какое количество ip адресов узлов доступно в сети с маской 26

IP калькулятор

Калькулятор производит расчет адреса сети IPv4, широковещательного адреса, ip-адрес первого узла, ip-адрес последнего узла, количество узлов в заданной сети, маску подсети и инверсию маски (wildcard mask).

Данные представлены в десятичной и двоичных системах исчисления.

При построении сети, классы подсетей выбираются исходя из предполагаемого количества узлов в компьютерной сети. Если изначально выбрана подсеть вмещающая малое количество узлов (например, класс С c маской 255.255.255.0), при большом росте компьютерной сети часто приходится менять подсеть и маску подсети, чтобы не усложнять адресацию.

И наоборот, если изначально выбрана подсеть включающая в себя огромное количество хостов (например, класса А с маской 255.0.0.0), то при возникновении в компании филиальной сети, приходится сжимать подсети чтобы выделять подсети под филиалы.

Для того, чтобы рассчитать сетевые параметры, укажите IP-адрес хоста и маску подсети.

Справочная информация для IPv4:

Адреса зарезервированные для особых целей:

ПодсетьНазначение
0.0.0.0/8Адреса источников пакетов «этой» («своей») сети, предназначены для локального использования на хосте при создании сокетов IP. Адрес 0.0.0.0/32 используется для указания адреса источника самого хоста.
10.0.0.0/8Для использования в частных сетях.
127.0.0.0/8Подсеть для коммуникаций внутри хоста.
169.254.0.0/16Канальные адреса; подсеть используется для автоматического конфигурирования адресов IP в случает отсутствия сервера DHCP.
172.16.0.0/12Для использования в частных сетях.
100.64.0.0/10Для использования в сетях сервис-провайдера.
192.0.0.0/24Регистрация адресов специального назначения.
192.0.2.0/24Для примеров в документации.
192.168.0.0/16Для использования в частных сетях.
198.51.100.0/24Для примеров в документации.
198.18.0.0/15Для стендов тестирования производительности.
203.0.113.0/24Для примеров в документации.
240.0.0.0/4Зарезервировано для использования в будущем.
255.255.255.255Ограниченный широковещательный адрес.

Зарезервированные адреса, которые маршрутизируются глобально.

Источник

Таблица подсетей различной ёмкости для IPv4

11 сентября 2013 г.

IP-адрес — это массив битов. Принцип IP-адресации — выделение диапазона IP-адресов, в котором некоторые битовые разряды имеют фиксированные значения, а остальные разряды пробегают все возможные значения. Блок адресов задаётся указанием начального адреса и маски подсети. Бесклассовая адресация основывается на переменной длине маски подсети (англ. variable length subnet mask, VLSM), в то время, как в классовой (традиционной) адресации длина маски строго фиксирована 0, 1, 2 или 3 установленными октетами.

Маски и размеры подсетей

Количество адресов подсети не равно количеству возможных узлов. Нулевой IP-адрес резервируется для идентификации подсети, последний — в качестве широковещательного адреса. Таким образом, в реально действующих сетях возможно количество узлов на два меньшее количества адресов.

Зарезервированные адреса

Некоторые адреса IPv4 зарезервированы для специальных целей и не предназначены для глобальной маршрутизации.

ПодсетьНазначение
0.0.0.0/8Адреса источников пакетов «этой» («своей») сети, предназначены для локального использования на хосте при создании сокетов IP. Адрес 0.0.0.0/32 используется для указания адреса источника самого хоста.
10.0.0.0/8Для использования в частных сетях.
127.0.0.0/8Подсеть для коммуникаций внутри хоста (см.: localhost).
169.254.0.0/16Канальные адреса; подсеть используется для автоматического конфигурирования адресов IP в случае отсутствия сервера DHCP.
172.16.0.0/12Для использования в частных сетях.
100.64.0.0/10Для использования в сетях сервис-провайдера.
192.0.0.0/24Регистрация адресов специального назначения.
192.0.2.0/24Для примеров в документации.
192.168.0.0/16Для использования в частных сетях.
198.51.100.0/24Для примеров в документации.
198.18.0.0/15Для стендов тестирования производительности.
203.0.113.0/24Для примеров в документации.
240.0.0.0/4Зарезервировано для использования в будущем.
255.255.255.255Ограниченный широковещательный адрес.

Зарезервированные адреса, которые маршрутизируются глобально.

Источник

IPv4 калькулятор подсетей

ПараметрДесятичная записьШестнадцатеричная записьДвоичная запись
IP адрес188.124.37.220BC.7C.25.DC10111100.01111100.00100101.11011100
Префикс маски подсети/24
Маска подсети255.255.255.0FF.FF.FF.0011111111.11111111.11111111.00000000
Обратная маска подсети (wildcard mask)0.0.0.25500.00.00.FF00000000.00000000.00000000.11111111
IP адрес сети188.124.37.0BC.7C.25.0010111100.01111100.00100101.00000000
Широковещательный адрес188.124.37.255BC.7C.25.FF10111100.01111100.00100101.11111111
IP адрес первого хоста188.124.37.1BC.7C.25.0110111100.01111100.00100101.00000001
IP адрес последнего хоста188.124.37.254BC.7C.25.FE10111100.01111100.00100101.11111110
Количество доступных адресов256
Количество рабочих адресов для хостов254

IPv4 (англ. Internet Protocol version 4) — четвёртая версия интернет протокола (IP). Первая широко используемая версия. Протокол описан в RFC 791 (сентябрь 1981 года), заменившем RFC 760 (январь 1980 года).

IPv4 использует 32-битные (четырёхбайтные) адреса, ограничивающие адресное пространство 4 294 967 296 (2 32 ) возможными уникальными адресами.

Традиционной формой записи IPv4 адреса является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками. Через дробь указывается длина маски подсети.

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA, существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Есть два способа определения того, сколько бит отводится на маску подсети, а сколько — на IP-адрес. Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.

Запись IP-адресов с указанием через слэш маски подсети переменной длины также называют CIDR-адресом в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET-адресом.

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов: если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast). Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, в сети 192.168.5.0 с маской 255.255.255.0 пакет с адресом 192.168.5.255 доставляется всем узлам этой сети. Такая рассылка называется широковещательным сообщением (direct broadcast).

IP-адрес называют статическим (постоянным, неизменяемым), если он назначается пользователем в настройках устройства, либо назначается автоматически при подключении устройства к сети и не может быть присвоен другому устройству.

IP-адрес называют динамическим (непостоянным, изменяемым), если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, указанного в сервисе назначавшего IP-адрес (DHCP).

Источник

Какое количество ip адресов узлов доступно в сети с маской 26

какое количество ip адресов узлов доступно в сети с маской 26

Маски подсети и CIDR-диапазоны

Сетевая маскаИнверсияCIDR-диапазонИспользуетсяРазмер
0.0.0.0255.255.255.255/04,294,967,294весь интернет
128.0.0.0127.255.255.255/12,147,483,646128 классов A
192.0.0.063.255.255.255/21,073,741,82264 класса A
224.0.0.031.255.255.255/3536,870,91032 класса A
240.0.0.015.255.255.255/4268,435,45416 классов A
248.0.0.07.255.255.255/5134,217,7268 классов A
252.0.0.03.255.255.255/667,108,8624 класса A
254.0.0.01.255.255.255/733,554,4302 класса A
255.0.0.00.255.255.255/816,777,2141 класс A
255.128.0.00.127.255.255/98,388,606128 классов B
255.192.0.00.63.255.255/104,194,30264 класса B
255.224.0.00.31.255.255/112,097,15032 класса B
255.240.0.00.15.255.255/121,048,57416 классов B
255.248.0.00.7.255.255/13524,2868 классов B
255.252.0.00.3.255.255/14262,1424 класса B
255.254.0.00.1.255.255/15131,0702 класса B
255.255.0.00.0.255.255/1665,5341 класс B
255.255.128.00.0.127.255/1732,766128 классов C
255.255.192.00.0.63.255/1816,38264 класса C
255.255.224.00.0.31.255/198,19032 класса C
255.255.240.00.0.15.255/204,09416 классов C
255.255.248.00.0.7.255/212,0468 классов C
255.255.252.00.0.3.255/221,0224 класса C
255.255.254.00.0.1.255/235102 классов C
255.255.255.00.0.0.255/242541 класс C
255.255.255.1280.0.0.127/25126128 хостов
255.255.255.1920.0.0.63/266264 хоста
255.255.255.2240.0.0.31/273032 хоста
255.255.255.2400.0.0.15/281416 хостов
255.255.255.2480.0.0.7/2968 хостов
255.255.255.2520.0.0.3/3024 хоста
255.255.255.2540.0.0.1/3102 хоста
255.255.255.2550.0.0.0/3211 хост

IP-адреса используются для идентификации устройств в сети. Для взаимодействия c другими устройствами по сети IP-адрес должен быть назначен каждому сетевому устройству — компьютерам, серверам, маршрутизаторам, принтерам и т.д. С помощью маски подсети определяется максимально возможное число хостов в конкретной сети.

Числовой показатель, который определяет размер сети, построенной на базе TCP/IP. Имеет двоичное представление, например, 11111111 11111111 11111111 00000000 (единицы всегда слева, нули — справа). Однако, для удобства, записывается в десятичном виде как xxx.xxx.xxx.xxx. Пример маски для стандартной домашней сети — 255.255.255.0 (сеть IPv4).

Чтобы рассчитать, какое количество IP-адресов может войти в сеть с определенной маской, можно воспользоваться таблицей. Маска для минимальной сети равна 255.255.255.252 — она ограничивает подсеть 4-я IP-адресами или 2-я рабочими (для узлов)

Также расчет можно выполнять вручную. Для этого адрес и маску нужно представить в десятичном виде и записать друг под другом, например:

11000000.10101000.01 111010.00010111 (192.168.122.23)
11111111.11111111.11 000000.00000000 (255.255.192.0)
11000000.10101000.01 000000.00000000 (192.168.64.0)

У каждого хоста в сети Интернет должен быть уникальный адрес. Если сеть изолирована от Интернета (например, связывают два филиала компании), для хостов можно использовать любые IP-адреса. Однако, уполномоченной организацией по распределению нумерации в сети Интернет (IANA) специально для частных сетей зарезервированы следующие три блока IP-адресов:

Разделение IP адреса на сетевую и узловую части

Логический 32-битный IP-адрес представляет собой иерархическую систему и состоит из двух частей. Первая идентифицирует сеть, вторая — узел в сети. Обе части являются обязательными.

Например, если IP-адрес узла – 192.168.18.57, то первые три октета (192.168.18) представляют собой сетевую часть адреса, а последний октет (.57) является идентификатором узла. Такая система называется иерархической адресацией, поскольку сетевая часть идентифицирует сеть, в которой находятся все уникальные адреса узлов. Маршрутизаторам нужно знать только путь к каждой сети, а не расположение отдельных узлов.

Другой пример иерархической сети – это телефонная сеть. В телефонном номере код страны, региона и станции составляют адрес сети, а оставшиеся цифры — локальный номер телефона.

При IP-адресации в одной физической сети могут существовать несколько логических сетей, если сетевая часть адреса их узла отличается. Пример. Три узла в одной физической локальной сети имеют одинаковую сетевую часть в своем IP-адресе (192.168.50), а три других узла — другую сетевую часть (192.168.70). Три узла с одной сетевой частью в своих IP-адресах имеют возможность обмениваться данными друг с другом, но не могут обмениваться информацией с другими узлами без использования маршрутизации. В данном случае имеем одну физическую сеть и две логические IP-сети.

Почему подсеть так важна

Одной из наиболее важных причин является безопасность. Когда вы находитесь в той же подсети, что и другие устройства, существует свободная связь, но устройства в других подсетях не смогут получить прямой доступ к вам.

Хорошим примером этого является домашняя сеть. У вас есть маршрутизатор, который будет использовать подсеть для безопасности. Ваш провайдер выделит вам публичный статический IP-адрес. Этот номер будут видеть все веб-сайты и всё, к чему вы подключаетесь. Однако, если вы проверите идентификатор вашего компьютера, он, скорее всего, будет отличаться от общедоступного.

Это связано с тем, что на домашней стороне маршрутизатора имеется подсеть, на которую нельзя войти извне. Входящий трафик проходит через маршрутизатор, который затем транслирует и направляет его на правильное устройство. Таким образом, все по-прежнему связано, но не подключено напрямую.

Подсеть увеличит количество устройств, которые могут выходить в Интернет. В стандартной сети IPv4 доступно только около трех миллиардов адресов. Этого недостаточно, чтобы удовлетворить глобальный спрос на подключение.

Таким образом, подсеть используется, чтобы позволить множеству устройств подключаться к Интернету с одним IP-адресом через маршрутизатор (как у вас дома или в офисе), и таким образом намного больше трех миллиардов устройств может иметь доступ к интернету.

Типичная маска подсети для домашних сетей – 255.255.255.0. Это 24-битная маска, которая позволяет использовать до 256 уникальных номеров. Однако возможны «только» 254 хоста, которых должно быть достаточно для большинства квартир. Но в больших масштабах этого очень мало. Хорошо, что 255.255.255.0 можно изменить на что-то другое. Это увеличит сеть и пропускную способность хостов. Например, 255.255.0.0, который является 16-битной маской, может иметь 65 536 хостов.

В чем разница между IP-адресом и маской

Это кажется немного запутанным. Как узнать разницу между маской подсети и IP? Давайте использовать пример, чтобы устранить путаницу.

Лучший способ сделать это – подумать об обычном адресе, таком как домашний или физический адрес вашей компании. Итак, допустим, что один из ваших друзей хочет отправить вам письмо. Он пишет ваш адрес на конверте, затем добавляет штамп и помещает в свой почтовый ящик.

Почтовый работник получает письмо и, если адрес получателя является локальным, отправляет его прямо в ваш почтовый ящик. Если адрес находится в другом городе или поселке, письмо отправляется в центральное почтовое отделение, где работники его сортируют и отправляют туда, куда оно должно дойти. IP-адрес работает аналогичным образом.

Итак, если ваш IP – 20.0.0.1, а маска подсети – 255.0.0.0, это означает, что адреса в диапазоне 20.x.x.x находятся в вашей локальной сети. Однако, если вы хотите отправить что-либо на IP-адрес за пределами вашей подсети, например, 30.0.0.1, вы не можете сделать это напрямую (по аналогии с почтой это будет в другом городе).

В этом случае почта отправляет сообщение в местный центральный офис, а затем в местный центральный офис предполагаемого получателя. И только после этого почтовый работник доставляет его.

Таким образом, IP-адрес – это номер, который имеет номер сети, номер подсети (это необязательно) и номер хоста. Номера сети и подсети используются при маршрутизации, а номер хоста является адресом хоста.

Маска подсети численно определяет формат IP-адреса, где биты сети и подсети, которые формируют адрес, имеют значения битов маски 1, а компонент узла адреса использует значение бита маски 0.

Сравнение протоколов IP версии 4 (IPv4) и IP версии 6 (IPv6)

Когда в 1980 году был утвержден стандарт TCP/IP, он основывался на схеме двухуровневой адресации, которая в то время давала необходимую масштабируемость. К сожалению, создатели TCP/IP не могли предположить, что их протокол станет основой для глобальной сети обмена информацией, сети развлечений и коммерции. Более двадцати лет назад в протоколе IP версии 4 (IPv4) была предложена стратегия адресации, которая, будучи вполне подходящей для того времени, привела к неэффективному распределению адресов.

Адреса классов А и В покрывают 75% всего адресного пространства IPv4, но относительное число организаций, которые могли бы использовать сети этих классов, не превышает 17000. Сетей класса С значительно больше, чем сетей классов А и В, но количество доступных IP-адресов ограничивается всего 12,5% от их общего числа, равного 4 млрд.

К сожалению, в сетях класса С не может быть более 254 узлов, что не соответствует потребностям достаточно крупных организаций, но которые вместе с тем не настолько велики, чтобы получить адреса классов А и В. Даже если бы существовало больше адресов сетей классов А, В и С, слишком большое их число привело бы к тому, что маршрутизаторы сети Internet были бы вынуждены обрабатывать огромное количество таблиц маршрутизации, хранящих маршруты ко всем сетям.

За последние два десятилетия был разработан ряд технологий, расширяющих IPv4 и направленных для модернизации существующей 32-битовой схемы адресации. Две наиболее значительные из них — это маски подсетей и маршрутизация CIDR (Classless InterDomain Routing — бесклассовая междоменная маршрутизация).

Приблизительно в то же время была разработана и одобрена еще более расширяемая и масштабируемая версия технологии IP — IP версии 6 (IPv6). Протокол IPv6 использует для адресации 128 битов вместо 32-х битов в IPv4 (см. рис. ниже). В стандарте IPv6 используется шестнадцатеричная запись числа для представления 128-битовых адресов, и он позволяет использовать 16 млрд. IP-адресов. Эта версия протокола IP должна обеспечить необходимое количество адресов как на текущий момент, так и в будущем.

Для представления 128-битового адреса в протоколе IPv6 используется запись из восьми шестнадцатибитовых чисел, представляемых в виде четырех шестнадцатеричных цифр, как это показано на рис. ниже. Группы из четырех шестнадцатеричных цифр разделены двоеточиями, нули в старших позициях могут быть опущены.

Разработка и планирование технологии заняли годы, прежде чем протокол IPv6 постепенно начал использоваться в отдельных сетях. В перспективе стандарт IPv6 должен заменить IPv4 в качестве доминирующего протокола в сети Internet.

О цене ошибок

А что может произойти, если вы допустите ошибку? Исходя из того, что мы теперь уже знаем о том, что такое маска подсети, можно с уверенностью утверждать: если она будет задана неверно, существует большая вероятность того, что ваш компьютер будет отрезан от внешнего мира. Например, если вписать в качестве маски 0.0.0.0, то операционная система будет считать любой IP-адрес локальным и не будет даже пытаться использовать шлюз, что приведет к потере возможности связываться с компьютерами вне вашей локальной сети.

Если же совершите другую ошибку, указав слишком «тесную» маску подсети, то ваш компьютер может начать испытывать проблемы уже с подключением к «соседям» по локальной сети – даже если вы будете обращаться к локальному IP, маска подсети будет указывать на то, что доступ к нему возможен только через шлюз, а это может привести либо к повышенной нагрузке на сеть, либо к абсолютной недоступности компьютеров в «локалке».

Источник

Основы компьютерных сетей. Тема №5. Понятие IP адресации, масок подсетей и их расчет

какое количество ip адресов узлов доступно в сети с маской 26

Приветствую вас на очередном выпуске. И сегодня речь пойдет о том, какие бывают IP-адреса, и как ими пользоваться. Что такое маска подсети, как она считается, и для чего она нужна. Как делить сети на подсети и суммировать их. Заинтересовавшихся приглашаю к прочтению.

P.S. Возможно, со временем список дополнится.

Начнем, или уже продолжим, с самого популярного, заезженного и больного. Это IP-адреса. На протяжении 4-х статей это понятие встречалось по несколько раз, и скорее всего вы уже либо сами поняли для чего они, либо нагуглили и почитали о них. Но я обязан вам это рассказать, так как без ясного понимания двигаться дальше будет тяжело.

Итак IP-адрес — это адрес, используемый узлом на сетевом уровне. Он имеет иерархическую структуру. Что это значит? Это значит, что каждая цифра в его написании несет определенный смысл. Объясню на очень хорошем примере. Примером будет номер обычного телефона — +74951234567. Первой цифрой идет +7. Это говорит о том, что номер принадлежит зоне РФ. Далее следует 495. Это код Москвы. И последние 7 цифр я взял случайными. Эти цифры закреплены за районной зоной. Как видите здесь наблюдается четкая иерархия. То есть по номеру можно понять какой стране, зоне он принадлежит. IP адреса придерживаются аналогично строгой иерархии. Контролирует их организация IANA(англ. Internet Assigned Numbers Authority). Если на русском, то это «Администрация адресного пространства Интернет». Заметьте, что слово «Интернет» с большой буквы. Мало кто придает этому значение, поэтому объясню разницу. В англоязычной литературе термин «internet» используется для описания нескольких подключённых друг к другу сетей. А термин «Internet» для описания глобальной сети. Так что примите это к сведению.

Несмотря на то, что тема статьи больше теоретическая, нежели практическая, я настоятельно рекомендую отнестись к ней со всей серьезностью, так как от нее зависит понимание дальнейших тем, а особенно маршрутизации. Не для кого, я думаю, не секрет, что мы привыкли воспринимать числовую информацию в десятичном формате (в числах от 0-9). Однако все современные компьютеры воспринимают информацию в двоичном (0 и 1). Не важно при помощи тока или света передается информация. Вся она будет воспринята устройством как есть сигнал (1) или нет (0). Всего 2 значения. Поэтому был придуман алгоритм перевода из двоичной системы в десятичную, и обратно. Начну с простого и расскажу, как выглядят IP адреса в десятичном формате. Вся эта статья посвящена IP адресам версии 4. О версии 6 будет отдельная статья. В предыдущих статьях, лабах, да и вообще в жизни, вы видели что-то вроде этого «193.233.44.12». Это и есть IP адрес в десятичной записи. Состоит он из 4-х чисел, называемых октетами и разделенных между собой точками. Каждое такое число (октет) может принимать значение от 0 до 255. То есть одно из 256 значений. Длина каждого октета равна 8 битам, а суммарная длина IPv4 = 32 битам. Теперь интересный вопрос. Каким образом этот адрес воспримет компьютер, и как будет с ним работать?

Можно конечно набить это в калькулятор, коих навалом в Интернете, и он переведет его в двоичный формат, но я считаю, что переводить вручную должен уметь каждый. Особенно это касается тех, кто планирует сдавать экзамен. У вас не будет под рукой ничего, кроме бумаги и маркера, и полагаться придется только на свои навыки. Поэтому показываю, как это делать вручную. Строится таблица.

Вместо «x» записывается либо 1, либо 0. Таблица разделена на 8 колонок, каждая из которых несет в себе 1 бит (8 колонок = 8 бит = 1 октет). Расположены они по старшинству слева направо. То есть первый (левый) бит — самый старший и имеет номер 128, а последний (правый) — самый младший и имеет номер 1. Теперь объясню, откуда эти числа взялись. Так как система двоичная, и длина октета равна 8-ми битам, то каждое число получается возведением числа 2 в степень от 0 до 7. И каждая из полученных цифр записывается в таблицу от большего к меньшему. То есть слева направо. От 2 в 7-ой степени до 2 в 0-ой степени. Приведу таблицу степеней 2-ки.

какое количество ip адресов узлов доступно в сети с маской 26

Думаю теперь понятно, каким образом строится таблица. Давайте теперь разберем адрес «193.233.44.12» и посмотрим, как он выглядит в двоичном формате. Разберем каждый октет отдельно. Возьмем число 193 и посмотрим, из каких табличных комбинаций оно получается. 128 + 64 + 1 = 193.

Те числа, которые участвовали в формировании комбинации получают 1, а все остальные получают 0.

Берем первый октет 233. 128 + 64 + 32 + 8 + 1.

Получаю 128 + 64 + 16 + 4 + 1 = 213.

Вычисляю второй блок.

Считаю 128 + 32 + 16 + 4 = 180.

И напоследок четвертый.

Собираем результаты вычислений и получаем адрес 213.180.193.3. Ничего тяжелого, чистая арифметика. Если тяжело и прям невыносимо трудно, то попрактикуйтесь. Сначала может показаться страшным, так как многие закончили учебу лет 10 назад и многое позабыли. Но уверяю, что как только набьете руку, считать будет гораздо легче. Ну а для закрепления дам вам несколько примеров для самостоятельного расчета (под спойлером будут ответы, но открывайте их только когда прорешаете сами).

1) 10.124.56.220
2) 113.72.101.11
3) 173.143.32.194
4) 200.69.139.217
5) 88.212.236.76
6) 01011101.10111011.01001000.00110000
7) 01001000.10100011.00000100.10100001
8) 00001111.11011001.11101000.11110101
9) 01000101.00010100.00111011.01010000
10) 00101011.11110011.10000010.00111101

Теперь IP-адреса не должны быть чем-то страшным, и можно углубиться в их изучение.
Выше мы говорили о структуре телефонных номеров и их иерархии. И вот на заре рождения Интернета в том представлении, в каком мы его привыкли видеть, возник вопрос. Вопрос заключался в том, что IP-адреса нужно как-то сгруппировать и контролировать выдачу. Решением было разделить все пространство IP-адресов на классы. Это решение получило название классовая адресация (от англ. Classful). Она уже давно устарела, но практически в любой книге на нее отводятся целые главы и разделы. Cisco тоже не забывает про это и в своих учебных материалах рассказывает про нее. Поэтому я пробегусь по этой теме и покажу, чем она блистала с 1981 по 1995 год.

какое количество ip адресов узлов доступно в сети с маской 26

Пространство было поделено на 5 классов. Каждому классу был назначен блок адресов.

Начнем с класса A. Если внимательно посмотреть на таблицу, то можно заметить, что этому блоку дан самый большой блок адресов, а если быть точным, то половина всего адресного пространства. Предназначался данный класс для крупных сетей. Структура этого класса выглядит следующим образом.

какое количество ip адресов узлов доступно в сети с маской 26

В чем суть. Первый октет, то есть 8 бит, остаются за адресом сети, а 3 последних октета (то есть оставшиеся 24 бита) назначаются хостам. Вот для того, чтобы показать, какой кусок относится к сети, а какой к хостам, используется маска. По структуре записи она аналогична записи IP-адреса. Отличие маски от IP-адресов в том, что 0 и 1 не могут чередоваться. Сначала идут 1, а потом 0. Таким образом, там где есть единица, значит это участок сети. Чуть ниже, после разбора классов, я покажу, как с ней работать. Сейчас главное знать, что маска класса A — 255.0.0.0. В таблице еще упомянут какой-то первый бит и для класса A он равен 0. Этот бит как раз нужен для того, чтобы сетевое устройство понимало, к какому классу оно принадлежит. Он же еще задает начальный и конечный диапазон адресов. Если в двоичном виде записать на всех октетах единицы, кроме первого бита в первом октете (там всегда 0), то получится 127.255.255.255, что является границей класса A. Например, возьмем адрес 44.58.63.132. Мы знаем, что у класса A первый октет отдается под адрес сети. То есть «44» — это адрес сети, а «58.63.132» — это адрес хоста.

Поговорим про класс B

какое количество ip адресов узлов доступно в сети с маской 26

Этому классу был дан блок поменьше. И адреса из этого блока предназначались для сетей средних масштабов. 2 октета отданы под адрес сети, и 2 — под адрес хостов. Маска у B класса — 255.255.0.0. Первые биты строго 10. А остальные меняются. Перейдем к примеру: 172.16.105.32. Два первых октета под адрес сети — «172.16». А 3-ий и 4-ый под адрес хоста — «105.32».

какое количество ip адресов узлов доступно в сети с маской 26

Этот класс обделили адресами и дали ему самый маленький блок. Он был предназначен для мелких сетей. Зато этот класс отдавал целых 3 октета под адрес сети и только 1 октет — под хосты. Маска у него — 255.255.255.0. Первые биты 110. На примере это выглядит так — 192.168.1.5. Адрес сети «192.168.1», а адрес хоста «5».

Классы D и E. Я неcпроста объединил их в один. Адреса из этих блоков зарезервированы и не могут назначаться сетям и хостам. Класс D предназначен для многоадресной рассылки. Аналогию можно привести с телевидением. Телеканал вещает группе лиц свой эфир. И те, кто подключены, могут смотреть телепередачи. То есть в распоряжение администраторов могут попасть только 3 первых класса.

Напомню, что первые биты у класса D — это 1110. Пример адреса — 224.0.0.5.

А первые биты у класса E — это 1111. Поэтому, если вдруг увидите адрес вида 240.0.0.1, смело говорите, что это адрес E класса.

Про классы обмолвились. Теперь озвучу вопрос, который мне недавно задали. Так зачем тогда маски? У нас итак хосты понимают в каком они классе. Но суть вот в чем. Например, у вас есть маленький офис, и вам нужен блок IP-адресов. Никто не будет вам выдавать все адреса класса C. А дадут только его кусок. Например 192.168.1.0 с маской 255.255.255.0. Так вот эта маска и будет определять вашу границу. Мы уже говорили, что октет варьируется в значении от 0 до 255. Вот этот 4 октет полностью в вашем распоряжении. За исключением первого адреса и последнего, то есть 0 и 255 в данном случае. Первый адрес — это адрес сети (в данном случае 192.168.1.0), а последний адрес — широковещательный адрес (192.168.1.255). Напомню, что широковещательный адрес используется в том случае, когда надо передать информацию всем узлам в сети. Поэтому есть правило. Если вам надо узнать номер сети, то все биты относящиеся к хосту обращаете в 0, а если широковещательный, то все биты — в 1. Поэтому, если из 256 адресов забирается 2 адреса, то на назначение хостам остается 254 адреса (256 — 2). На собеседованиях и экзаменах часто любят спрашивать: «Количество IP-адресов в сети?» и «Сколько доступных IP-адресов в сети для назначения хостам?». Два разных вопроса, которые могут поставить в тупик. Ответом на первый будет — все адреса, включая адрес сети и широковещательный адрес, а на второй вопрос — все адреса, кроме адреса сети и широковещательного адреса.

Теперь углубимся в изучении маски.

какое количество ip адресов узлов доступно в сети с маской 26

Я записал адрес класса C 192.168.1.1 с маской 255.255.255.0 в десятичном и двоичном формате. Обратите внимание на то, как выглядит IP-адрес и маска в двоичном формате. Если в IP-адресе 0 и 1 чередуются, то в маске сначала идут 1, а потом 0. Эти биты фиксируют адрес сети и задают размер. По таблице выше можно сделать вывод, что в двоичном виде маска представлена последовательностью 24 единиц подряд. Это говорит о том, что целых 3 октета выделено под сеть, а 4 октет свободен под адресацию для хостов. Здесь ничего необычного. Это стандартная маска класса C.

Но вот в чем загвоздка. Например, в вашем офисе 100 компьютеров, и расширяться вы не планируете. Зачем плодить сеть из 250+ адресов, которые вам не нужны?! На помощь приходит разделение на подсети. Это очень удобная вещь. Объясню принцип на примере того же класса C. Как бы вы не хотели, но трогать 3 октета нельзя. Они фиксированы. Но вот 4 октет свободен под хосты, поэтому его можно трогать. Заимствуя биты из хостового куска, вы дробите сеть на n-ое количество подсетей и, соответственно, уменьшаете в ней количество адресов для хостов.

Попробуем это воплотить в реальность. Меняю маску. Заимствую первый бит из хостовой части(то есть 1-ый бит 4-ого октета выставляю в единицу). Получается следующая маска.

какое количество ip адресов узлов доступно в сети с маской 26

Данная маска делит сеть на 2 части. Если до дробления у сети было 256 адресов(от 0 до 255), то после дробления у каждого куска будет по 128 адресов(от 0 до 127 и от 128 до 255).
Теперь посмотрю, что изменится в целом с адресами.

какое количество ip адресов узлов доступно в сети с маской 26

Красным цветом я показал те биты, которые зафиксированы и не могут изменяться. То есть маска ей задает границу. Соответственно биты помеченные черным цветом определены для адресации хостов. Теперь вычислю эту границу. Чтобы определить начало, надо все свободные биты(помеченные черным цветом) обратить в ноль, а для определения конца обратить в единицы. Приступаю.

какое количество ip адресов узлов доступно в сети с маской 26

То есть в четвертом октете меняются все биты, кроме первого. Он жестко фиксирован в рамках этой сети.

Теперь посмотрим на вторую половину сети и вычислим ее адреса. Деление у нас производилось заимствованием первого бита в 4-ом октете, значит он является делителем. Первая половина сети получалась, когда этот бит принимал значение 0, а значит вторая сеть образуется, когда этот бит примет значение 1. Обращаю этот бит в 1 и посмотрю на границы.

какое количество ip адресов узлов доступно в сети с маской 26

Приведу в десятичный вид.

какое количество ip адресов узлов доступно в сети с маской 26

Если вы рассчитали количество бит, отдаваемые под хосты, то количество доступных IP-адресов можно вычислить по формулекакое количество ip адресов узлов доступно в сети с маской 26

В книге У. Одома по подготовке к CCNA R&S приведена хорошая формула для расчета битов, отдаваемых на подсеть и хосты:

N + S + H = 32, где N — кол-во битов сети (класс A — 8 бит, B — 16 бит, C — 24 бита), S — кол-во заимствованных битов на подсеть (это то, что мы делали выше, когда заимствовали 1 бит из хостовой части), H — кол-во бит отводимых хостам.

Внесу ясность и объясню, как и где применять эти формулы.

Нам выдали сеть 172.16.0.0 и попросили создать 120 подсетей со 180 хостами и записать маску. Приступим.

В качестве шпаргалки, и для быстроты вычисления, я ниже подготовил таблицу степеней двойки.

какое количество ip адресов узлов доступно в сети с маской 26

Двигаемся дальше. Первое главное условие, при использовании классовой адресации — это то, что должна использоваться одна маска для всех подсетей. То есть, если у вас для одной подсети маска 255.255.255.0, то для другой подсети она не может быть 255.255.255.128.

Теперь смотрим на выданную сеть. Путем логических размышлений понимаем, что это адрес класса B. А значит его N (кол-во битов сети) = 16. Ок. Значит на хосты выделено тоже 16 бит. Вспоминаем условия задачи. Нужно создать 120 подсетей. «Откусывать» биты от сетевой части запрещено, значит кусаем от хостовой части.

Теперь нужно взять такое кол-во бит, чтобы хватило для 120 подсетей, однако оставляло достаточное кол-во под биты для хоста. Смотрим на таблицу выше. Если взять 7 бит, то получим 128. 128>120, следовательно попадаем под условие. Если возьмем 6 бит, то получим 64. 64 H = 32 — (N + S) => H = 32 — (16 + 7) = 9. Смотрим на таблицу выше (или возводим 2 в 9 степень в уме) и получаем число 512. Отнимаем 2 (адрес сети и широковещательный адрес) и получаем 510 адресов. Нам нужно 180, а значит под условие мы попадаем причем с большим запасом. В таких случаях вам предоставляется право выбора. Сделать больше подсетей или хостов на подсеть. Объясняю, что это значит. У нас есть 9 бит на хосты. Если мы возьмем 8 бит, то получим число 256. 256 — 2 = 254 адреса. Этот вариант нам тоже подходит. Возьмем 7 бит. Получаем 128. Даже не отнимая 2 адреса, становится понятно, что это меньше 180 => данный вариант отбрасывается сразу. Итого получаем, что минимальное количество для подсети — 7 бит, а для хостов — 8 бит. Поэтому свободный бит можно отдать либо на подсеть, либо на хосты. Маска получается сложением N и S. В нашем случае получаем, если под подсеть отдаем 7 бит, то получаем 23. В десятичном виде маска будет выглядеть 255.255.254.0. А если отдадим под подсеть 8 бит, то получим 24 (или в десятичном виде 255.255.255.0). Иногда бывает, что под задачу существует всего одна маска. Ну и, конечно, могут быть случаи, когда маска не попадает не под какие условия. В этих случаях нужно брать сеть другого класса или доказывать заказчику, что это невозможно.

Думаю теперь понятно, как работала классовая адресация, и как ее рассчитывали. Возможно с первого раза голова не переварит этого, поэтому перечитывайте еще раз и повнимательнее. Как только начнет что-то проясняться, потренируйтесь на задачках, которые я оставлю.

1) Записать маску для проекта: сеть 172.16.0.0. 250 подсетей и 220 хостов.
2) Записать маску для проекта: сеть 10.0.0.0. 2000 подсетей и 1500 хостов.
3) Записать маску для проекта: сеть 192.168.0.0. 4 подсети и 60 хостов.

На этом разговор про классовые сети начну закруглять и подведу итоги. Классовая адресация — это зарождение сегодняшнего интернета, и именно с нее все началось. Поэтому плюсов у нее много, и за это создателям спасибо. Но, как вы могли заметить, у нее было жесткая привязка к одной маске. За счет этого IP-адреса использовались не экономно и расточительно. А в связи с бурным ростом Интернета адресов стало не хватать, и срочно нужно было вносить изменения.

Поняли ведущие умы, что использовать классовые сети не удобно и нужно от них отказываться. Это привело к созданию бесклассовой адресации и маскам переменной длины, о чем мы ниже поговорим. Но перед этим пару слов о видах IP-адресов. Несмотря на то, что переход от классовой адресации к бесклассовой предполагал экономию IP-адресов, на деле эта проблема все равно решалась не полностью. Все упиралось в саму технологию IPv4. Объясню почему. Выше я говорил, что длина IP адреса равна 32 бита. Каждый бит может принимать значение 0 или 1, то есть два значения. Соответственно, чтобы вычислить все комбинации, надо возвести 2 в 32-ую степень. Получаем 4294967296 адресов. Если вычесть отсюда зарезервированные для специальных нужд и прочего, то останется примерно 4.2 млрд. адресов, когда на Земле проживает около 7.3 млрд. человек. Поэтому ведущие умы быстро просекли эту фишку и начали искать решение. Они решили выделить некое адресное пространство, которое будет использоваться только в пределах локальной сети и не будет использоваться в Интернете. Это разделило адреса на 2 лагеря: белые или публичные (англ. public) и серые или частные (англ. private).

