапливать заряд. Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером.

Ёмкость электрического конденсатора измеряют в фарадах. В схемах ёмкость обозначают латинской буквой C. Как правило, ёмкость классических конденсаторов варьируется от нескольких пикофарад (пФ) до нескольких тысяч микрофарад (мкФ). Ёмкость указывается на корпусе конденсатора. Если единицы не указаны — то это пикофарады. Микрофарады часто обозначают как uF — так как буква u внешне похожа на греческую букву мю, которую используют вместо приставки микро.

Существует и особый вид конденсаторов, называемых ионисторами (англ. supercapacitor), которые имеют ёмкость в несколько фарад! Чем больше ёмкость конденсатора, тем больше энергии в нём может храниться и тем дольше он заряжается, при прочих равных условиях.

Номинальное напряжение — второй важный параметр. Это такое напряжение, при котором конденсатор будет работать весь срок службы без критичного изменения своих параметров. Нельзя применять в 12-вольтовой цепи конденсатор на 6 вольт — он быстро выйдет из строя.

Именно эти два параметра обычно наносят на поверхность корпуса конденсатора. На фотографии ниже изображён электролитический конденсатор ёмкостью 470 мкФ и номинальным напряжением 16 Вольт.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

А вот на керамических конденсаторах часто указывают только ёмкость. На картинке ниже конденсатор имеет маркировку 104. Что бы это значило?

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

Последняя цифра в этом коде — количество нулей после двухзначного числа в начале. 104 = 10 0000 пФ = 100 нФ = 0,1 мкФ

Параллельное и последовательное подключение конденсаторов

Как и в случае резисторов, конденсаторы можно составлять в цепочки. Это бывает нужно, когда в схеме необходима какая-то конкретная ёмкость, а у вас нет такого конденсатора.

Параллельное подключение

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

В отличие от резисторов, при параллельном подключении конденсаторов их ёмкости складываются. Например, если нам нужно получить ёмкость 3000 мкФ, а у нас есть два конденсатора по 1000 мкФ, и 10 штук по 100 мкФ, смело ставим их параллельно и получаем: 1000*2+100*10 = 2000 + 1000 = 3000 мкФ

Последовательно подключение

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

При последовательном подключении конденсаторы ведут себя как резисторы, соединённые параллельно. Например, посчитаем суммарную ёмкость двух конденсаторов на 100 мкФ, соединённых последовательно:

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

Суммарная ёмкость Ctot = 50 мкФ.

Заряд и разряд конденсатора — RC-цепочка

Теперь разберёмся с процессами, происходящими внутри конденсатора во время заряда и разряда. Для этого рассмотрим самую простую электрическую цепь с конденсатором. С левой стороны схемы подключим источник питания. Сверху разместим ключ и резистор, а справа сам конденсатор. Участок цепи, на котором есть конденсатор и резистор называют RC-цепью.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

При замыкании ключа, в такой цепи образуется электрический ток, сила которого зависит от сопротивления резистора и внутреннего сопротивления самого конденсатора. Заряженные частицы устремятся к конденсатору, но не смогут преодолеть слой диэлектрика (по крайней мере все разом). Вследствие чего, с одной стороны конденсатора накопятся отрицательно заряженные частицы, а с другой стороны — положительно заряженные. Концентрация заряженных частиц на обкладках создаст мощное электрическое поле между ними.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

С течением времени, напряжение на конденсаторе растет, а сила тока падает. После завершения процесса заряда, ток в цепи упадет почти до нуля. Останется только очень маленький ток утечки, который образуется благодаря тому, что некоторым заряженным частицам всё же удается проскочить через слой диэлектрика. Напряжение, напротив, станет практически равным напряжению источника.

Когда мы отключим конденсатор от источника питания, этот самый ток утечки постепенно разрядит конденсатор. Эта особенность электрических конденсаторов не даёт нам сделать из них контейнер для длительного хранения энергии. Хотя частично эту проблему решают ионисторы.

Резистор и время заряда конденсатора

Зачем в цепи нужен резистор? Что на мешает подключить его напрямую к источнику? Тому есть две причины.

Резистор ограничивает ток, протекающий через конденсатор. Чем меньше заряженных частиц за единицу времени прибывает в конденсатор, тем больше времени для заряда ему потребуется.

Конденсатор заряжается и разряжается по экспоненциальному закону. Зная это, мы можем легко рассчитать время заряда/разряда в зависимости от его ёмкости и от сопротивления резистора.

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

По картинке можно понять, что за время T конденсатор заряжается на 63,2%. А вот за время 3T уже на 95%. Время T здесь равно произведению ёмкости конденсатора C на сопротивление R, последовательно соединенного резистора:

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

Например, у нас есть конденсатор ёмкостью 100 мкФ, соединенный с резистором 1 кОм. Посчитаем за сколько секунд он зарядится хотя бы до 95%:

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

Теперь умножаем это на 3 и получаем 3T = 0,3 секунды — за такое время конденсатор почти полностью будет заряжен.

Таким образом, меняя ёмкость конденсатора и резистора мы можем управлять временем его заряда, что нам ещё пригодится в будущем.

Вторая важная причина, по которой в цепи присутствует резистор — защита источника питания. Дело в том, что разряженные конденсаторы имеют очень низкое внутреннее сопротивление, которое составляет доли Ома. По сути, их можно рассматривать как обычные проводники. А что будет, если замкнуть выводы питания проводником? Будет короткое замыкание! Такой режим работы цепи является аварийным для источника питания, и его нужно всячески избегать.

Плавное выключение светодиода при помощи конденсатора

Проведем небольшой опыт. Для этого соберем на макетной плате цепь с кнопкой, конденсатором и светодиодом. В качестве источника питания используем контакты питания Ардуино Уно.

Принципиальная схема

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

Внешний вид макета

какое напряжение должно быть на конденсаторе. Смотреть фото какое напряжение должно быть на конденсаторе. Смотреть картинку какое напряжение должно быть на конденсаторе. Картинка про какое напряжение должно быть на конденсаторе. Фото какое напряжение должно быть на конденсаторе

Подключим Ардуино к питанию. Затем, нажмем кнопку и светодиод практически мгновенно загорится. Отпустим кнопку — светодиод медленно начнет гаснуть. Почему так происходит?

Сразу после подключения нашей схемы к источнику питания, в ней начинают происходит интересные процессы.

Как уже говорилось ранее, пока конденсатор пустой, ток через него максимален. Следовательно, конденсатор начинает стремительно набирать заряд. При этом светодиоду, который подключен параллельно, ничего не достается 🙁 Напряжение на нем близко к нулю.

С течением времени конденсатор насыщается, благодаря чему ток начинает постепенно переходить в параллельную цепь — через светодиод. Напряжение на светодиоде начинает расти. Наступает момент, когда напряжение на светодиоде принимает критическое значение (для красного светодиода около 1,8 В), при котором он стремительно отбирает остатки тока у конденсатора и вспыхивает!

Когда мы отпускаем кнопку, ситуация становится гораздо проще. Конденсатор становится источником питания для светодиода с резистором. Светодиод начинает медленно высасывать заряд из конденсатора, пока тот не разрядится. Тут мы и наблюдаем медленно угасание.

Меняя сопротивление R1, мы можем влиять на скорость вспыхивания светодиода. Однако, следует учитывать, что увеличивая R1 мы будем снижать ток в цепи, тем самым уменьшая максимальный заряд конденсатора и яркость светодиода.

Увеличивая C1, мы получим более длительное время работы светодиода после выключения источника. Это как поставить более ёмкую батарейку.

Наконец, меняя R2 можно регулировать яркость светодиода, и соответственно, время его работы. Ведь чем меньше тока мы забираем из конденсатора, тем на большее время его хватит.

К размышлению

Итак, мы познакомились с конденсатором — интересным и порой опасным жителем любой электронной платы. В следующих уроках уделим внимание резистору и индуктивности, а также более сложному их собрату — транзистору.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *