какое давление на полюсах

Как атмосферное давление влияет на осадки

какое давление на полюсах

Согласно неумолимой статистике, география не входит в список популярных предметов на едином госэкзамене. Однако экзамен от этого не становится легче — материал порой является очень непростым, поэтому подготовка к ЕГЭ по географии должна быть серьезной. Сегодня мы подробно рассмотрим вопрос влияния атмосферного давления на осадки на нашей планете.

Что такое атмосферное давление?

Атмосферное давление — это давление, которое оказывает воздушная оболочка на поверхность Земли и все, что на ней находится. Столб воздуха, который давит на обычного человека, имеет весьма ощутимую высоту (около 100 км), а сила, с которой он это делает — более 10 тонн на 1 кв. м.

Почему же человечество не только до сих пор живо, но еще и практически не ощущает такое колоссальное воздействие? Дело в том, что давление внутренних жидкостей организма и растворенных в них газов уравновешивает давление атмосферы. Расхождение этих величин вызывает ухудшение самочувствия.

какое давление на полюсах

Атмосферное давление и его влияние на осадки

Показатели атмосферного давления различаются в зависимости от точки на поверхности планеты: так, его величина очень сильно зависит от высоты. В качестве среднего значения принято считать давление 760 мм ртутного столба. Для местностей, расположенных «в низинке», данный показатель увеличивается. При подъеме наблюдается противоположная картина: по мере удаления от Земли расстояние между молекулами газов растет и давление столба воздуха снижается. Кроме того, высота самого столба становится меньше и давит он не так сильно.

Для регистрации атмосферного давления могут использоваться следующие приборы:

Ртутный барометр включает металлическую чашку, которая заполнена ртутью, и запаянную с одного конца полую стеклянную трубку. Последняя также наполнена ртутью, а ее нижний открытый конец погружен в чашу. Вес столбика жидкости в трубке уравновешивает давление воздуха, которому подвергается ртуть в чашке.

какое давление на полюсах

Атмосферное давление и его влияние на осадки

Барометр снабжен миллиметровой шкалой, поэтому при измерении давления воздушных масс говорят о «миллиметрах ртутного столба» (мм рт. ст.). Как только столб воздуха начинает давить на ртуть в чаше сильнее, она выдавливается в трубку и столбик жидкости в ней растет (давление повышено). Чем меньше воздух давит на чашу, тем больше ртути сливается в нее обратно (давление понижено).

Анероид (он же металлический барометр) включает герметически закрытую тонкостенную металлическую коробочку воздух внутри которой разрежен. Изменение давления воздушной оболочки Земли приводит к колебанию стенок коробки: они способны выпячиваться или вдавливаться, вызывая таким образом перемещение стрелки по снабженной делениями шкале.

Барограф — самопишущий анероид, который также включает специальную коробку с тонкими стенками. Однако в этом случае колебания передаются не стрелке, а специальному перу. Показания записываются в виде линии, которая чертится пером на закрепленной на вращающемся барабане ленте.

какое давление на полюсах

Атмосферное давление и его влияние на осадки

Пояса атмосферного давления

Атмосферное давление не является постоянной величиной: оно непрерывно изменяется в зависимости от температуры и перемещения воздуха. Барометры стабильно фиксируют изменения показателей два раза в сутки:

Годовые показатели атмосферного давления также колеблются: на материках зимой воздух является максимально холодным и плотным, поэтому давление самое высокое в году. Летом наблюдается обратная картина и показатели минимальны. Над океаном наблюдается иные показатели, потому что вода прогревается и остывает медленнее.

какое давление на полюсах

Атмосферное давление и его влияние на осадки

Поверхность планеты нагревается неравномерно, поэтому на Земле выделяется несколько чередующихся поясов атмосферного давления. Начинается все с экватора, воздух над которым сильно нагревается и движется вверх, образуя зону пониженного давления. На высоте воздушные массы начинают расходиться к полюсам, на которых вследствие постоянных низких температур формируется зона повышенного давления. Если бы планета не вращалась, то воздух просто циркулировал бы между этими двумя зонами, однако из-за вращения массы отклоняются, остывают и опускаются к земной поверхности в районе тропиков, где остывший воздух устремляется к земле и формирует пояс повышенного давления. В умеренных широтах воздушные массы снова нагреваются, поднимаются и «оттекают» к полюсам. Так снова формируются два пояса — высокого и низкого атмосферного давления.

Как атмосферное давление влияет на осадки?

Распределение атмосферных осадков на Земле никак нельзя назвать равномерным: в одних местах влаги слишком много, в других — слишком мало. Такая неравномерность связана с зональностью атмосферного давления, о которой мы говорили ранее. В поясах низкого давления воздух постоянно нагревается и содержит много влаги, которая при подъеме вверх формирует облака и выпадает в виде осадков. Именно поэтому экваториальный пояс и другие области с низким давлением не испытывают недостатка во влаге.

В областях с высоким давлением холодный воздух, в котором содержится небольшое количество влаги, опускается к земной поверхности. Происходящие при этом нагрев и сжатие воздушных масс отдаляют их от точки насыщения. По этой причине в тропическом поясе и на полюсах осадки очень немногочисленны.

Источник

Пояса низкого и высокого давления.

Климатические пояса и атмосферное давление

Атмосферное давление зависит от климатических поясов освещённости и увлажнения, от нагрева Земли лучами Солнца.
Причина возникновения поясов атмосферного давления – разница температур самих воздушных масс, вследствие нагрева от земной поверхности. Из-за шарообразной формы Земли, разные участки прогреваются Солнцем неравномерно. Это влияет на образование различных зон атмосферного воздействия.

Причем здесь температура воздуха и пояса низкого и высокого давления? Чем отличается холодный воздух от тёплого? Какие существуют пояса атмосферного давления?

Плотность холодных масс воздуха больше тёплых. А чем больше плотность, тем воздух тяжелее. В полярных районах холодно, даже летом. Холодный воздух плотный и тяжелый. Поэтому, там высокое атмосферное давление. Другими словами, арктический и антарктический полярные зоны – это пояса высокого давления Земли. В экваториальных районах всегда жарко. Тёплый воздух – лёгкий. Поэтому на экваторе – пояс низкого давления Земли.

какое давление на полюсахПояса давления на земном

В районах тропиков тоже жарко, но при этом формируется тропический пояс высокого атмосферного давления. В чём причина возникновения такого несоответствия при жарких и сухих тропиках?

Всё просто. На экваторе теплый воздух поднимается до верхних пределов тропосферы, и имеет определённую плотность, которая постепенно изменяется по мере охлаждения воздуха. Растекаясь от экватора к тропическим зонам, те же воздушные массы, но уже с другой плотностью и холодные, опускаются к поверхности Земли из тропосферы, (см. «Пояса увлажнённости Земли»).

Между двумя поясами высокого давления (между тропическими и полярными) лежит зона с низким давлением. То есть, выполняется чередование:

Зависимость между поясами давления и осадками.

В климатических поясах с низким атмосферным давлением преобладают осадки в большом количестве. И, наоборот – в климатических зонах с высоким давлением воздушных масс осадки наблюдаться в меньшей мере. Почему так? Потому, что происходит процесс конденсации водяных паров в капли жидкости при подъёме тёплых воздушных масс в тропосферу. Это физическое явление характерно для климатических поясов с низким атмосферным давлением – экваториальных и умеренных зон.

какое давление на полюсахЗависимость между поясами атмосферного давления и осадками

Источник

Какое давление на полюсах

Перистые облака (Cirrus)—самые высокие из всех видов облаков. Они образуются в слое атмосферы 7—12 км, где в течение всего года температура воздуха ниже 0 °С, и состоят целиком из ледяных кристаллов. Из перистых облаков, особенно из плотных, которые выглядят как однородная белая масса, могут выпадать осадки, но они полностью испаряются в воздухе на большой высоте, не достигая поверхности земли. На фотографии представлена наиболее часто встречающаяся форма перистых облаков — нитевидные перистые облака (Cirrus filosus), которые имеют вид тонких нитей причудливых очертаний.

Перисто-кучевые облака (Cirrocumulus), изображенные на снимке, образуются на высоте 6—8 км, обычно под слоем инверсии. Это самые „нежные» на вид и самые эфемерные из облаков основных форм: они быстро появляются на небе и столь же быстро исчезают. Полупрозрачная частая сетка перисто-кучевых облаков удивительно красива, но прямой связи с изменениями погоды такие облака не имеют. Осадки из них не выпадают. Перисто-слоистые облака (Cirrostratus) никогда не имеют четких очертаний и представляют собой туманную пелену, равномерно застилающую все небо, сквозь которую хорошо видны Солнце и Луна. Форма ледяных кристаллов, составляющих перисто-слоистые облака, способствует такому преломлению солнечных и лунных лучей, что в этих облаках часто наблюдаются гало, венцы, ложные солнца, световые столбы и кресты. На фотографии хорошо заметна часть круга гало. Чтобы его зафиксировать, фотографу пришлось дать очень небольшую экспозицию, и в результате этого небо на снимке получилось темным. Перисто-слоистые облака, наблюдающиеся на высоте 6—8 км, являются надежным предвестником приближения теплого фронта циклона и наступления дождливой погоды. Осадки из них выпадать могут, но они никогда не достигают поверхности земли.

Высоко-кучевые облака (Altocumulus) образуются на высоте 2—4 км, обычно в слое температурной инверсии, на границе раздела холодного (снизу) и теплого (сверху) воздуха. Когда вдоль границы раздела пробегают гравитационные волны, на их гребнях формируются облака, а в ложбинах безоблачно. При этом высоко-кучевые облака вытягиваются в параллельные гряды. Довольно часто облака этой формы группируются в беспорядочно расположенные ячейки, между которыми может просвечивать солнце. При уплотнении облаков солнце через них не просвечивает. Осадков эти облака не дают и определенного прогностического значения не имеют.

Высоко-кучевые чечевицеобразные облака (Altocumulus lenticularis) отличаются от других разновидностей высоко-кучевых облаков своей исключительно правильной формой и чаще всего напоминают эллипсоид, в связи с чем несведущие наблюдатели часто принимают их за неопознанные летающие объекты. Особенно эффектны они утром и вечером, когда трудно разглядеть облачную, волокнистую структуру эллипсоида. Чечевицеобразные облака образуются в атмосфере над подветренными склонами гор или впереди быстро движущегося холодного фронта циклона. Так же, как и другие разновидности высоко-кучевых облаков, они формируются вследствие возникновения гравитационных волн в воздушном потоке.

Слоисто-кучевые облака. Слоисто-кучевые облака (Stratocumulus) характерны для прохладной ветреной погоды. В приземном слое воздуха 0,2—1,5 км возникает своеобразная циркуляция: чередуются полосы восходящих и нисходящих движений, параллельные воздушному потоку. В полосах восходящих движений формируются гряды плотных кучевообразных облаков. Несмотря на угрожающий вид темно-серых с фиолетовым оттенком облачных масс, осадков они, как правило, не дают, только зимой из них иногда выпадает слабый снег, да и то непродолжительное время. Слоисто-кучевые облака возникают вследствие сильного ветра и интенсивного турбулентного перемешивания приземного слоя воздуха, поэтому их называют также облаками динамической конвекции, в отличие от настоящих кучевых облаков, связанных с термической конвекцией — подъемом нагретого воздуха.

Плоские и средние кучевые облака. Кучевые облака (Cumulus) — типично летние облака. В результате дневного прогрева поверхности земли от нее отделяются теплые воздушные пузыри — термики, которые устремляются вверх. В термиках конденсируется влага, что способствует образованию кучевых облаков, беспорядочно разбросанных по небу. Если атмосфера в целом устойчива, формируются лишь небольшие плоские кучевые облака (Cumulus humiiis) — облака хорошей погоды, если же атмосфера неустойчива, плоские кучевые облака быстро превращаются в средние (Cumulus mediocris) и мощные (Cumulus congestus) кучевые облака. На фотографии представлен момент превращения плоских кучевых облаков в средние. При обычной летней погоде, когда довольно часты послеполуденные грозы, этот процесс наблюдается утром, около 11 ч.

Кучево-дождевое облако. Кучево-дождевые облака (Cumulonimbus) обычно образуются в летние дни на заключительной стадии развития кучевой облачности. Они также составляют основную массу облачной системы холодного фронта циклона. Из кучево-дождевых облаков выпадают самые интенсивные осадки и град, что происходит из-за большой толщины облаков (8—10 км, в тропиках — до 16—18 км) и наличия в них смеси водяных капель и ледяных кристаллов. По внешнему виду различают кучево-дождевые волосатые облака (Cumulonimbus capillatus), которые покрыты волокнистой пеленой перистых облаков, часто имеющей форму наковальни, и кучево-дождевые лысые облака (Cumulonimbus calvus), у которых гладкая вершина.

Однако почти вся поступающая на поверхность южных и северных полярных районов радиация отражается обратно в мировое пространство снегом и льдом. Отражательная способность снега и льда очень велика, особенно в глубинных континентальных районах Антарктиды, где альбедо снежного покрова достигает 85—90%. Именно поэтому географические полюса Земли одновременно являются и постоянными глобальными полюсами холода. Если бы ледяной покров в Арктике и Антарктиде растаял, то, помимо повышения уровня Мирового океана на 60 м, произошли бы полная перестройка атмосферной циркуляции, особенно в южном полушарии, и непредсказуемые изменения погоды. Так что энтузиастам мелиорации климата Земли, мечтающим об уничтожении полярных льдов, следует как можно скорее об этом забыть.

Климат южных и северных полярных районов довольно сильно различается. В Центральной Арктике зимой воздух охлаждается в среднем до —35. —40 °С, а летом нагревается до 0—5 °С. В центре Антарктиды температурный режим намного жестче. Лето здесь в этом отношении эквивалентно арктической зиме (—30. —35 °С), а зима вообще уникальна: от —65. —70 °С при кратковременных понижениях температуры до —80. —85 и даже до —89,5 °С, как было однажды на станции Восток.

Основная причина столь больших различий заключается в том, что Арктика — это море, окруженное сушей, а Антарктика — суша, окруженная морем. И здесь Арктика „выигрывает» вдвойне. Во-первых, тепло океанических вод, проходя через толщу плавучего льда, отчасти смягчает зимние холода. Даже летом океан часто бывает теплее арктического воздуха. Это приводит к тому, что на разводьях и открытой воде образуются столь характерные для летней Арктики низкие плотные туманы или сильная мгла.

„Солнце с северной стороны горизонта, низко, градусов пятнадцать; небо в зените безмятежное и голубое, ниже сплошное кольцо серости и мрачности, море — чистейший холодный ультрамарин, и в густой синеве клинья сверкающего хирургически-белого накрахмаленного льда».
В. Конецкий „Вчерашние заботы»

Во-вторых, через ледяные равнины Арктики свободно проходят рождающиеся в умеренных широтах циклоны, которые часто затягивают сюда относительно теплый воздух. Погода в Арктике носит преимущественно циклонический характер, хотя погодные контрасты здесь по сравнению с контрастами средних широт заметно обострены. Особенно значительны они на окраинах арктических пустынь ранней весной и поздней осенью, когда вслед за пургой и морозом подчас приходит сильная оттепель.

„Разразилась ужасная непогода с громом и молнией. Дождь так и лил. В становище был полный развал: болото, оттаявшее торфяное месиво, иссеченное дождем, бездонная слякость рыхлого снега и бесчисленные ручьи, выбивавшиеся на поверхность и растекавшиеся по всем направлениям. Обувь из тюленьих шкур хлюпала и чвокала у нас на ногах всякий раз, как мы вынуждены были выходить, чтобы поправить палатку, положить еще камней на парусину и тем помешать ей улететь по ветру; но все-таки наше положение было сносно в сравнении с положением наших соседей — эскимосов, живших в своих снежных хижинах. Стены последних были уже не из снега, а из какой-то желтоватой массы, в которой дождь просекал все новые дыры, и обитатели тщетно пытались заткнуть их своей обувью, штанами, шубами. Непогода продержалась два дня. Третий день принес с собой холод и пургу как раз с противоположной стороны».
К. Расмуссен „Великий санный путь»

При снижении циклонической активности, а стало быть, при безветрии и отсутствии облачности воздух надо льдами Центральной Арктики из-за сильного теплового излучения поверхности быстро охлаждается, становится плотным и тяжелым, растет давление. Так в приполярном пространстве образуется гигантская „капля» холодного воздуха диаметром около 1000 км и высотой 2—2,5 км. Она называется арктическим антициклоном и чаще всего появляется во время полярной ночи, когда условия для радиационного выхолаживания воздуха особенно благоприятны.

Арктический антициклон влияет на характер погоды не только в полярных районах: довольно часто отдельные „порции» этой холодной „капли» затягиваются в тыловые части северных циклонов и обрушиваются на центральные и южные районы умеренных широт и даже на субтропики. Именно так приходят к нам арктические холода.

Если вспомнить, что говорилось о сибирском антициклоне в главе „Масштабы погоды», то можно окончательно установить два источника холодов в Центральной России — арктические и сибирские морозы. По силе воздействия на погоду в средних широтах арктический и сибирский антициклоны примерно равноценны, но арктические похолодания случаются все-таки чаще.

В Антарктиде холодный полярный антициклон — явление почти постоянное, что объясняется большой высотой Антарктического континента. Как уже упоминалось, средняя высота этого континента над уровнем моря составляет 2300 м, причем очень большие пространства ледникового щита, особенно в Восточной Антарктиде, поднимаются до высоты 3000—4000 м. Таким образом, массив Антарктиды является естественным барьером на пути циклонов умеренных широт Южного океана. Поскольку эти циклоны не проникают в глубь материка, там постоянно существует еще более холодный, чем в Арктике, и еще более высокий (до 3—4 км) полярный антициклон.

Это не означает, однако, что погода в Антарктиде всегда тихая и солнечная. Напротив, другого такого ветреного места с такими свирепыми метелями, как в Антарктиде, нигде на Земле найти нельзя. Однако механизм формирования этих буранов совершенно иной, нежели в средних широтах и в Арктике.

„Пронесшаяся над лагерем буря была самым обычным ветром с юга, но на этот раз он был нам исключительно неприятен, потому что длился на редкость долго. Барометр нам сейчас ни к чему. Мой опыт убеждает в том, что если ртуть поднимается, значит, буря станет сильнее, а если падает, то ветер будет крепчать. Ну а если барометр стоит на месте, то и буря лютует с прежней силой. Забавно, не правда ли?»
Р. Пристли „Антарктическая одиссея»

В этих словах, написанных, верно, с горькой усмешкой, вся антарктическая погода. Действительно, на противоположном полюсе, в Арктике, холодный воздух антициклона, чтобы превратиться в буран, должен быть захвачен интенсивной циклонической циркуляцией, потому что в антициклоне ветры, как мы знаем, слабы. Следовательно, в Арктике бураны являются строго „геострофическими», то есть подчиняются распределению атмосферного давления и могут быть предсказаны с помощью наблюдений за показаниями барометра.

Для того чтобы начался буран в Антарктиде, в циклонах необходимости нет, да они и не появляются в центральных районах материка. Воздух, охлажденный над обширными и высокими ледниковыми плато, из-за большой плотности скатывается, стекает к побережью, захватывая массу снежной пыли и превращаясь по пути в ураган, силу которого трудно вообразить не бывавшему в Антарктиде человеку. Эти ветры называются стоковыми (катабатическими).

какое давление на полюсах

Стоковые ветры в Восточной Антарктиде (расчет).
Стрелками показаны характерные направления воздушного потока, изолиниями — рельеф.

Долгое время природу стоковых ветров установить точно не удавалось. Выдвигались различные теории, пока не появились достаточно длительные ряды наблюдений за этими ветрами, проводившихся на многих антарктических научных станциях. Теперь имеются точные расчеты направления ветра над Антарктидой, которые показывают, что оно действительно совпадает с направлением наибольшего уклона антарктической поверхности. Отмечается также небольшой поворот ветра влево от генерального направления, что объясняется воздействием силы Кориолиса на движущуюся массу воздуха (в южном полушарии она должна отклоняться именно влево). Значит, можно с полным основанием считать антарктические ураганы стоковым ветром.

Максимальной скорости стоковый ветер достигает на побережье материка. Вот данные о самых сильных его порывах по наблюдениям на прибрежных станциях:

Молодежная (СССР) — 51 м/с,
Дюмон-д’Юрвиль (Франция) —73 м/с,
Кейси (Австралия) — 80 м/с,
Моусон (Австралия) — 84 м/с.

При стоковых ветрах несущаяся с огромной скоростью масса воздуха наполнена взметенным снегом и поэтому обладает громадной живой силой. Некоторое представление об этой силе могут дать многочисленные описания антарктических буранов.

„Утром всюду виднелись следы необычайной ярости пронесшейся над мысом бури. С хижины Борхгревинка, превращенной нами в склад, сорвало крышу. Соединенные треугольником деревянные балки, каждая размером три дюйма на шесть при длине 12 футов, которые мы смогли поднять только общими усилиями всей партии, ветер сорвал и отнес на 30—40 ярдов. Нам необычайно повезло, что никто не был ранен, хотя во время бури по воздуху, должно быть, носились десятки предметов. Не говоря уже об опустошенных ящиках и бесчисленных банках, весь берег был усеян обломками. Метеорологическая служба понесла значительно более серьезные потери. Кроме легко заменимых гелиографа и флюгера, камень угодил точно в актинометр, находившийся, по-моему, в затишке, проделал две аккуратные дырочки во внешнем вакуумном шарике и отбил кусочек от зачерненного шарика внутри. Камень двигался, очевидно, с огромной скоро.стью — на уцелевшем стекле почти не было трещин».
Р. Пристли „Антарктическая одиссея»

Конечно, стоковые ветры дуют непостоянно, иначе жизнь в Антарктиде вряд ли была бы возможна. Из данных карты (см. выше) следует, что имеются также участки побережья, куда потоки холодного воздуха устремляются наиболее часто. Но даже и на этих участках ветры дуют с перерывами. Определенной периодичности появления стоковых ветров не наблюдается, их непрерывная продолжительность тоже очень изменчива.

Но стоят ли того Арктика и Антарктика? Какие такие клады скрываются в их глубинах? И если с точки зрения обыденной логики ответа на эти вопросы, пожалуй, найти невозможно, то чувства многих поколений людей, по-настоящему преданных полюсу, лучше всего выражают, наверное, простые слова полярника Званцева, записанные журналистом на борту ледореза „Федор Литке» в 1930 г. и опубликованные в книге 3. Рихтер „У белого пятна»:

„Вы не испытали еще полярной зимовки и все равно не поймете. Арктика притягивает. Кто раз побывал в Арктике, тот на всю жизнь отравлен ею. Сами убедитесь в этом».

Источник

Какое давление на полюсах

Экваториальный пояс. Экваториальные воздушные массы (ЭВ) весь год, зона низкого давления. Климатические области внутри пояса не выражены. Температуры весь год высокие, увлажнение избыточное, осадков много. Сезонные колебания среднемесячных температур, давления и осадков незначительные, ветры слабые. Погода: до полудня — жаркая солнечная, после полудня — обильные дожди.
Субэкваториальные пояса. Сезонная смена воздушных масс: летом — экваториальные (ЭВ), зимой — тропические (ТВ). Летом климатические и погодные условия такие же, как в экваториальном поясе, зимой — как в тропическом, в области пустынного климата (кТВ). Зима немного прохладнее, чем лето, но отличается сухостью.
Тропические пояса. Тропические воздушные массы весь год (ТВ), преобладание континентального тропического воздуха (кТВ). Давление высокое, температура высокая, но зимой немного ниже, чем летом. Значительная годовая и суточная амплитуда колебаний температур. Осадков почти нет, увлажнение ничтожное, нередки сильные жаркие сухие ветры и пыльные бури. Такой сухой жаркий климат называют аридным, а те части тропических поясов, в которых типичны такие климатические условия — областями тропического, пустынного климата. Погода ясная, солнечная, сухая.
Субтропические пояса. Сезонная смена воздушных масс: тропические (ТВ) летом, умеренные (УВ или ПВ) — зимой. Давление летом высокое, зимой — относительно низкое. Значительные сезонные различия температур и осадков, но температура положительна в течение почти всего года. Хотя возможны кратковременные ее понижения до отрицательных значений и даже выпадение снега. На равнинах он быстро тает, в горах может сохраняться в течение нескольких месяцев. Летом преобладают пассаты, зимой — западные ветры.
Умеренные пояса. В течение всего года господствуют умеренные воздушные массы (УВ), но возможны вторжения ТВ (особенно летом) и АВ (обычно зимой). Большие сезонные различия температуры: лето теплое, иногда жаркое, зима холодная, морозная, продолжительная. Атмосферное давление в течение года относительно низкое, интенсивная циклоническая и фронтальная деятельность, порождающая неустойчивость климатических и погодных условий, особенно зимой. Западные ветры в течение всего года, зимой часто дуют северо-восточные ветры, а летом иногда — пассаты. Зимой во многих районах пояса наблюдается продолжительный и устойчивый снеговой покров. В пределах умеренного пояса свойства воздушных масс изменяются с запада на восток, особенно в северном полушарии.
Субарктический и субантарктический пояса. Летом — умеренные (УВ), а зимой — арктические и антарктические воздушные массы (АВ). Большие сезонные колебания температуры воздуха, сплошное распространение многолетней мерзлоты. Летом — западные ветры, зимой — северовосточные или юго-восточные.
Арктический и антарктический пояса. АВ в течение всего года, очень холодные зима и лето, осадков мало, сильные ветры (на севере — северо-восточные, на юге — юго-восточные).

Что такое пояса атмосферного давления определение. Непосредственные причины возникновения поясов атмосферного давления

Воздух, окружающий Землю, имеет массу, и несмотря на то, что масса атмосферы примерно в миллион раз меньше массы Земли (общая масса атмосферы равна 5,2*10 21 г, а 1 м 3 воздуха у земной поверхности весит 1,033 кг), эта масса воздуха оказывает давление на все объекты, находящиеся на земной поверхности. Сила, с которой воздух давит на земную поверхность, называется атмосферным давлением.

На каждого из нас давит столб воздуха в 15 т. Такое давление способно раздавить все живое. Почему же мы его не ощущаем? Объясняется это тем, что давление внутри нашего организма равно атмосферному.

Таким образом, внутреннее и внешнее давление уравновешиваются.

Барометр

Атмосферное давление измеряется в миллиметрах ртутного столба (мм рт. ст.). Для его определения пользуются специальным прибором — барометром (от греч. baros — тяжесть, вес и metreo — измеряю). Существуют ртутные и безжидкостные барометры.

Безжидкостные барометры получили название барометры-анероиды (от греч. а — отрицательная частица, nerys — вода, т. е. действующий без помощи жидкости) (рис. 1).

какое давление на полюсах

Рис. 1. Барометр-анероид: 1 — металлическая коробочка; 2 — пружина; 3 — передаточный механизм; 4 — стрелка-указатель; 5 — шкала

Нормальное атмосферное давление

За нормальное атмосферное давление условно принято давление воздуха на уровне моря на широте 45° и при температуре 0 °С. В этом случае атмосфера давит на каждый 1 см 2 земной поверхности с силой 1,033 кг, а масса этого воздуха уравновешивается ртутным столбиком высотой 760 мм.

Опыт Торричелли

Величина 760 мм была впервые получена в 1644 г. Эванджелистом Торричелли (1608-1647) и Винченцо Вивиани (1622-1703) — учениками гениального итальянского ученого Галилео Галилея.

Э. Торричелли запаял с одного конца длинную стеклянную трубку с делениями, наполнил ртутью и опустил в чашку с ртутью (так был изобретен первый ртутный барометр, который получил название трубки Торричелли). Уровень ртути в трубке понизился, так как часть ртути вылилась в чашку и установилась на уровне 760 миллиметров. Над столбиком ртути образовалась пустота, которая получила название Торричеллиевой пустоты (рис. 2).

Э. Торричелли полагал, что давление атмосферы на поверхность ртути в чашке уравновешивается весом столба ртути в трубке. Высота этого столба над уровнем моря — 760 мм рт. ст.

какое давление на полюсах

Рис. 2. Опыт Торричелли

Повышенное и пониженное атмосферное давление

Давление воздуха на нашей планете может изменяться в широких пределах. Если давление воздуха больше 760 мм рт. ст., то оно считается повышенным, меньше — пониженным.

Так как с подъемом вверх воздух становится все более разреженным, атмосферное давление понижается (в тропосфере в среднем 1 мм на каждые 10,5 м подъема). Поэтому для территорий, расположенных на разной высоте над уровнем моря, средним будет свое значение атмосферного давления. Например, Москва лежит на высоте 120 м над уровнем моря, поэтому среднее атмосферное давление для нее — 748 мм рт. ст.

Атмосферное давление в течение суток дважды повышается (утром и вечером) и дважды понижается (после полудня и после полуночи). Эти изменения связаны с изменением и перемещением воздуха. В течение года на материках максимальное давление наблюдается зимой, когда воздух переохлажден и уплотнен, а минимальное — летом.

Распределение атмосферного давления по земной поверхности носит ярко выраженный зональный характер. Это обусловлено неравномерным нагреванием земной поверхности, а следовательно, и изменением давления.

На земном шаре выделяются три пояса с преобладанием низкого атмосферного давления (минимумы) и четыре пояса с преобладанием высокого (максимумы).

В экваториальных широтах поверхность Земли сильно прогревается. Нагретый воздух расширяется, становится легче и поэтому поднимается вверх. В результате у земной поверхности близ экватора устанавливается низкое атмосферное давление.

У полюсов под воздействием низкой температуры воздух становится более тяжелым и опускается. Поэтому у полюсов атмосферное давление, повышенное по сравнению с широтами на 60-65°.

В высоких слоях атмосферы, наоборот, над жаркими областями давление высокое (хотя и ниже, чем у поверхности Земли), а над холодными — низкое.

Общая схема распределения атмосферного давления такова (рис. 3): вдоль экватора расположен пояс низкого давления; на 30-40° широты обоих полушарий — пояса высокого давления; 60-70° широты — зоны низкого давления; в приполярных районах — области высокого давления.

В результате того, что в умеренных широтах Северного полушария зимой атмосферное давление над материками сильно повышается, пояс низкого давления прерывается. Он сохраняется только над океанами в виде замкнутых областей пониженного давления — Исландского и Алеутского минимумов. Над материками, наоборот, образуются зимние максимумы: Азиатский и Северо-Американский.

какое давление на полюсах

Рис. 3. Общая схема распределения атмосферного давления

Летом в умеренных широтах Северного полушария пояс пониженного атмосферного давления восстанавливается. Огромная область пониженного атмосферного давления с центром в тропических широтах — Азиатский минимум — формируется над Азией.

В тропических широтах материки всегда нагреты сильнее, чем океаны, и давление над ними ниже. Таким образом, над океанами в течение всего года существуют максимумы: Северо-Атлантический (Азорский), Северо-Тихоокеанский, Южно-Атлантический, Южно-Тихоокеанский и Южно-Индийский.

Линии, которые на климатической карте соединяют пункты с одинаковым атмосферным давлением, называются изобарами (от греч. isos — равный и baros — тяжесть, вес).

На образование поясов атмосферного давления у земной поверхности влияют неравномерное распределение солнечного тепла и вращение Земли. В зависимости от времени года оба полушария Земли нагреваются Солнцем по-разному. Это обусловливает некоторое перемещение поясов атмосферного давления: летом — к северу, зимой — к югу.

Обуславливается весом воздуха. 1 м³ воздуха весит 1,033 кг. На каждый метр поверхности земли приходится давление воздуха силой 10033 кг. Под этим подразумевается столб воздуха высотой от уровня моря до верхних слоев атмосферы. Если сравнить его со столбом воды, то диаметр последнего имел бы высоту всего 10 метров. То есть, атмосферное давление создается собственной массой воздуха. Величина атмосферного давления на единицу площади соответствует массе воздушного столба, находящегося над нею. В результате увеличения воздуха в этом столбе происходит рост давления, а при уменьшении воздуха — падение. Нормальным атмосферным давлением считается давление воздуха при t 0°С на уровне моря на широте 45°. В этом случае атмосфера давит с силой 1,033 кг на каждый 1 см² площади земли. Масса этого воздуха уравновешивается ртутным столбиком высотой 760 мм. На этой взаимосвязи и измеряется атмосферное давление. Оно измеряется в миллиметрах ртутного столба или миллибарах(мб), а так же в гектопаскалях. 1мб = 0,75 мм рт.ст., 1 гПа = 1 мм.

Каким бывает атмосферное давление.

Атмосферное давление на земном шаре изменяется в широких пределах. Его минимальная величина — 641,3 мм рт.ст или 854 мб была зарегистрирована над Тихим океаном в урагане «Ненси», а максимальная — 815,85 мм рт.ст. или 1087 мб в Туруханске зимой.

Давление воздуха на земную поверхность изменяется с высотой. Среднее значение атмосферного давления над уровнем моря — 1013 мб или 760 мм рт.ст. Чем больше высота, тем меньше атмосферное давление, так как воздух становится все более разреженным. В нижнем слое тропосферы до высоты 10 м оно снижается на 1 мм рт.ст. на каждые 10 м или на 1 мб на каждые 8 метров. На высоте 5 км оно меньше в 2 раза, 15 км — в 8 раз, 20 км — в 18 раз.

В связи с перемещением воздуха, изменением температуры, сменой времени года атмосферное давление постоянно меняется. Дважды за сутки, утром и вечером, оно повышается и столько же раз понижается, после полуночи и после полудня. В течение года из-за холодного и уплотненного воздуха зимой атмосферное давление имеет максимальную величину, а летом — минимальную.

какое давление на полюсах

Постоянно меняется и распределяется по поверхности земли зонально. Это происходит из-за неравномерного прогревания Солнцем земной поверхности. На изменение давления влияет перемещение воздуха. Там, где воздуха становится больше, давление высокое, а там, откуда воздух уходит — низкое. Воздух, прогревшись от поверхности, поднимается вверх и давление на поверхность понижается. На высоте воздух начинает охлаждаться, уплотняется и опускается на близлежащие холодные участки. Там возрастает атмосферное давление. Следовательно, изменение давления обуславливается перемещением воздуха в результате его нагревания и охлаждения от земной поверхности.

Атмосферное давление в экваториальной зоне постоянно понижено, а в тропических широтах — повышено. Это происходит из-за постоянно высоких температур воздуха на экваторе. Нагретый воздух поднимается и уходит в сторону тропиков. В Арктике и Антарктике поверхность земли всегда холодная, а атмосферное давление повышено. Его обуславливает воздух, который приходит из умеренных широт. В свою очередь в умеренных широтах из-за оттока воздуха формируется зона пониженного давления. Таким образом, на Земле существуют два пояса атмосферного давления — пониженный и повышенный. Пониженный на экваторе и в двух умеренных широтах. Повышенный на двух тропических и двух полярных. Они могут немного смещаться в зависимости от времени года вслед за Солнцем в сторону летнего полушария.

Полярные пояса высокого давления существуют весь год, однако, летом они сокращаются, а зимой, наоборот, расширяются. Круглый год области пониженного давления сохраняются близ Экватора и в южном полушарии в умеренных широтах. В северном полушарии все происходит по-другому. В умеренных широтах северного полушария давление над материками сильно повышается и поле низкого давления как бы «разрывается»: сохраняется оно только над океанами в виде замкнутых областей пониженного атмосферного давления — Исландского и Алеутского минимумов. Над материками, где заметно повысилось давление, образуются зимние максимумы: Азиатский (Сибирский) и Северо-Американский (Канадский). Летом поле пониженного давления в умеренных широтах северного полушария восстанавливается. При этом над Азией формируется обширная область пониженного давления. Это — Азиатский минимум.

В поясе повышенного атмосферного давления — тропиках — материки нагреваются сильнее океанов и давление над ними ниже. Из-за этого над океанами выделяют субтропические максимумы:

Несмотря на крупномасштабные сезонные изменения своих показателей, пояса пониженного и повышенного атмосферного давления Земли — образования довольно устойчивые.

РАЗДЕЛ 3 ГЕОГРАФИЧЕСКАЯ ОБОЛОЧКА

§ 35. Атмосферное давление. Пояса атмосферного давления на Земле

Имеет ли воздух вес?

Воздух давит на земную поверхность. Долгое время люди считали, что воздух невесомое. Лишь в XVII веке. итальянский ученый Е. Торричелли доказал, что воздух давит на земную поверхность и окружающие предметы с определенной силой, которую назвал атмосферным давлением. Итак, атмосферное давление — это сила, с которой давит на каждую единицу земной поверхности столб воздуха, размещенный между поверхностью Земли и верхней границей атмосферы. Измеряют эту силу в основном в миллиметрах ртутного столба (мм рт. ст.) с помощью барометров (рис. 94).

Воздух давит на земную поверхность в разных местах с разной силой. Это объясняется неравномерным нагревом поверхности Земли, от которой, в свою очередь, нагревается воздух. Предположим, что какой-то участок земной поверхности имеет более высокую температуру. От нее нагреется и прилегающее воздуха, которое начнет подниматься. Поднимаясь вверх (восходящий поток), воздух будет давить на поверхность с меньшей силой. Там, где воздух опускается вниз (нисходящий поток), оно сильнее давит на землю. Поэтому здесь возникают зоны высокого давления.

Рис. 94. Барометр-анероид (1), электронный барометр (2)

На уровне моря атмосферное давление близкое к давлению столбика ртути высотой 760 мм. Это давление принято за нормальное атмосферное давление.

Изменения атмосферного давления. Атмосферное давление изменяется в зависимости от высоты местности. Так, высоко в горах атмосферное давление гораздо ниже, чем на уровне моря. Это объясняется тем, что с высотой столб и плотность воздуха уменьшаются, а следовательно, уменьшается и его давление.

Атмосферное давление меняется не только с высотой, но и в горизонтальном направлении вследствие перемещения воздуха. Разница давления заставляет воздух двигаться из зоны высокого давления в зону низкого давления. В результате такого перемещения на отдельных территориях образуется избыток массы воздуха, что вызывает повышение давления здесь.

Атмосферное давление и самочувствие человека. Когда человек поднимается на значительную высоту, ее самочувствие значительно ухудшается из-за недостатка кислорода и низкое давление. Уже на высоте около 5 км приходится применять кислородные маски, хотя есть спортсмены, которые поднимались на Эверест (высота 8841 м) без кислородных масок. Однако это на пределе возможностей человека.

Планетарные «пояса» атмосферного давления. На Земле выделяют несколько основных полос, вытянутых вдоль параллелей, с преобладанием высокого или низкого давления. их называют поясами атмосферного давления (рис. 95). В экваториальных широтах, где высокая температура держится в течение всего года, нагретый воздух постоянно поднимается, оставляя за собой пояс низкого атмосферного давления. Поднимаясь над экватором, теплый воздух охлаждается и распространяется во все стороны. Под действием силы вращения Земли большие массы этого воздуха опускаются в тропических широтах (вблизи 30° пн. ш. и пд. ш.). Опускаясь, воздух давит на земную поверхность и создает здесь пояса высокого атмосферного давления. В приземном слое воздуха движется как на север так и на юг, соответственно к умеренным или экваториальных широт.

какое давление на полюсах

Рис. 95. Распределение атмосферного давления на Земле

какое давление на полюсах

Рис. 96. Карта ізобар (фрагмент)

В умеренных широтах формируется пояс пониженного атмосферного давления, что связано в основном с постоянным движением воздуха. В полярных широтах образуется пояс повышенного давления, что объясняется преобладанием здесь низкой температуры в течение года.

Линии с одинаковым атмосферным давлением на карте. Распределение атмосферного давления на географической карте показывают с помощью линий (рис. 96). Линии, соединяющие на карте точки с одинаковым атмосферным давлением, называют ізобарами. (Вспомните, что на картах изотермами показывают.) За картой ізобар можно определить особенности пространственного распределения атмосферного давления на Земле, увидеть области высокого и низкого давления, которые значительно влияют на формирование погоды в данной местности.

Воздух давит на поверхность Земли.

Сила, с которой давит на каждую единицу земной поверхности столб воздуха, называют атмосферным давлением.

На земном шаре существует семь основных поясов атмосферного давления: экваториальный — низкого давления, два тропических — высокого давления, два умеренные — низкого давления, два полярные — высокого давления.

Вопросы и задания для самопроверки

Начертите схему распределения атмосферного давления на земном шаре и объясните ее.

От чего зависит распределение атмосферного давления на Земле? Выберите правильный ответ. Атмосферное давление измеряют с помощью: а) термографа; б) термометра; в) барометра; г) флюгера. Что такое атмосферное давление?

Атмосферное давление тесно связано с температурой воздуха. Теплый воздух лег-че холодного, слабее давит на поверхность и может вместить больше водяного пара.

Больше всего тепла получает жаркий тепловой пояс. Воздух в приземных слоях вблизи экватора сильно нагревается, увеличивается в объёме и поднимается вверх. Атмосферное давление у поверхности Земли понижа-ется. У полюсов всё происходит наоборот. Тепла там мало, воздух холодный и тя-жёлый, поэтому он опускается вниз, и давление у поверхности Земли повышается.

В области экватора при восходящем движении воздух постепенно охлаждается, содержащийся в нём водяной пар (а тёплый воздух может его вместить много) кон-денсируется и проливается сильным дождём. В верхние слои тропосферы такой воздух доходит охлаждённым, с повышенным давлением. Поэтому на высоте 10-12 км он начинает растекаться к северу и к югу от экватора, т. а в сторону полюсов.

Растекающийся от экватора охлаждённый воздух на высоте становится ещё холоднее и тяжелее и, достигнув 30° с. ш. и 30° ю. ш., начинает опускаться. При нисходящем движении он уплотняется, нагревается, становится суше. Здесь образу-ются пояса высокого давления. Между полярными и тропическими поясами повы-шенного атмосферного давления в умеренных широтах расположились пояса отно-сительно пониженного атмосферного давления. Летом в Северном полушарии Солн-це смещается к Северному тропику. Вслед за Солнцем к северу смещаются пояса атмосферного давления. В день равноденствия всё вернётся к экватору. Потом по-степенно начнётся такое же смещение к югу — лето наступит в Южном полушарии. Материал с сайта

Основная причина образования поясов атмосферного давления — неодинако-вое поступление солнечного тепла на разных широтах.

Атмосферное давление на земле распределяется широтными поясами: пониженное — вблизи экватора и в умеренных широтах; повышенное — в областях тропиков и вокруг полюсов.

На этой странице материал по темам:

В каких широтах располагаются пояса повышенного давления

Атмосферное давление начало 19 век

Конспект темы распределение поясов атмосферного давления на земле

Причина образования атмосферного давления

Почему в области экватора у поверхности земли давление низкое

Вопросы по этому материалу:

Непосредственной причиной возникновения поясов атмосферного давления является:

а)Угол наклона земной оси
б)неравномерный нагрев поверхности океана и суши
в) неравномерное распределение солнечного тепла в зависимости от географической широты
г)постоянный ветер
Помогите пожалуйста! Буду очень благодарна! 20 баллов!

О каком поясе освещенности говорится в описании? Данный пояс освещенности в течение всего года получает большое количество солнечного тепла и света. На

параллелях, ограничивающих пояс, солнце бывает в зените по одному разу в год, а между данными параллелями — по два.

используя карту атласа»плотность населения» определите а)в каких регионах земного шара наибольшая плотность населения и чему она равна. б)где на земном

шаре плотность населения менее 1 чел.на км» в)в какой части земного земного шара расположены незаселенные места г)какую закономерность данные карты д)какие условия влияют на распределения населения по Земле.

2 вариант 1. У подножия горы АД составляет 760 мм рт.ст. Каким будет давление на высоте 800 м: а) 840 мм рт. ст.; б) 760 мм рт. ст.; в) 700 мм рт. ст.;

Популярные темы:

Опубликовано 09.06.2017 по предмету География от Гость 1.Меньшее атмосферное давление наблюдается на А) берегу моря…

Рудный пояс(a. ore belt; н. Erzgurtel; ф. ceinture mineralisee; и. zona de minerales) — вытянутая…

Итоговые задания после §41 1. Пользуясь рисунком 106 и текстом учебника, дайте характеристику основных слоев…

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *