Фенолы более сильные кислоты чем алифатические спирты потому что
Фенолы
Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.
Гидроксисоединения делят на спирты и фенолы.
Спирты – это гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH. Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам. |
Общая формула предельных нециклических спиртов: CnH2n+2Om, где m ≤ n.
Классификация фенолов
По числу гидроксильных групп:
Соединения, в которых группа ОН отделена от бензольного кольца углеродными атомами – это не фенолы, а ароматические спирты: |
Строение фенолов
В фенолах одна из неподеленных электронных пар кислорода участвует в сопряжении с π–системой бензольного кольца, это является главной причиной отличия свойств фенола от спиртов.
Химические свойства фенолов
Сходство: как фенол, так и спирты реагируют с щелочными металлами с выделением водорода.
Отличия:
1. Кислотные свойства фенолов
Фенолы являются более сильными кислотами, чем спирты и вода, т. к. за счет участия неподеленной электронной пары кислорода в сопряжении с π-электронной системой бензольного кольца полярность связи О–Н увеличивается. |
Раствор фенола в воде называют «карболовой кислотой», он является слабым электролитом.
1.1. Взаимодействие с раствором щелочей
В отличие от спиртов, фенолы реагируют с гидроксидами щелочных и щелочноземельных металлов, образуя соли – феноляты.
Например, фенол реагирует с гидроксидом натрия с образованием фенолята натрия |
Так как фенол – более слабая кислота, чем соляная и даже угольная, его можно получить из фенолята, вытесняя соляной или угольной кислотой:
1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
Фенолы взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются феноляты. При взаимодействии с металлами фенолы ведут себя, как кислоты.
2. Реакции фенола по бензольному кольцу
Наличие ОН-группы в бензольном кольце (ориентант первого рода) приводит к тому, что фенол гораздо легче бензола вступает в реакции замещения в ароматическом кольце. |
2.1. Галогенирование
Фенол легко при комнатной температуре (без всякого катализатора) взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола (качественная реакция на фенол). |
2.2. Нитрование
Под действием 20% азотной кислоты HNO3 фенол легко превращается в смесь орто- и пара-нитрофенолов.
Например, при нитровании фенола избытком концентрированной HNO3 образуется 2,4,6-тринитрофенол (пикриновая кислота): |
3. Поликонденсация фенола с формальдегидом
С формальдегидом фенол образует фенолоформальдегидные смолы.
4. Взаимодействие с хлоридом железа (III)
При взаимодействии фенола с хлоридом железа (III) образуются комплексные соединения железа, которые окрашивают раствор в сине-фиолетовый цвет. Это качественная реакция на фенол.
5. Гидрирование (восстановление) фенола
Присоединение водорода к ароматическому кольцу.
Продукт реакции – циклогексанол, вторичный циклический спирт.
Получение фенолов
1. Взаимодействие хлорбензола с щелочами
При взаимодействии обработке хлорбензола избытком щелочи при высокой температуре и давлении образуется водный раствор фенолята натрия.
При пропускании углекислого газа (или другой более сильной кислоты) через раствор фенолята образуется фенол.
2. Кумольный способ
Фенол в промышленности получают из каталитическим окислением кумола.
Первый этап процесса – получение кумола алкилированием бензола пропеном в присутствии фосфорной кислоты:
Второй этап – окисление кумола кислородом. Процесс протекает через образование гидропероксида изопропилбензола:
Суммарное уравнение реакции:
3. Замещение сульфогруппы в бензол-сульфокислоте
Бензол-сульфокислота реагирует с гидроксидом натрия с образованием фенолята натрия:
Получается фенолят натрия, из которого затем выделяют фенол:
Задачи: Знать классификацию гидроксилсодержащих соединений. Знать предельные одноатомные спирты, их строение. Изомерию спиртов
Главная > Документ
Информация о документе | |
Дата добавления: | |
Размер: | |
Доступные форматы для скачивания: |
Многоатомные спирты, их строение и свойства.
Представители многоатомных спиртов — этиленгликоль и глицерин. Двухатомные спирты, содержащие две гидроксильные группы—ОН, называются гликолями, или диолами, трехатомные спирты, содержащие три гидроксильные группы, — глицеринами, или триолами.
Положение гидроксильных групп указывается цифрами в конце названия.
Многоатомные спирты — бесцветные сиропообразные жидкости сладковатого вкуса, хорошо растворимы в воде, плохо — в органических растворителях; имеют высокие температуры кипения. Например, tкип этиленгликоля 198°С, плотность () 1,11 г/см3; tкип (глицерин) = 290°С, глицерин = 1,26 г/см3.
Двух- и трехатомные спирты получают теми же способами, что и одноатомные. В качестве исходных соединений могут быть использованы алкены, галогенопроизводные и другие соединения.
1. Этиленгликоль (этандиол-1,2) синтезируют из этилена различными способами:
3CH 2 =CH 2 + 2KMnO 4 + 4H 2 O ® 3HO–CH 2 –CH 2 –OH + 2MnO 2 + 2KOH
Многоатомные спирты по химическим свойствам сходны с одноатомными спиртами. Однако в химических свойствах многоатомных спиртов есть особенности, обусловленные присутствием в молекуле двух и более гидроксильных групп.
Кислотность многоатомных спиртов выше, чем одноатомных, что объясняется наличием в молекуле дополнительных гидроксильных групп, обладающих отрицательным индуктивным эффектом. Поэтому многоатомные спирты, в отличие от одноатомных, реагируют со щелочами, образуя соли. Например, этиленгликоль реагирует не только с щелочными металлами, но и с гидроксидами тяжелых металлов.
По аналогии с алкоголятами соли двухатомных спиртов называются гликолятами, а трехатомных — глицератами.
При взаимодействии этиленгликоля с галогеноводородами (НСl, HBr) одна гидроксильная группа замещается на галоген:
Вторая гидроксогруппа замещается труднее, под действием РСl5.
При взаимодействии гидроксида меди (II) с глицерином и другими многоатомными спиртами происходит растворение гидроксида и образуется комплексное соединение ярко-синего цвета.
В отсутствие щелочи многоатомные спирты не реагируют с |гидроксидом меди (II) — их кислотность для этого недостаточна.
Многоатомные спирты взаимодействуют с кислотами, образуя сложные эфиры (см. §7). При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кислоты образуется нитроглицерин (тринитрат глицерина):
Для спиртов характерны реакции, в результате которых образуются циклические структуры:
Этиленгликоль используется главным образом для производства лавсана и для приготовления антифризов — водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время).
Глицерин широко используется в кожевенной, текстильной промышленности при отделке кож и тканей и в других областях народного хозяйства. Наиболее важной областью применения глицерина является производство тринитрата глицерина (неверно называемого нитроглицерином) — это сильное взрывчатое вещество, которое взрывается от удара, а также лекарство (сосудорасширяющее средство). Сорбит (шестиатомный спирт) используется как заменитель сахара для больных диабетом.
Свойства многоатомных спиртов
1. С какими из перечисленных ниже веществ будет реагировать глицерин?
1) HBr 2) HNO 3 3) H 2 4) H 2 O 5)Cu(OH) 2 6) Ag 2 O/NH 3
2. Глицерин не реагирует с 1)HNO 3 2)NaOH 3)CH 3 COOH 4)Cu(OH) 2
3. Этиленгликоль не реагирует с 1)HNO 3 2)NaOH 3)CH 3 COOH 4)Cu(OH) 2
4. Со свежеосажденным гидроксидом меди (II) не будет взаимодействовать: 1) глицерин;
2) бутанон 3) пропаналь 4) пропандиол-1,2
5. Свежеприготовленный осадок Сu(ОН) 2 растворится, если к нему добавить
1)пропандиол-1,2 2)пропанол-1 3) пропен4)пропанол-2
6. Глицерин в водном растворе можно обнаружить с помощью
1) хлорной извести 2) хлорида железа (III) 3) гидроксида меди (II) 4) гидроксида натрия
7. Какой из спиртов реагирует с гидроксидом меди (II)?
8. Характерной реакцией для многоатомных спиртов является взаимодействие с
1) H 2 2) Сu 3) Ag 2 O (NH 3 р-р) 4) Cu(OH) 2
9. Вещество, реагирующее с Na и Cu(OH) 2 – это:
1) фенол; 2) одноатомный спирт; 3) многоатомный спирт 4) алкен
10. Этандиол-1,2 может реагировать с
1) гидроксидом меди (II)
2) оксидом железа (II)
Фенолы, их строение. Свойства фенола, взаимное влияние атомов в молекуле фенола. Орто-, паро-ориентирующее действие гидроксильной группы. Получение и применение фенола
ФЕНОЛЫ – класс органических соединений. Содержат одну или несколько группировок С–ОН, при этом атом углерода входит в состав ароматического (например, бензольного) кольца.
Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ
В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).
Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ
Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ. Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.
Химические свойства фенолов
Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.
Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ
В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.
C 6 H 5 OH + NaOH = C 6 H 5 ONa + H 2 O
Вступает в реакции электрофильного замещения по ароматическому кольцу. Гидрокси-группа, являясь одной из самых сильных донорных групп, увеличивает реакционную способность кольца к этим реакциям, и направляет замещение в орто- и пара-положения. Фенол с лёгкостью алкилируется, ацилируется, галогенируется, нитруется и сульфируется.
2. Взаимодействие с металлическим натрием:
C 6 H 5 OH + Na = C 6 H 5 ONa + H 2 ↑
3. Взаимодействие с бромной водой (качественная реакция на фенол):
C 6 H 5 OH + 3Br 2 (водн.) → C 6 H 2 (Br) 3 OH + 3HBr образуется 2,4,6 трибромфенол
4. Взаимодействие с концентрированной азотной кислотой:
C 6 H 5 OH + 3HNO 3 конц → C 6 H 2 (NO 2 ) 3 OH + 3H 2 О образуется 2,4,6 тринитрофенол
5. Взаимодействие с хлоридом железа (III)(качественная реакция на фенол):
C 6 H 5 OH + FeCl 3 → [C 6 H 5 OFe] 2 +(Cl)2- + HCl образуется дихлоридфенолят железа (III)(фиолетовое окрашивание )
Способы получения фенолов.
Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С6Н5ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H3SO4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).
Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА
Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара-дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.
В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.
1. Сколько существует фенолов состава С 7 Н 8 О? 1)Один 2) Четыре 3) Три 4) два
2. Атом кислорода в молекуле фенола образует
1) одну σ-связь 2) две σ-связи 3) одну σ- и одну π-связи 4) две π-связи
1) между молекулами спирта образуется прочная водородная связь
2) в молекуле фенола больше массовая доля ионов водорода
3) в фенолах электронная система смещена в сторону атома кислорода, что приводит к большей подвижности атомов водорода бензольного кольца
4) в фенолах электронная плотность связи О-Н уменьшается из-за взаимодействия неподеленной электронной пары атома кислорода с бензольным кольцом
4. Выберите верное утверждение:
1) фенолы диссоциируют в большей степени, чем спирты;
2) фенолы проявляют основные свойства;
3) фенолы и их производные не обладают токсическим действием;
4) атом водорода в гидроксильной группе фенола не может быть замещен на катион металла под действием оснований.
5. Фенол в водном растворе является
1) сильной кислотой 2) слабой кислотой 3) слабым основанием 4) сильным основанием
1. Вещество, реагирующее с Na и NaOH, дающее фиолетовое окрашивание с FeCl 3 – это:
1) фенол; 2) спирт 3) простой эфир; 4) алкан
6. Влияние бензольного кольца на гидроксильную группу в молекуле фенола доказывает реакция фенола с
1) гидроксидом натрия 2) формальдегидом 3) бромной водой 4) азотной кислотой
7. Химическое взаимодействие возможно между веществами, формулы которых:
1) С 6 Н 5 OH и NaCl 2) С 6 Н 5 OH и HCl 3) С 6 Н 5 OH и NaOH 4) С 6 Н 5 ONa и NaOH.
8. Фенол не взаимодействует с
1) метаналем 2) метаном 3) азотной кислотой 4) бромной водой
9. Фенол взаимодействует c
1) соляной кислотой 2) этиленом 3) гидроксидом натрия 4) метаном
10. Фенол не взаимодействует с веществом, формула которого
1)HBr 2)Br 2 3)HNO 3 4)NaOH
11. Фенол не реагирует с 1) НNO 3 2) KОН 3) Вr 2 4) Сu(OH) 2
12. Кислотные свойства наиболее выражены у 1)фенола 2)метанола 3)этанола 4)глицерина
13. При взаимодействии фенола с натрием образуются
1) фенолят натрия и вода 2) фенолят натрия и водород
3) бензол и гидроксид натрия 4) бензоат натрия и водород
14. Установите соответствие между исходными веществами и продуктами, которые преимущественно образуются при их взаимодействии.
ИСХОДНЫЕ ВЕЩЕСТВА ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ
А) С 6 Н 5 ОН + К 1) 2,4,6-трибромфенол + НВr
Б) С 6 Н 5 ОН + КОН 2) 3,5-дибромфенол + НВr
В) С 6 Н 5 ОН + НNО3 3) фенолят калия + Н 2
Г) С 6 Н 5 ОН + Вr 2 (р-р) 4) 2,4,6-тринитрофенол + H 2 O
5) 3,5-динитрофенол + НNO 3
6) фенолят калия + Н 2 О
15. Установите соответствие между исходными веществами и продуктами реакции.
ИСХОДНЫЕ ВЕЩЕСТВА ПРОДУКТЫ РЕАКЦИИ
А) С 6 Н 5 ОН + Н 2 1) С 6 Н 6 + Н 2 О
Б) С 6 Н 5 ОН + К 2) С 6 Н 5 ОК + Н 2 О
В) С 6 Н 5 ОН + КОН 3) С 6 Н 5 ОН + КНСО 3
Г) С 6 Н 5 ОК + Н 2 О + СО 2 4) С 6 Н 11 ОН
6) С 6 Н 5 СООН + КОН
16. Фенол взаимодействует с растворами
17. Фенол реагирует с
3) гидроксидом натрия
6) оксидом кремния (IV)
18. При замещении водорода в ароматическом кольце на гидроксильную группу образуется:
1) сложный эфир; 2) простой эфир; 3) предельный спирт; 4) фенол.
19. Фенол может быть получен в реакции
1) дегидратации бензойной кислоты 2) гидрирования бензальдегида
3) гидратации стирола 4) хлорбензола с гидроксидом калия
Взаимосвязь, качественные реакции.
20. Метанол. этиленгликоль и глицерин являются:
1)гомологами; 2)первичным, вторичным и третичным спиртами;
32)изомерами; 4) одноатомным, двухатомным, трехатомным спиртами
22.Взаимодействуют между собой
1)этанол и водород 2)уксусная кислота и хлор
3)фенол и оксид меди (II) 4)этиленгликоль и хлорид натрия
23.Вещество Х может реагировать с фенолом, но не реагирует с этанолом. Это вещество:
1)Na 2) O 2 3)HNO 3 4)бромная вода
24. Ярко-синий раствор образуется при взаимодействии гидроксида меди (II) с
1)этанолом 2) глицерином 3) этаналем 4) толуолом
25. Гидроксид меди (II) может быть использован для обнаружения
1) C 2 H 5 OH 2) C 2 H 5 COOH 3) CH 3 COOH 4) C 6 H 11 OH
27.В схеме превращений этанол à Х à бутан веществом Х является
1)бутанол-1 2)бромэтан 3)этан 4)этилен
28. В схеме превращений пропанол-1 à Х à пропанол-2 веществом Х является
1) 2-хлорпропан 2) пропановая кислота 3) пропин 4) пропен
29.Водные растворы этанола и глицерина можно различить с помощью:
1)бромной воды 2)аммиачного раствора оксида серебра
4) металлического натрия 3)свежеприготовленного осадка гидроксида меди (II);
30. Отличить этанол от этиленгликоля можно с помощью:
1) натрия; 2) NaOH; 3) Cu(OH) 2 4) FeCl 3
31. Отличить фенол от метанола можно с помощью:
1) натрия; 2) NaOH; 3) Cu(OH) 2 4) FeCl 3
32. Отличить фенол от простого эфира можно с помощью:
1) Cl 2 2) NaOH 3) Cu(OH) 2 4) FeCl 3
33. Отличить глицерин от пропанола-1 можно с помощью:
1) натрия 2)NaOH 3) Cu(OH) 2 4) FeCl 3
34. Какое вещество надо использовать для того, чтобы в лабораторных условиях отличить друг от друга этанол и этиленгликоль?
1) Натрий 2) Соляную кислоту 3) Гидроксид меди (II) 4) Гидроксид натрия