какое давление в камере сгорания бензинового двигателя
Компрессия в цилиндрах двигателя – норма и алгоритм измерения
Первые признаки износа мотора – затрудненный запуск «на холодную» и увеличенный расход масла (свыше 150 мл на 1 тыс. км пробега). При появлении подобных симптомов выполняется проверка компрессии в цилиндрах двигателя, помогающая точнее определить техническое состояние цилиндропоршневой и клапанной группы. Чтобы провести такую диагностику, необязательно ехать в автосервис: достаточно обзавестись специальным манометром и понимать, какой должна быть компрессия в исправном силовом агрегате.
Что понимают под компрессией?
Одна из основных характеристик двигателя, приведенная в инструкции по эксплуатации автомобиля, – степень сжатия. Это безразмерный коэффициент, показывающий, во сколько раз сжимается топливовоздушная смесь перед воспламенением. Рассчитывается так: объем одного цилиндра (с учетом камеры сгорания) делится на величину хода поршня. Данный параметр является постоянным и меняется только при глубоком тюнинге мотора – расточке цилиндров, установке другого коленвала и так далее.
Степень сжатия несведущие автолюбители путают с компрессией – реальным давлением, создаваемым поршнями при вращении коленчатого вала стартером (200–300 об/мин). Характеристика меняется по мере износа деталей и измеряется в таких единицах:
Чтобы выявить неисправность главных элементов двигателя, нужно померить компрессию во всех цилиндрах и сопоставить полученные значения с оптимальной величиной. Почему в процессе эксплуатации мотора компрессия снижается:
Указанные процессы аналогично протекают во время работы мотора: топливо не догорает, газы проникают в картер, а масло – в камеру сжигания. То есть, величина компрессии отражает реальную картину внутри двигателя.
Оптимальное давление в цилиндрах
Чтобы определить момент критической изношенности цилиндропоршневой группы, нужно знать, какая норма компрессии считается удовлетворительной. Здесь прослеживается взаимосвязь со степенью сжатия – чем она выше, тем большее давление возникает в камерах сгорания при вращении коленчатого вала.
На данный момент встречается 3 разновидности моторов с различными параметрами:
Камера сгорания дизельного мотора отличается малыми размерами, поэтому воспламенение солярки происходит от сильного сжатия.
Оптимальные значения давления в цилиндрах различных силовых агрегатов получены на основании многократных практических замеров. Когда мотор нагрет до рабочей температуры, аккумулятор заряжен и нет проблем со стартером, компрессия в двигателе должна быть следующей:
Примечание. Если проанализировать данные замеров, то можно выявить следующую закономерность: оптимальное давление равно степени сжатия, умноженной на коэффициент 1,4–1,5.
Чем нужно измерять?
Для оценки технического состояния цилиндропоршневой группы и плотности прилегания клапанов применяется диагностический прибор для измерения компрессии. В состав комплекта входят следующие детали:
Простейший вариант компрессометра – манометр с обратным клапаном и резиновой насадкой в виде конуса. В процессе измерения прибор необходимо прижимать к свечному отверстию и удерживать рукой, а не вкручивать.
Если назначение манометра понятно, то функции остальных элементов требуют пояснения. Обратный клапан не дает воздуху покидать корпус прибора, пока поршень накачивает максимальное давление, что происходит за 5–10 тактов. Затем показания обнуляются путем сброса воздуха кнопкой. Поскольку компрессия в дизельном двигателе меряется через отверстия для форсунок или свечей накала, прибор комплектуется различными переходниками.
Как часто проверять давление?
В профилактических целях проводить диагностику следует вместе с заменой свечей зажигания бензинового мотора. В зависимости от марки авто, технического состояния и качества изделий такая операция проводится с интервалом 25–50 тыс. км.
Поводом для внеочередной проверки компрессии служат такие симптомы:
Последний признак может указывать на неисправность системы зажигания либо выход из строя 1–2 свечей. Перед измерением давления подобные неполадки желательно устранить. На дизелях износ поршневой группы и клапанов проявляется аналогичными симптомами, особенно затрудняется холодный пуск – при недостатке давления солярка попросту не вспыхивает.
Так как причин появления подобных симптомов достаточно много, в первую очередь рекомендуется провести компьютерную диагностику автомобиля. Без посещения СТО проще всего это сделать с помощью недорогого сканера, к примеру Rokodil ScanX Pro.
При обнаружении неисправности сканер точно укажет на причину их возникновения, а в случае с неисправностями системы зажигания либо выхода из строя свечей укажет на конкретный цилиндр. Данный автомобильный сканер является универсальным и подойдет практически для всех автомобилей с OBD2 разъемом.
Порядок выполнения замеров
Перед тем как проверить компрессию двигателя, необходимо обеспечить полный заряд аккумуляторной батареи и исправную работу стартера. Иначе вы получите заниженные показатели и возьметесь за ремонт силового агрегата вместо продолжения диагностики и поиска других причин.
Существует несколько способов измерения давления – «на холодную», «на горячую», с закрытым и полностью открытым дросселем. Практика показывает, что наиболее точные результаты дает проверка на прогретом моторе, выполняемая согласно инструкции:
Если вы не хотите касаться электроники, то форсунки бензинового двигателя можете не отключать, на точность показаний это не повлияет, но при диагностике в масляный картер попадет небольшое количество горючего. Топливоподача на дизеле с механическим ТНВД отключается с помощью рычага отсечки.
По результатам измерений делаются следующие выводы:
Если давление во всех цилиндрах ниже нормы, придется делать капитальный ремонт. Тест с добавлением масла проводить бесполезно – двигатель все равно нужно разбирать.
Компрессия в цилиндрах бензинового двигателя
Основным и важным показателем работы двигателя является герметичность камеры сгорания. Компрессия в цилиндрах двигателя определяет степень эффективного сгорания топлива, и соответственно, влияющая в прямой зависимости на уверенный его запуск, независимо от температуры окружающей среды, а также устойчивую работу как на холостом ходу, так и в движении.
Основные понятия
Компрессия — это параметр величины давления, создаваемый в цилиндре в конце такта сжатия. Величина зависит от достаточно большого количества факторов. Важно соблюдать правила замера в целях снижения процента ошибок при оценке технического состояния двигателя.
Общие правила измерения
Для предварительной общей оценке показателя компрессии в цилиндрах бензинового двигателя необходимо соблюдать следующие условия:
Стандарты и нормы
Существует мнение владельцев современных автомобилей, что компрессия горячего мотора может иметь значение от 8 до 10 атм.
Норма компрессии в цилиндрах любого двигателя от 12 атм, за редким исключением.
На автомобилях эксплуатируются двигатели различной конфигурации, определяемой количеством клапанов и распределительных валов, геометрией впускного коллектора, установленной шатунно-поршневой группы. В соответствии с этим рассчитывается его конкретная степень сжатия — это отношение полного объема цилиндра к объему камеры сгорания.
Чем выше степень сжатия, тем выше значение компрессии. У бензиновых двигателей степень сжатия находится в пределах 8 — 12 единиц, что указывают в технической документации конкретного автомобиля. Теоретически определить какой должна быть компрессия в цилиндрах для конкретного двигателя не сложно. Достаточно величину степени сжатия умножить на коэффициент 1.3.
К примеру, степень сжатия в характеристиках автомобиля указывается равной 9,5 единиц, умножив 9,5 на коэффициент 1,3 получим расчетную величину равную 12,35 атм.
Приборы для проверки компрессии
Компрессометр — прибор, состоящий из манометра со шкалой, клапана сброса давления и наконечников. Наиболее удобным является гибкий шланг с резьбовым наконечником, в который установлен ниппель для предотвращения обратного выхода воздуха из прибора. Проверка компрессии в цилиндрах двигателя, предусматривающих в конструкции свечные колодцы, осуществляется вворачиванием гибкого шланга в резьбовое отверстие свечи, что исключает потери сжатого воздуха от неплотного прилегания жестких наконечников без резьбы.
Измерить компрессию в цилиндрах своими руками
Прежде всего необходимо установить по технической документации какой является нормальная компрессия бензинового двигателя конкретно к этому автомобилю и определиться с сложностью доступа к свечам зажигания. Если доступ требует разборки других узлов двигателя (дроссельный узел, впускной ресивер), препятствующих их выкручиванию и существует уверенность в их успешной разборке и сборке, то можно приступить к замеру.
Как мерить компрессию
Бытует мнение, чтобы правильно замерить компрессию в двигателе необходимо стартером провернуть коленчатый вал на два-три оборота. Такой метод приведет к неправильному определению неисправности и как следствие к неоправданным затратам на ремонт двигателя.
Проверку выполняют на разных режимах с целью широкого анализа состояния мотора:
Проверка с закрытой дроссельной заслонкой
Такой способ измерения нужен для определения малых дефектов двигателя, чувствительных при небольшом поступлении воздуха в цилиндры. Это может быть трещина на тарелке клапана, небольшой прогар кромки или отсутствие герметичности в паре седло-клапан. Поступление воздуха через закрытую дроссельную заслонку при замере компрессии ограничивается, и величина ее будет невысокой (от 10 до 11 атм). В связи с малым поступлением воздуха в цилиндры чувствительность на утечки повышается, вследствие чего результаты параметров давления занижаются.
Проверка с полностью открытой дроссельной заслонкой
Для определения сильных износов двс компрессию проверяют с полностью открытой дроссельной заслонкой, обеспечивая максимальное поступление воздуха в цилиндры. Увеличенное количество воздуха способствует росту давления, но также увеличиваются и утечки, но в сравнении с массой поступающего воздуха они настолько малы, что величина падения компрессии незначительна и достигает 12 – 13 атм. Если имеются «грубые» дефекты в двигателе, то снизиться до 8 – 9 атм. Возможные причины:
Плохая компрессия в двигателе
Поведение автомобиля изменилось. Двигатель запускается не с первой прокрутки стартером или требует продолжительного вращения, а при минусовой температуре окружающей среды может вообще не запуститься. Если вывернуть свечи зажигания и осмотреть их визуально, то причина отказа в запуске становится ясной — свечи «мокрые» от переизбытка топлива, поступающего в цилиндры. Это симптомы плохой компрессии в двигателе.
Признаки
Что делать, если выявлены вышеперечисленные признаки
Во избежание дальнейшего и скорого износа необходимо в кратчайшие сроки установить причины и выявить узлы, подлежащие ремонту.
По результатам замера компрессии возможны следующие показатели:
Повышение компрессии в моторе видно по выхлопным газам — цвет становится сизо-белым и увеличивается расход масла. При разгоне появляется звон поршневых пальцев. Большая компрессия вызывает увеличение нагара на тарелках клапанов и направляющих, а на стенках камеры сгорания образуется слой кокса, уменьшающий объем камеры и соответственно изменяющий степень сжатия цилиндров.
Высокая компрессия постепенно вызывает детонационные стуки двигателя, разрушающие шатунно-поршневую группу.
Причина завышенной компрессии
Анализ ревизии двигателя показывает, что причина не одна. В таблице приведены причины повышенной компрессии в моторе:
1 | Перегрев двc |
2 | Низкокачественное масло |
3 | Не соответствующее масла |
4 | Присадки |
5 | Некорректная установка меток газораспределения |
6 | Несвоевременная замена маслосъемных сальников клапанов |
Причина низкой компрессии
Слабая компрессия выявляется при его запуске, особенно в холодную погоду, а также признаки обнаруживаются в потере динамики и увеличению расхода топлива.
Низкая компрессия увеличивает скорость износа двигателя, а если дефект в одном цилиндре, то холостой ход неустойчив, машина часто глохнет или занижает обороты холостого хода.
В таблице приведены основные причины:
1 | Перегрев |
2 | Тепловой зазор клапанов ниже допустимого уровня |
3 | Прогар или трещина на тарелке клапанов |
4 | Износ направляющих клапанов |
5 | Износ компрессионных колец поршня |
6 | Прогар прокладки головки блока цилиндров |
7 | Негерметичность пары седло-клапан |
Если нет компрессии в одном или более цилиндров, то двигатель очень плохо заводится, а заведенный тут же начинает работать несбалансированно, с сильными вибрациями и тряской.
Если же пропала компрессия одновременно во всех цилиндрах — двигатель не заведется. Одной из причин может быть обрыв ремня ГРМ на заведенном двигателе и столкновение поршня с клапанами. После удара клапана гнутся. Система газораспределения теряет герметичность, и сжимаемая топливовоздушная смесь с большой скоростью направляется в впускной и выпускной коллекторы.
Также пропадает компрессия в одном из цилиндров из-за сильного прожига тарелки клапана. Есть примеры, когда от 40 до 50% площади тарелки клапана оплавлено и компрессия равна нулю. Это легко определить и без компрессометра. Достаточно завернуть в этот цилиндр свечу и при прокрутке стартером коленчатый вал будет вращаться легко и однородно, не выделяя такты сжатия.
При замере компрессии желательно наблюдать за стрелкой измерителя давления (манометра) и следить за динамикой его нарастания. По скорости нарастания компрессии можно косвенно определить в какой группе деталей сильный износ. Если на первом такте манометр показывает низкую компрессию (3-5 атм), а при последующих тактах скорость нарастания давления увеличивается, то с большой вероятностью можно установить, что изношены поршневые кольца. В качестве перепроверки показаний можно применить метод искусственного создания масляной пленки на стенке цилиндров, добавив через свечное отверстие 5-10 мл масла. Если с добавленным маслом компрессия резко увеличится на первом же такте и установится номинальной, то можно уже конкретно утверждать об износе копрессионных колец. В случае измерения в двух соседних цилиндрах и получении низкого результата без масла и с маслом, можно сделать заключение о дефекте в прокладке головки блока цилиндров.
Возможен и другой вариант, когда достигается на первом такте 6-9 атм и на последующих тактах стрелка манометра зависает в этом же положении. При такой ситуации предполагается отсутствие герметичности клапана или прокладки ГБЦ. Более точно установить причину можно другими диагностическими приборами, такие как пневмотестер или электронный осциллограф.
Почему нет компрессии в двигателе
Возникают и такие ситуации, когда двигатель отремонтировали и установили новую поршневую группу, произвели расточку цилиндров, притерли клапана к седлам. Иными словами, ремонт произведен строго по технологической карте. Произвели замер компрессии, а давление в цилиндрах отсутствует.
После проведенного ремонта гидрокомпенсаторы могут оказывать давление на стержни клапанов, вследствие чего они могут быть открыты. Через определенное время гидрокомпенсатор заполнится маслом, и начнет функционировать.
Допустимая компрессия в карбюраторном двигателе
Допустимое давление в карбюраторном двигателе при использовании бензина Аи-76 (низко октановый бензин) около 8 — 10 атм, а при использовании высокооктанового бензина 11-12 атм.
Оценка результатов измерений
Получение корректных данных является залогом точного определения неисправности.
Одинаковые значения, полученные при измерении, свидетельствуют об однородном состоянии деталей газораспределительного механизма и одинаковой степени износа шатунно-поршневой группы.
В случае падения давления в одном из цилиндров на величину 1 атм, в сравнении с другими цилиндрами, необходимо применить другие методы диагностики с целью установления точной причины.
Восстановление компрессии
Восстановить возможно, если не поврежден газораспределительный механизм на ГБЦ. Может возникнуть залегание поршневых колец. В этом случае повысить давление можно без разборки двигателя. Для этого нужно купить жидкость для растворения кокса и на горячем двигателе провести процедуру «раскоксовки». Цена процедуры минимальная, в сравнении с разборкой мотора. Чтобы оценить восстановление жидкостью для удаления кокса с поршневых колец замеряют до и после «раскоксовки». В большинстве случаев такой способ временно восстанавливает мотор.
Существует также способ, заливки масла в цилиндры перед запуском двигателя. Позволяет поднять компрессию исключительно для запуска двигателя, особенно в холодную погоду. Суть метода заключается в принудительном создании масляной пленки на стенках цилиндров, которая кратковременно блокирует утечки газов в картер двигателя.
Проверка на снятом ДВС
В гаражных условиях померить компрессию возможно, подключив клеммы стартера к аккумулятору. Но необходимо учесть, что температура будет равна окружающей.
Какое давление в цилиндре двигателя при сгорании топлива
Первые признаки износа мотора – затрудненный запуск «на холодную» и увеличенный расход масла (свыше 150 мл на 1 тыс. км пробега). При появлении подобных симптомов выполняется проверка компрессии в цилиндрах двигателя, помогающая точнее определить техническое состояние цилиндропоршневой и клапанной группы. Чтобы провести такую диагностику, необязательно ехать в автосервис: достаточно обзавестись специальным манометром и понимать, какой должна быть компрессия в исправном силовом агрегате.
Компрессия в цилиндрах двигателя – норма и алгоритм измерения
Первые признаки износа мотора – затрудненный запуск «на холодную» и увеличенный расход масла (свыше 150 мл на 1 тыс. км пробега). При появлении подобных симптомов выполняется проверка компрессии в цилиндрах двигателя, помогающая точнее определить техническое состояние цилиндропоршневой и клапанной группы. Чтобы провести такую диагностику, необязательно ехать в автосервис: достаточно обзавестись специальным манометром и понимать, какой должна быть компрессия в исправном силовом агрегате.
Что понимают под компрессией?
Одна из основных характеристик двигателя, приведенная в инструкции по эксплуатации автомобиля, – степень сжатия. Это безразмерный коэффициент, показывающий, во сколько раз сжимается топливовоздушная смесь перед воспламенением. Рассчитывается так: объем одного цилиндра (с учетом камеры сгорания) делится на величину хода поршня. Данный параметр является постоянным и меняется только при глубоком тюнинге мотора – расточке цилиндров, установке другого коленвала и так далее.
Степень сжатия несведущие автолюбители путают с компрессией – реальным давлением, создаваемым поршнями при вращении коленчатого вала стартером (200–300 об/мин). Характеристика меняется по мере износа деталей и измеряется в таких единицах:
Чтобы выявить неисправность главных элементов двигателя, нужно померить компрессию во всех цилиндрах и сопоставить полученные значения с оптимальной величиной. Почему в процессе эксплуатации мотора компрессия снижается:
Указанные процессы аналогично протекают во время работы мотора: топливо не догорает, газы проникают в картер, а масло – в камеру сжигания. То есть, величина компрессии отражает реальную картину внутри двигателя.
Влияние степени сжатия
При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.
Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.
Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.
Оптимальное давление в цилиндрах
Чтобы определить момент критической изношенности цилиндропоршневой группы, нужно знать, какая норма компрессии считается удовлетворительной. Здесь прослеживается взаимосвязь со степенью сжатия – чем она выше, тем большее давление возникает в камерах сгорания при вращении коленчатого вала.
На данный момент встречается 3 разновидности моторов с различными параметрами:
Камера сгорания дизельного мотора отличается малыми размерами, поэтому воспламенение солярки происходит от сильного сжатия.
Оптимальные значения давления в цилиндрах различных силовых агрегатов получены на основании многократных практических замеров. Когда мотор нагрет до рабочей температуры, аккумулятор заряжен и нет проблем со стартером, компрессия в двигателе должна быть следующей:
Примечание. Если проанализировать данные замеров, то можно выявить следующую закономерность: оптимальное давление равно степени сжатия, умноженной на коэффициент 1,4–1,5.
Принцип работы автомобиля
У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума — давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворота коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двигателями с подводом тепла при постоянном объеме или двигателями Отто (работающими по циклу Отто).
Для дизелей условно принимают, что часть теплоты подводится при постоянном объеме, а часть — при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то максимальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 2000—5-2200 К.
Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геометрии (формы) камеры сгорания до состава, скорости и направления движения смеси в цилиндре в данный момент времени в данной точке.
Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 — постоянный (стехиометрический) коэффициент для данного топлива — теоретически необходимое количество воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.
При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимости от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 («богатая» смесь и большой крутящий момент), в то время как для установившегося режима движения автомобиля желательно, чтобы а было близко к 1 (нормальная или слегка обедненная смесь, высокая экономичность, а также приемлемая токсичность отработавших газов).
Для воспламенения и горения смеси у двигателей традиционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразованием, т. е. подачей топлива заранее во впускной трубопровод (с помощью карбюратора или форсунок системы впрыска). При этом топливо успевает практически полностью испариться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распространяющийся по объему камеры сгорания.
Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отработавших газов. Например, если основная часть продуктов сгорания — это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное количество оксида углерода СО, а также несгоревшие углеводороды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).
Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно камеры сгорания — пространства между головкой и днищем поршня. От того, как организовано движение смеси по камере сгорания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.
В конечном счете, все указанные факторы влияют и на количество выделившегося при сгорания тепла — чем оно больше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое количество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно также происходить в строго определенной фазе цикла — слишком раннее или позднее сгорание приводит к уменьшению давления в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.
При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в поршень. Если бы конструкция поршня не позволяла отводить тепло от днища, то поршень очень быстро бы расплавился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наиболее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее — до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание кольца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к снижению потока тепла от поршня и, соответственно, к его перегреву с последующим разрушением. Другая часть тепла от поршня передается через его юбку в стенку цилиндра, а также через палец в шатун и далее рассеивается в картере. Незначительная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступательном движении поршня.
Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как зазор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем надо, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилиндра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и последующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.
При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.
Явление детонации широко известно. Внешние проявления детонации — характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).
Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распространяющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в которой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.
Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образованию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каждом конкретном случае при разработке нового двигателя определить наилучшую форму камеры сгорания — дело очень ответственное, долгое и кропотливое.
Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на поверхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.
После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ поверхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.
Режимы детонации ограничивают углы опережения зажигания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повышаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управления двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.
На некоторых двигателях (TOYOTA, NISSAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламени по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-850С) за счет схемы и конструкции системы охлаждения двигателя.
У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем укарбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное охлаждение воздуха у двигателей с наддувом.
Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспламенение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей камеры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпускного клапана или частицы нагара, если нагар лежит на деталях достаточно толстым слоем.
Обычно калильное зажигание возникает из-за несоответствия характеристики свечи, рекомендованной изготовителем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована «горячая» свеча от низкофорсированного двигателя. При этом смесь в цилиндре самовоспламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным образом. С ростом нагрузки и частоты вращения момент самовоспламенения отодвигается в раннюю сторону, из-за чего тепловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.
Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить «на слух» от обычного сгорания, в то время как с течение времени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже могут быть повреждены. Вследствие этого на двигателях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ставятся первые попавшиеся свечи.
Чем нужно измерять?
Для оценки технического состояния цилиндропоршневой группы и плотности прилегания клапанов применяется диагностический прибор для измерения компрессии. В состав комплекта входят следующие детали:
Простейший вариант компрессометра – манометр с обратным клапаном и резиновой насадкой в виде конуса. В процессе измерения прибор необходимо прижимать к свечному отверстию и удерживать рукой, а не вкручивать.
Если назначение манометра понятно, то функции остальных элементов требуют пояснения. Обратный клапан не дает воздуху покидать корпус прибора, пока поршень накачивает максимальное давление, что происходит за 5–10 тактов. Затем показания обнуляются путем сброса воздуха кнопкой. Поскольку компрессия в дизельном двигателе меряется через отверстия для форсунок или свечей накала, прибор комплектуется различными переходниками.
Преждевременное воспламенение рабочей смеси
В процессе работы двигателя иногда возникают такие условия, при которых отдельные детали внутри камеры сгорания (электроды свечи зажигания, клапаны) нагреваются выше 700…800°С. Соприкасаясь с нагретыми деталями, рабочая смесь воспламеняется раньше, чем возникает искра зажигания. Сгорание начинается до прихода поршня в в.м.т. Происходит так называемое калильное зажигание. Детали при калильном зажигании нагреваются еще больше. Воспламенение смеси при последующих циклах начинается еще раньше. В результате детали настолько перегреваются, что начинают оплавляться, увеличивается сопротивление их движению, и двигатель теряет мощность. Одной из причин возникновения калильного зажигания является применение свечей зажигания, не соответствующих конструкции двигателя.
Как часто проверять давление?
В профилактических целях проводить диагностику следует вместе с заменой свечей зажигания бензинового мотора. В зависимости от марки авто, технического состояния и качества изделий такая операция проводится с интервалом 25–50 тыс. км.
Поводом для внеочередной проверки компрессии служат такие симптомы:
Последний признак может указывать на неисправность системы зажигания либо выход из строя 1–2 свечей. Перед измерением давления подобные неполадки желательно устранить. На дизелях износ поршневой группы и клапанов проявляется аналогичными симптомами, особенно затрудняется холодный пуск – при недостатке давления солярка попросту не вспыхивает.
Порядок выполнения замеров
Перед тем как проверить компрессию двигателя, необходимо обеспечить полный заряд аккумуляторной батареи и исправную работу стартера. Иначе вы получите заниженные показатели и возьметесь за ремонт силового агрегата вместо продолжения диагностики и поиска других причин.
Существует несколько способов измерения давления – «на холодную», «на горячую», с закрытым и полностью открытым дросселем. Практика показывает, что наиболее точные результаты дает проверка на прогретом моторе, выполняемая согласно инструкции:
Компрессия в цилиндрах бензинового двигателя
Основным и важным показателем работы двигателя является герметичность камеры сгорания. Компрессия в цилиндрах двигателя определяет степень эффективного сгорания топлива, и соответственно, влияющая в прямой зависимости на уверенный его запуск, независимо от температуры окружающей среды, а также устойчивую работу как на холостом ходу, так и в движении.
Как сгорает топливо в дизельном двигателе
Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.
В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.
Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.
В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.
Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.
Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:
Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.
Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.
Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.
Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.
Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя повышается, возникает риск детонации, топливо не сгорает в полном объеме и т.д.
Стандарты и нормы
Существует мнение владельцев современных автомобилей, что компрессия горячего мотора может иметь значение от 8 до 10 атм.
Норма компрессии в цилиндрах любого двигателя от 12 атм, за редким исключением.
На автомобилях эксплуатируются двигатели различной конфигурации, определяемой количеством клапанов и распределительных валов, геометрией впускного коллектора, установленной шатунно-поршневой группы. В соответствии с этим рассчитывается его конкретная степень сжатия — это отношение полного объема цилиндра к объему камеры сгорания.
Чем выше степень сжатия, тем выше значение компрессии. У бензиновых двигателей степень сжатия находится в пределах 8 — 12 единиц, что указывают в технической документации конкретного автомобиля. Теоретически определить какой должна быть компрессия в цилиндрах для конкретного двигателя не сложно. Достаточно величину степени сжатия умножить на коэффициент 1.3.
К примеру, степень сжатия в характеристиках автомобиля указывается равной 9,5 единиц, умножив 9,5 на коэффициент 1,3 получим расчетную величину равную 12,35 атм.
Box77 › Блог › Физика камеры сгорания. Часть 7. Основы динамики блока цилиндров
В общении автолюбителей часто встречаются такие слова, как механические потери в двигателе, соотношения диаметр поршня к ходу коленчатого вала, соотношения длины шатуна к ходу коленчатого вала, крутящий момент и силы инерции. К сожалению, подобные разговоры обычно дальше обмена звучными фразами не идут. И даже после трехчасовых дискуссий на эти темы ни у кого из собеседников не появляется чего-то нового в голове.
Сегодня мы окунемся в мир динамики кривошипно-шатунного механизма и уясним, как на деле все это работает. Немного вспомним векторы и обычную механику за 8 класс.
Итак, начнем с того, что же вращает двигатель, а именно:
1. Сила давления газов на поршень.
Эта та сила, которая лежит в основе работы любого ДВС, которая является «оживляющей» силой. Смесь сжалась, воспламенилась, началась химическая реакция и увеличились давление и температура в камере сгорания. Температура в динамике ДВС играет несущественную роль, но вот давление — наиважнейшую.
Итак, сила давления газов на поршень равна:
Fг = (Р — Рк) * п * D^2 / 4, где
Р — давление в цилиндре, Рк — давление картерных газов, D — диаметр поршня.
Какие выводы можно сделать? — Чем больше диаметр цилиндра, тем больше сила давления газов при том же значении давления в цилиндре. — Чем ниже давление картерных газов, тем больше сила давления газов при том же значении давления в цилиндре.
Каждый автолюбитель знает о сапуне, торчащем из головки блока цилиндров, но мало кто понимает его истинный смысл: снижение давления картерных газов за счет разряжения во впуске. Не раз встречал, как шланг выводили на улицу, а вход в коллектор глушили. Встречался, когда сапун пытались глушить, в итоге давление картерных газов становилось избыточным и мотор попросту глох. Особо серьезно к системе рециркуляции картерных газов относится Хонда, где имеется не только сапун с ГБЦ, есть клапана рециркуляции, шланги с блока, разряжение используется до и после дросселя и так далее — и все это не от нечего делать, а для повышения эффективности силовой установки.
2. Силы инерции движущихся масс.
Итак, мы рассмотрели силы, возникающие по причине изменения давления газов в цилиндре.Но в ДВС возникают и прочие силы, связанные с тем, что детали ШПГ имеют ненулевую массу, а именно: силы инерции.
Силы инерции делятся на два типа: — Силы инерции возвратно-поступательно движущихся масс — Силы инерции вращающихся масс.
2.1. Сила инерции возвратно-поступательно движущихся масс.
Данные силы порождаются движением поршня и шатуна. Но если с поршнем все понятно, то с шатуном не все так просто: шатун обычно представляют в виде гантели, представляющей собой две шейки с безмассовым стержнем. Тогда массы шеек гантели рассчитывают следующим образом: Находится центр масс шатуна вывешиванием, т.е. шатун располагают горизонтально на некоторую ось таким образом. чтобы левая и правая часть шатуна были уравновешены. Это будет не середина шатуна, поэтому левое и правое плечо обозначим как lп и lк, где lп — плечо верхней головки шатуна, куда устанавливается поршневой палец, а lк — плечо нижней головки шатуна, соединяющаяся с шатунной шейкой коленчатого вала. Тогда массы условной гантели равны: Масса поршневой части шатуна: mшп = mш * lк / l = mш * (l — lп) / l Масса части шатуна, соединяющейся с коленчатым валом: mшк = mш * lп / l
Таким образом, возвратно-поступательно движущиеся массы: mвп = mп + mшп, где mп — масса поршня, mпш — масса поршневой части шатуна.
Так как сила есть произведение массы на ускорение, сила инерции возвратно-поступательно движущихся масс равна: Fивп = — (mп + mшп) * а, где а — ускорение поршня.
Запишем в общем виде: Fивп = — (mп + mшп) * w^2 * r * ( + е * r * )
При е = 0: Fивп = — (mп + mшп) * w^2 * r *
Тут должен оговориться, что в массу поршня входят также масса пальца и поршневых колец.
2.2. Сила инерции вращающихся масс.
Одной из вращающихся масс является приведенная масса нижней шейки шатуна. найденная ранее: mшк = mш * lп / l
Второй массой является сумма масс неуравновешенных частей коленчатого вала, а именно: шатунная шейка и щеки. С шатунной шейкой проблем нет — это mшш, а вот массы щек необходимо привести к центру оси шатунной шейки для удобства: mщк = mщ * (r — rшш) / r, где mщ — реальная масса щек коленчатого вала, а rшш — радиус шатунной шейки коленчатого вала. Так как щеки у одного цилиндра две, масса неуравновешенный частей коленчатого вала равны: mшш + 2*mщк
Полная сумма вращающихся масс равна сумме масс неуравновешенных частей коленчатого вала и приведенной массы нижней шейки шатуна: mшк + mшш + 2*mщк
Силы инерции вращающихся масс равны: Fив = — (mшк + mшш + 2*mщк) * r * w^2
Тут должен отметить, что в массу шатунной шейки входит также масса шатунных вкладышей.
3. Преобразования сил:
Сила давления газов на поршень и сила инерции возвратно-поступательно движущихся масс в сумме дают силы, действующие на поршень по оси цилиндров. Тут важно отметить, что силы инерции возвратно-поступательно движущихся масс имеют знак «минус», т.е. действуют нам во вред (должен оговориться: во вред — часть цикла, в некоторый момент сила меняет знак и работает с пользой).
Fп = Fг + Fивп = (Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( + е * r * ),
или же при отсутствии ускорения коленчатого вала, т.е. при е(t) = 0: Fп = Fг + Fивп = (Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * (
Сила, действующая на поршень, в динамике делится на две составляющие силы: — Сила, направленная по оси шатуна, Fш = Fп / cosb, где b — угол между осью цилиндра и осью шатуна — Сила, перпендикулярная оси цилиндра и направленная в противоположную сторону силе по направлению шатуна, N = Fп * tg b, где b — угол между осью цилиндра и осью шатуна
Сумма векторов данных сил даст опять нам вектор Fп.
Эффективной действующей силой из этих двух является Fш.
3.1. Сила, направленная по оси шатуна.
Fш = Fп / cosb, где b — угол между осью цилиндра и осью шатуна,
Или же (подставив Fп): Fш = (Fг + Fивп) / cosb
Fш = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( + е * r * )) / cosb
При отсутствии ускорения коленчатого вала, т.е. при е(t) = 0:
Fш = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ) / cosb
Как мы уяснили ранее, эта сила — остаток от силы, действующей на поршень, которая участвует в полезной работе ДВС.
Перенесем вектор Fш для удобства дальнейшего рассмотрения в центр шатунной шейки коленчатого вала. Теперь разложим и эту силу на две составляющие: — Касательную силу, направленную по касательной к окружности вращения шатунной шейки: Fкв = Fш * sin (ф + b), где ф — угол поворота коленчатого вала, b — угол между осью цилиндра и осью шатуна — Перпендикулярную силу, направленную от шатунной шейки к оси коленчатого вала: Fпв = Fш * cos (ф + b), где ф — угол поворота коленчатого вала, b — угол между осью цилиндра и осью шатуна
Здесь полезной силой является касательная сила.
3.2. Сила, направленная по касательной к окружности вращения шатунной шейки.
Fкв = Fш * sin (ф + b), где ф — угол поворота коленчатого вала, b — угол между осью цилиндра и осью шатуна
Подставим выражение для Fш и получим выражение Fкв через Fп:
Fкв = Fп * sin (ф + b) / cosb
Fкв = (Fг + Fивп) * sin (ф + b) / cosb
Fкв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( + е * r * ))*sin (ф + b) / cosb
При отсутствии ускорения коленчатого вала, т.е. при е(t) = 0:
Fкв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * )*sin (ф + b) / cosb
Крайне неудобно, когда функция выражена через два угла, особенно, когда один угол явно зависит от другого, не смотря на то, что в таком виде функция более читаема.
Произведем математическое преобразование угла b через функцию от угла ф:
По теореме синусов:
l / sinф = r / sin b, где:
l — длина шатуна, r — радиус кривошипа.
выражаем b через ф:
b = arcsin (r/l * sinф).
Перепишем Fкв = Fп * sin (ф + b) / cosb, подставив выажение для b:
Fкв = Fп * sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф))
Или же более развернуто:
Fкв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( + е * r * ))*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф))
Ну, и если отсутствует ускорение коленчатого вала, т.е. при е(t) = 0:
Fкв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * )*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф))
3.3. Силы, действующие на шатунную шейку коленчатого вала, или вращающая сила:
Суммарно вращающие силы можно представить в виде суммы силы, направленной по касательной к окружности вращения шатунной шейки, Fкв и силы инерции вращающихся масс Fив.
Опять же отмечу, что силы инерции вращающихся масс имеют знак минус, т.е. действуют нам во вред.
Итого, вращающая сила:
Fв = Fп * sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2
Или же более развернуто:
Fв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( + е * r * ))*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2
Если нет ускорения коленчатого вала, т.е. при е(t) = 0:
Fв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * )*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2
Произведение вращающей силы и радиуса кривошипа носит знакомое всем понятие «крутящего момента», т.е.
Или же: Мкр = r* (Fкв + Fив)
Мкр = r * [Fп * sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2]
Или же более развернуто:
Мкр = r * [((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( + е * r * ))*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2]
Если нет ускорения коленчатого вала, т.е. при е(t) = 0:
Мкр = r * [((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * )*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2]
Наряду с крутящим моментом существует реактивный момент двигателя, который стремится развернуть сам двигатель. Он противоположен по направлению крутящему моменту.
Итак, сегодня мы рассмотрели основные силы, возникающие в ШПГ работающего ДВС, выявили зависимости мгновенных значений сил и крутящего момента от давления газов, частоты вращения (в общем случае и ускорения) и угла поворота коленчатого вала. Но следует помнить, что помимо сил инерции и сил, порожденных давлением газов, существуют силы трения и силы сопротивления.
Не забываем поправлять, если заметили ошибку, писать пожелания и ставить лайки.
Приборы для проверки компрессии
Компрессометр — прибор, состоящий из манометра со шкалой, клапана сброса давления и наконечников. Наиболее удобным является гибкий шланг с резьбовым наконечником, в который установлен ниппель для предотвращения обратного выхода воздуха из прибора. Проверка компрессии в цилиндрах двигателя, предусматривающих в конструкции свечные колодцы, осуществляется вворачиванием гибкого шланга в резьбовое отверстие свечи, что исключает потери сжатого воздуха от неплотного прилегания жестких наконечников без резьбы.
Как мерить компрессию
Бытует мнение, чтобы правильно замерить компрессию в двигателе необходимо стартером провернуть коленчатый вал на два-три оборота. Такой метод приведет к неправильному определению неисправности и как следствие к неоправданным затратам на ремонт двигателя.
Проверку выполняют на разных режимах с целью широкого анализа состояния мотора:
Проверка с закрытой дроссельной заслонкой
Такой способ измерения нужен для определения малых дефектов двигателя, чувствительных при небольшом поступлении воздуха в цилиндры. Это может быть трещина на тарелке клапана, небольшой прогар кромки или отсутствие герметичности в паре седло-клапан. Поступление воздуха через закрытую дроссельную заслонку при замере компрессии ограничивается, и величина ее будет невысокой (от 10 до 11 атм). В связи с малым поступлением воздуха в цилиндры чувствительность на утечки повышается, вследствие чего результаты параметров давления занижаются.
Проверка с полностью открытой дроссельной заслонкой
Для определения сильных износов двс компрессию проверяют с полностью открытой дроссельной заслонкой, обеспечивая максимальное поступление воздуха в цилиндры. Увеличенное количество воздуха способствует росту давления, но также увеличиваются и утечки, но в сравнении с массой поступающего воздуха они настолько малы, что величина падения компрессии незначительна и достигает 12 – 13 а дефекты в двигателе, то снизиться до 8 – 9 атм. Возможные причины:
Общие правила измерения
Для предварительной общей оценке показателя компрессии в цилиндрах бензинового двигателя необходимо соблюдать следующие условия:
Почему нет компрессии в двигателе
Возникают и такие ситуации, когда двигатель отремонтировали и установили новую поршневую группу, произвели расточку цилиндров, притерли клапана к седлам. Иными словами, ремонт произведен строго по технологической карте. Произвели замер компрессии, а давление в цилиндрах отсутствует.
После проведенного ремонта гидрокомпенсаторы могут оказывать давление на стержни клапанов, вследствие чего они могут быть открыты. Через определенное время гидрокомпенсатор заполнится маслом, и начнет функционировать.
Восстановление компрессии
Восстановить возможно, если не поврежден газораспределительный механизм на ГБЦ. Может возникнуть залегание поршневых колец. В этом случае повысить давление можно без разборки двигателя. Для этого нужно купить жидкость для растворения кокса и на горячем двигателе провести процедуру «раскоксовки». Цена процедуры минимальная, в сравнении с разборкой мотора. Чтобы оценить восстановление жидкостью для удаления кокса с поршневых колец замеряют до и после «раскоксовки». В большинстве случаев такой способ временно восстанавливает мотор.
Существует также способ, заливки масла в цилиндры перед запуском двигателя. Позволяет поднять компрессию исключительно для запуска двигателя, особенно в холодную погоду. Суть метода заключается в принудительном создании масляной пленки на стенках цилиндров, которая кратковременно блокирует утечки газов в картер двигателя.