Привожу диапазон адресов, которые выделены под локальные сети:

1) 10.0.0.0 — 10.255.255.255 с маской 255.0.0.0 (или кратко 10/8).
2) 172.16.0.0 — 172.31.255.255 с маской 255.240.0.0 (или кратко 172.16/12).
3) 192.168.0.0 — 192.168.255.255 (или кратко 192.168/16).

Если честно, я мало где видел применение адресации 172.16.X.X. Обычно в корпоративной среде всегда используется 10.X.X.X, а в домах/квартирах и мелких офисах 192.168.X.X.

Теперь прошу обратить внимание на очень важную вещь, которую многие путают. Не путайте классовую адресацию и диапазон частных адресов. Очень много людей наступают на эти грабли и свято верят, что диапазон частных адресов 10.0.0.0 — 10.255.255.255 — это диапазон A класса.
Разобрались, что такое частные адреса или private адреса. Но это еще не все. Есть еще список зарезервированных адресов, которые не могут светиться в Интернете. По ним написана целая документация на IETF. Привожу ссылку, где можете прочитать оригинал. Я кратко опишу часто встречающиеся.

1) 0.0.0.0/8 — диапазон адресов, используемый хостами для самоидентификации. Обычно это можно увидеть, когда хост пытается получить IP-адрес от DHCP сервера. Так как изначально у него нету IP-адреса, то в поле источника он вставляет адрес из данного диапазона.

2) 127.0.0.0/8 — loopback или localhost адреса. Это IP-адреса, используемые компьютером, чтобы обратиться к самому себе. Очень полезно для проверки работы TCP/IP. Дело в том, что независимо от наличия соединения с Интернетом или локальной сетью, адреса из этого пула должны всегда пинговаться. Если этого не происходит, значит система накрылась или накрывается медным тазом.

3) 169.254.0.0/16 — link-local address или локальные адреса. Автоматически используются хостами при отсутствии DHCP-сервера или его недоступности. Это позволяет быстро организовать локальную сеть и проверить работу узлов. Однако данный пул адресов не маршрутизируется. Следовательно, выйти в Интернет с них не получится.

4) 224.0.0.0/4 — блок адресов, зарезервированный под многоадресную рассылку или multicast. Для тех, кто хочет побольше узнать про multicast, оставляю ссылку.

Бесклассовая адресация (англ. Classless Inter-Domain Routing или CIDR). Описана была в стандарте RFC1519 в 1993 году. Она отказалась от классовых рамок и фиксированной маски. Адреса делятся только на публичные и зарезервированные, о которых написано выше. Если в классовой адресации маска нарезалась единой для всех подсетей, то в бесклассовой — у каждой подсети может быть своя маска. На теории все хорошо и красиво, но нет ничего лучше, чем практика. Поэтому перехожу к ней и объясню, как можно делить на подсети с разным количеством хостов.

В качестве шпаргалки приведу список всех возможных масок.

какое количество ip адресов узлов доступно в сети с маской 26

Представим ситуацию. Вам выдали сеть 192.168.1.0/24 и поставили следующие условия:

1) Подсеть на 10 адресов для гостей.
2) Подсеть на 42 адреса для сотрудников.
3) Подсеть на 2 адреса для соединения 2 маршрутизаторов.
4) Подсеть на 26 адресов для филиала.

Ок. Данная маска показывает, что в нашем распоряжении находятся 256 адресов. По условию эту сеть надо каким-то образом разделить на 4 подсети. Давайте попробуем. 256 очень хорошо делится на 4, давая в ответе 64. Значит один большой блок в 256 адресов можно поделить на 4 равных блока по 64 адреса в каждом. И все было бы прекрасно, но это порождает большое число пустых адресов. Для сотрудников, которым нужно 42 адреса, ладно, может в дальнейшем компания еще наймет. Но вот подсеть для маршрутизаторов, которая требует всего 2 адреса, оставит 60 пустых адресов. Да, вы можете сказать, что это private адреса, и кому дело до них. А теперь представьте, что это публичные адреса, которые маршрутизируются в Интернете. Их и так мало, а тут мы еще будем их отбрасывать. Это не дело, тем более, когда мы можем гибко управлять адресным пространством. Поэтому возвращаемся к примеру и нарежем подсети так, как нам нужно.

Итак, какие подсети должны быть нарезаны, чтобы вместились все адреса, заданные по условию?!

1) Для 10 хостов, наименьшей подсетью будет блок из 16 адресов.
2) Для 42 хостов, наименьшей подсетью будет блок из 64 адресов.
3) Для 2 хостов, наименьшей подсетью будет блок из 4 адресов.
4) Для 26 хостов, наименьшей подсетью будет блок из 32 адресов.

Я понимаю, что не все могут с первого раза в это вникнуть, и в этом нет ничего страшного. Все люди разные и по-разному воспринимают информацию. Для полноты эффекта покажу деление на картинке.

Вот у нас блок, состоящий из 256 адресов.

какое количество ip адресов узлов доступно в сети с маской 26

После деления на 4 части получается следующая картинка.

какое количество ip адресов узлов доступно в сети с маской 26

Выше мы выяснили, что при таком раскладе адреса используются не рационально. Теперь обратите внимание, как стало выглядеть адресное пространство после нарезки подсетей разной длины.

какое количество ip адресов узлов доступно в сети с маской 26

Как видите, в свободном доступе осталось куча адресов, которые мы в дальнейшем сможем использовать. Можно посчитать точную цифру. 256 — (64 + 32 + 16 + 4) = 140 адресов.

Вот столько адресов мы сэкономили. Двигаемся дальше и ответим на следующие вопросы:

— Какими будут сетевые и широковещательные адреса?
— Какие адреса можно будет назначить хостам?
— Как буду выглядеть маски?

Механизм деления на подсети с разной маской получил название VLSM (от англ. Variable Length Subnet Mask) или маска подсети переменной длины. Дам важный совет! Начинайте адресацию с самой большой подсети. Иначе вы можете попасть на то, что адреса начнут перекрываться. Поэтому сначала планируйте сеть на бумаге. Нарисуйте ее, изобразите в виде фигур, просчитайте вручную или на калькуляторе и только потом переходите настройке в боевых условиях.

Итак, самая большая подсеть состоит из 64 адресов. С нее и начнем. Первый пул адресов будет следующий:

Адрес подсети — 192.168.1.0.
Широковещательный адрес — 192.168.1.63.
Пул адресов для назначения хостам от 192.168.1.1 до 192.168.1.62.
Теперь выбор маски. Тут все просто. Отнимаем от целой сети нужный кусок и полученное число записываем в октет маски. То есть 256 — 64 = 192 => маска 255.255.255.192 или /26.

Адрес подсети — 192.168.1.64.
Широковещательный адрес — 192.168.1.95.
Пул адресов для назначения хостам будет от 192.168.1.65 до 192.168.1.94.
Маска: 256 — 32 = 224 => 255.255.255.224 или /27.

Адрес подсети — 192.168.1.96.
Широковещательный адрес — 192.168.1.111.
Пул адресов для назначения хостам будет от 192.168.1.97 до 192.168.1.110.
Маска: 256 — 16 = 240 => 255.255.255.240 или /28.

Адрес подсети — 192.168.1.112.
Широковещательный адрес — 192.168.1.115.
Разрешенными адресами будут 192.168.1.113 и 192.168.1.114.
Маска: 256 — 4 = 252 => 255.255.255.252 или /30.

Вот таким образом, при помощи VLSM или масок переменной длины, мы экономно создали 4 подсети с нужным количеством адресов в каждой. Думаю это стоит закрепить задачкой для самостоятельного решения.

Разделите сеть 192.168.1.0/24 на 3 разные подсети. Найдите и запишите в каждой подсети ее адреса, широковещательный адрес, пул разрешенных к выдаче адресов и маску. Указываю требуемые размеры подсетей:

1) Подсеть на 120 адресов.
2) Подсеть на 12 адресов.
3) Подсеть на 5 адресов.

1) Адрес подсети — 192.168.1.0.
Широковещательный адрес — 192.168.1.127.
Пул адресов для назначения хостам будет от 192.168.1.1 до 192.168.1.126.
Маска: 256 — 128 = 128 => 255.255.255.128 или /25.

2) Адрес подсети — 192.168.1.128.
Широковещательный адрес — 192.168.1.143.
Пул адресов для назначения хостам будет от 192.168.1.129 до 192.168.1.142.
Маска: 256 — 16 = 240 => 255.255.255.240 или /28.

3) Адрес подсети — 192.168.1.144.
Широковещательный адрес — 192.168.1.151.
Пул адресов для назначения хостам будет от 192.168.1.145 до 192.168.1.150.
Маска: 256 — 8 = 248 => 255.255.255.248 или /29.

Теперь, когда вы знаете, как делить сети на подсети, самое время научиться собирать подсети в одну общую подсеть. Иначе это называется суммированием или summarization. Суммирование чаще всего используется в маршрутизации. Когда у вас в таблице маршрутизатора несколько соседних подсетей, маршрутизация которых проходит через один и тот же интерфейс или адрес. Скорее всего этот процесс лучше объяснять при разборе маршрутизации, но учитывая то, что тема маршрутизации и так большая, то я объясню процесс суммирования в этой статье. Тем более, что суммирование это сплошная математика, а в этой статье мы ею и занимаемся. Ну что же, приступлю.

Представим, что у меня компания состоящая из главного здания и корпусов. Я работаю в главном здании, а в корпусах коллеги. Хоть у меня и главное здание, но в нем всего 4 подсети:

— 192.168.0.0/24
— 192.168.1.0/24
— 192.168.2.0/24
— 192.168.3.0/24

Тут коллеги с соседнего здания очухались и поняли, что у них слетела конфигурация на маршрутизаторе, а бекапов нет. Наизусть они не помнят, какие в главном здании подсети, но помнят, что они находятся рядом друг с другом, и просят прислать одну суммированную. Теперь у меня возникает задача, как их суммировать. Для начала я переведу все подсети в двоичный вид.

какое количество ip адресов узлов доступно в сети с маской 26

Посмотрите внимательно на таблицу. Как видите, у 4 подсетей первые 22 бита одинаковые. Соответственно, если я возьму 192.168.0.0 с маской /22 или 255.255.252.0, то покрою свои 4 подсети. Но обратите внимание на 5 подсеть, которую я специально ввел. Это подсеть 192.168.4.0. 22-ой бит у нее отличается от предыдущих 4-х, а значит выше выбранное не покроет эту подсеть.
Ок. Теперь я отправлю коллегам суммированную подсеть, и, если они все правильно пропишут, то маршрутизация до моих подсетей будет работать без проблем.

Возьмем тот же пример и немного изменим условия. Нас попросили прислать суммарный маршрут для подсетей 192.168.0.0 и 192.168.1.0. Я не поленюсь и создам еще одну таблицу.

какое количество ip адресов узлов доступно в сети с маской 26

Обратите внимание, что у 2 первых подсетей одинаковые не 22 бита, а 23 бита. Это значит, что их можно просуммировать еще компактнее. В принципе работать будет и так, и так. Но как говорилось в одной рекламе: «Если нет разницы — зачем платить больше?». Поэтому старайтесь суммировать, не задевая при этом соседние подсети.

Таким образом, переводя подсети в двоичный формат и находя одинаковые биты, можно их суммировать.

Вообще суммирование полезно применять, когда надо объединить несколько подсетей, расположенных вблизи друг с другом. Это позволит сэкономить ресурсы маршрутизаторов. Однако это не всегда возможно. Просуммировать, например, подсеть 192.168.1.0 и 192.168.15.0, не захватив при этом соседние подсети, невозможно. Поэтому перед суммированием стоит подумать над ее целесообразностью. Поэтому повторюсь еще раз, что начинать какую-либо революцию надо на бумажке. Ну и для закрепления материала оставлю небольшую задачу.

1) 10.3.128.0
2) 10.3.129.0
3) 10.3.130.0
4) 10.3.131.0

Просуммируйте подсети и найдите маску, которая сможет покрыть их, не задевая при этом соседние подсети.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *