Фенолы более сильные кислоты чем алифатические спирты потому что

Фенолы

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Фенолы более сильные кислоты чем алифатические спирты потому что

Спирты это гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где m n.

Классификация фенолов

По числу гидроксильных групп:

Фенолы более сильные кислоты чем алифатические спирты потому что

Соединения, в которых группа ОН отделена от бензольного кольца углеродными атомами – это не фенолы, а ароматические спирты:

Фенолы более сильные кислоты чем алифатические спирты потому что

Строение фенолов

В фенолах одна из неподеленных электронных пар кислорода участвует в сопряжении с π–системой бензольного кольца, это является главной причиной отличия свойств фенола от спиртов.

Фенолы более сильные кислоты чем алифатические спирты потому что

Химические свойства фенолов

Сходство: как фенол, так и спирты реагируют с щелочными металлами с выделением водорода.

Отличия:

1. Кислотные свойства фенолов

Фенолы являются более сильными кислотами, чем спирты и вода, т. к. за счет участия неподеленной электронной пары кислорода в сопряжении с π-электронной системой бензольного кольца полярность связи О–Н увеличивается.

Раствор фенола в воде называют «карболовой кислотой», он является слабым электролитом.

1.1. Взаимодействие с раствором щелочей

В отличие от спиртов, фенолы реагируют с гидроксидами щелочных и щелочноземельных металлов, образуя соли – феноляты.

Например, фенол реагирует с гидроксидом натрия с образованием фенолята натрия

Фенолы более сильные кислоты чем алифатические спирты потому что

Так как фенол – более слабая кислота, чем соляная и даже угольная, его можно получить из фенолята, вытесняя соляной или угольной кислотой:

Фенолы более сильные кислоты чем алифатические спирты потому что

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Фенолы взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются феноляты. При взаимодействии с металлами фенолы ведут себя, как кислоты.

Фенолы более сильные кислоты чем алифатические спирты потому что

2. Реакции фенола по бензольному кольцу

Наличие ОН-группы в бензольном кольце (ориентант первого рода) приводит к тому, что фенол гораздо легче бензола вступает в реакции замещения в ароматическом кольце.

2.1. Галогенирование

Фенол легко при комнатной температуре (без всякого катализатора) взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола (качественная реакция на фенол).

Фенолы более сильные кислоты чем алифатические спирты потому что

2.2. Нитрование

Под действием 20% азотной кислоты HNO3 фенол легко превращается в смесь орто- и пара-нитрофенолов.

Например, при нитровании фенола избытком концентрированной HNO3 образуется 2,4,6-тринитрофенол (пикриновая кислота):

Фенолы более сильные кислоты чем алифатические спирты потому что

3. Поликонденсация фенола с формальдегидом

С формальдегидом фенол образует фенолоформальдегидные смолы.

Фенолы более сильные кислоты чем алифатические спирты потому что

4. Взаимодействие с хлоридом железа (III)

При взаимодействии фенола с хлоридом железа (III) образуются комплексные соединения железа, которые окрашивают раствор в сине-фиолетовый цвет. Это качественная реакция на фенол.

5. Гидрирование (восстановление) фенола

Присоединение водорода к ароматическому кольцу.

Продукт реакции – циклогексанол, вторичный циклический спирт.

Фенолы более сильные кислоты чем алифатические спирты потому что

Получение фенолов

1. Взаимодействие хлорбензола с щелочами

При взаимодействии обработке хлорбензола избытком щелочи при высокой температуре и давлении образуется водный раствор фенолята натрия.

Фенолы более сильные кислоты чем алифатические спирты потому что

При пропускании углекислого газа (или другой более сильной кислоты) через раствор фенолята образуется фенол.

Фенолы более сильные кислоты чем алифатические спирты потому что

2. Кумольный способ

Фенол в промышленности получают из каталитическим окислением кумола.

Первый этап процесса – получение кумола алкилированием бензола пропеном в присутствии фосфорной кислоты:

Фенолы более сильные кислоты чем алифатические спирты потому что

Второй этап – окисление кумола кислородом. Процесс протекает через образование гидропероксида изопропилбензола:

Фенолы более сильные кислоты чем алифатические спирты потому что

Суммарное уравнение реакции:

Фенолы более сильные кислоты чем алифатические спирты потому что

3. Замещение сульфогруппы в бензол-сульфокислоте

Бензол-сульфокислота реагирует с гидроксидом натрия с образованием фенолята натрия:

Фенолы более сильные кислоты чем алифатические спирты потому что

Получается фенолят натрия, из которого затем выделяют фенол:

Источник

Задачи: Знать классификацию гидроксилсодержащих соединений. Знать предельные одноатомные спирты, их строение. Изомерию спиртов

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Многоатомные спирты, их строение и свойства.

Представители многоатомных спиртов — этиленгликоль и глицерин. Двухатомные спирты, содержащие две гидроксильные группы—ОН, называются гликолями, или диолами, трехатомные спирты, содержащие три гидроксильные группы, — глицеринами, или триолами.

Положение гидроксильных групп указывается цифрами в конце названия.

Фенолы более сильные кислоты чем алифатические спирты потому что

Многоатомные спирты — бесцветные сиропообразные жидкости сладковатого вкуса, хорошо растворимы в воде, плохо — в органических растворителях; имеют высокие температуры кипения. Например, tкип этиленгликоля 198°С, плотность () 1,11 г/см3; tкип (глицерин) = 290°С, глицерин = 1,26 г/см3.

Двух- и трехатомные спирты получают теми же способами, что и одноатомные. В качестве исходных соединений могут быть использованы алкены, галогенопроизводные и другие соединения.

1. Этиленгликоль (этандиол-1,2) синтезируют из этилена различными способами:

Фенолы более сильные кислоты чем алифатические спирты потому что

3CH 2 =CH 2 + 2KMnO 4 + 4H 2 O ® 3HO–CH 2 –CH 2 –OH + 2MnO 2 + 2KOH

Фенолы более сильные кислоты чем алифатические спирты потому что

Фенолы более сильные кислоты чем алифатические спирты потому что

Многоатомные спирты по химическим свойствам сходны с одноатомными спиртами. Однако в химических свойствах многоатомных спиртов есть особенности, обусловленные присутствием в молекуле двух и более гидроксильных групп.

Кислотность многоатомных спиртов выше, чем одноатомных, что объясняется наличием в молекуле дополнительных гидроксильных групп, обладающих отрицательным индуктивным эффектом. Поэтому многоатомные спирты, в отличие от одноатомных, реагируют со щелочами, образуя соли. Например, этиленгликоль реагирует не только с щелочными металлами, но и с гидроксидами тяжелых металлов.

Фенолы более сильные кислоты чем алифатические спирты потому что

По аналогии с алкоголятами соли двухатомных спиртов называются гликолятами, а трехатомных — глицератами.

При взаимодействии этиленгликоля с галогеноводородами (НСl, HBr) одна гидроксильная группа замещается на галоген:

Фенолы более сильные кислоты чем алифатические спирты потому что

Вторая гидроксогруппа замещается труднее, под действием РСl5.

При взаимодействии гидроксида меди (II) с глицерином и другими многоатомными спиртами происходит растворение гидроксида и образуется комплексное соединение ярко-синего цвета.

Фенолы более сильные кислоты чем алифатические спирты потому что

В отсутствие щелочи многоатомные спирты не реагируют с |гидроксидом меди (II) — их кислотность для этого недостаточна.

Многоатомные спирты взаимодействуют с кислотами, образуя сложные эфиры (см. §7). При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кислоты образуется нитроглицерин (тринитрат глицерина):

Фенолы более сильные кислоты чем алифатические спирты потому что

Для спиртов характерны реакции, в результате которых образуются циклические структуры:

Фенолы более сильные кислоты чем алифатические спирты потому что

Этиленгликоль используется главным образом для производства лавсана и для приготовления антифризов — водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время).

Глицерин широко используется в кожевенной, текстильной промышленности при отделке кож и тканей и в других областях народного хозяйства. Наиболее важной областью применения глицерина является производство тринитрата глицерина (неверно называемого нитроглицерином) — это сильное взрывчатое вещество, которое взрывается от удара, а также лекарство (сосудорасширяющее средство). Сорбит (шестиатомный спирт) используется как заменитель сахара для больных диабетом.

Свойства многоатомных спиртов

1. С какими из перечисленных ниже веществ будет реагировать глицерин?

1) HBr 2) HNO 3 3) H 2 4) H 2 O 5)Cu(OH) 2 6) Ag 2 O/NH 3

2. Глицерин не реагирует с 1)HNO 3 2)NaOH 3)CH 3 COOH 4)Cu(OH) 2

3. Этиленгликоль не реагирует с 1)HNO 3 2)NaOH 3)CH 3 COOH 4)Cu(OH) 2

4. Со свежеосажденным гидроксидом меди (II) не будет взаимодействовать: 1) глицерин;

2) бутанон 3) пропаналь 4) пропандиол-1,2

5. Свежеприготовленный осадок Сu(ОН) 2 растворится, если к нему добавить

1)пропандиол-1,2 2)пропанол-1 3) пропен4)пропанол-2

6. Глицерин в водном растворе можно обнаружить с помощью

1) хлорной извести 2) хлорида железа (III) 3) гидроксида меди (II) 4) гидроксида натрия

7. Какой из спиртов реагирует с гидроксидом меди (II)?

8. Характерной реакцией для многоатомных спиртов является взаимодействие с

1) H 2 2) Сu 3) Ag 2 O (NH 3 р-р) 4) Cu(OH) 2

9. Вещество, реагирующее с Na и Cu(OH) 2 – это:

1) фенол; 2) одноатомный спирт; 3) многоатомный спирт 4) алкен

10. Этандиол-1,2 может реагировать с

1) гидроксидом меди (II)

2) оксидом железа (II)

Фенолы, их строение. Свойства фенола, взаимное влияние атомов в молекуле фенола. Орто-, паро-ориентирующее действие гидроксильной группы. Получение и применение фенола

ФЕНОЛЫ – класс органических соединений. Содержат одну или несколько группировок С–ОН, при этом атом углерода входит в состав ароматического (например, бензольного) кольца.

Фенолы более сильные кислоты чем алифатические спирты потому что

Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ

В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).

Фенолы более сильные кислоты чем алифатические спирты потому что

Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ

Фенолы более сильные кислоты чем алифатические спирты потому что

Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ. Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.

Химические свойства фенолов

Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.

Фенолы более сильные кислоты чем алифатические спирты потому что

Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ

В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.

C 6 H 5 OH + NaOH = C 6 H 5 ONa + H 2 O

Вступает в реакции электрофильного замещения по ароматическому кольцу. Гидрокси-группа, являясь одной из самых сильных донорных групп, увеличивает реакционную способность кольца к этим реакциям, и направляет замещение в орто- и пара-положения. Фенол с лёгкостью алкилируется, ацилируется, галогенируется, нитруется и сульфируется.

2. Взаимодействие с металлическим натрием:

C 6 H 5 OH + Na = C 6 H 5 ONa + H 2 ↑

3. Взаимодействие с бромной водой (качественная реакция на фенол):

C 6 H 5 OH + 3Br 2 (водн.) → C 6 H 2 (Br) 3 OH + 3HBr образуется 2,4,6 трибромфенол

4. Взаимодействие с концентрированной азотной кислотой:

C 6 H 5 OH + 3HNO 3 конц → C 6 H 2 (NO 2 ) 3 OH + 3H 2 О образуется 2,4,6 тринитрофенол

5. Взаимодействие с хлоридом железа (III)(качественная реакция на фенол):

C 6 H 5 OH + FeCl 3 → [C 6 H 5 OFe] 2 +(Cl)2- + HCl образуется дихлоридфенолят железа (III)(фиолетовое окрашивание )

Способы получения фенолов.

Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С6Н5ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H3SO4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).

Фенолы более сильные кислоты чем алифатические спирты потому что

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара-дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

1. Сколько существует фенолов состава С 7 Н 8 О? 1)Один 2) Четыре 3) Три 4) два

2. Атом кислорода в молекуле фенола образует

1) одну σ-связь 2) две σ-связи 3) одну σ- и одну π-связи 4) две π-связи

1) между молекулами спирта образуется прочная водо­родная связь

2) в молекуле фенола больше массовая доля ионов водо­рода

3) в фенолах электронная система смещена в сторону атома кислорода, что приводит к большей подвижно­сти атомов водорода бензольного кольца

4) в фенолах электронная плотность связи О-Н умень­шается из-за взаимодействия неподеленной электрон­ной пары атома кислорода с бензольным кольцом

4. Выберите верное утверждение:

1) фенолы диссоциируют в большей степени, чем спирты;

2) фенолы проявляют основные свойства;

3) фенолы и их производные не обладают токсическим действием;

4) атом водорода в гидроксильной группе фенола не может быть замещен на катион металла под действием оснований.

5. Фенол в водном растворе является

1) сильной кислотой 2) слабой кислотой 3) слабым основанием 4) сильным основанием

1. Вещество, реагирующее с Na и NaOH, дающее фиолетовое окрашивание с FeCl 3 – это:

1) фенол; 2) спирт 3) простой эфир; 4) алкан

6. Влияние бензольного кольца на гидроксильную группу в молекуле фенола доказывает реакция фенола с

1) гидроксидом натрия 2) формальдегидом 3) бромной водой 4) азотной кислотой

7. Химическое взаимодействие возможно между веществами, формулы которых:

1) С 6 Н 5 OH и NaCl 2) С 6 Н 5 OH и HCl 3) С 6 Н 5 OH и NaOH 4) С 6 Н 5 ONa и NaOH.

8. Фенол не взаимодействует с

1) метаналем 2) метаном 3) азотной кислотой 4) бромной водой

9. Фенол взаимодействует c

1) соляной кислотой 2) этиленом 3) гидроксидом натрия 4) метаном

10. Фенол не взаимодействует с веществом, формула которого

1)HBr 2)Br 2 3)HNO 3 4)NaOH

11. Фенол не реагирует с 1) НNO 3 2) KОН 3) Вr 2 4) Сu(OH) 2

12. Кислотные свойства наиболее выражены у 1)фенола 2)метанола 3)этанола 4)глицерина

13. При взаимодействии фенола с натрием образуются

1) фенолят натрия и вода 2) фенолят натрия и водород

3) бензол и гидроксид натрия 4) бензоат натрия и водород

14. Установите соответствие между исходными веществами и продуктами, которые преимущественно образуются при их взаимодействии.

ИСХОДНЫЕ ВЕЩЕСТВА ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ

А) С 6 Н 5 ОН + К 1) 2,4,6-трибромфенол + НВr

Б) С 6 Н 5 ОН + КОН 2) 3,5-дибромфенол + НВr

В) С 6 Н 5 ОН + НNО3 3) фенолят калия + Н 2

Г) С 6 Н 5 ОН + Вr 2 (р-р) 4) 2,4,6-тринитрофенол + H 2 O

5) 3,5-динитрофенол + НNO 3

6) фенолят калия + Н 2 О

15. Установите соответствие между исходными веще­ствами и продуктами реакции.

ИСХОДНЫЕ ВЕЩЕСТВА ПРОДУКТЫ РЕАКЦИИ

А) С 6 Н 5 ОН + Н 2 1) С 6 Н 6 + Н 2 О

Б) С 6 Н 5 ОН + К 2) С 6 Н 5 ОК + Н 2 О

В) С 6 Н 5 ОН + КОН 3) С 6 Н 5 ОН + КНСО 3

Г) С 6 Н 5 ОК + Н 2 О + СО 2 4) С 6 Н 11 ОН

6) С 6 Н 5 СООН + КОН

16. Фенол взаимодействует с растворами

17. Фенол реагирует с

3) гидроксидом натрия

6) оксидом кремния (IV)

18. При замещении водорода в ароматическом кольце на гидроксильную группу образуется:

1) сложный эфир; 2) простой эфир; 3) предельный спирт; 4) фенол.

19. Фенол может быть получен в реакции

1) дегидратации бензойной кислоты 2) гидрирования бензальдегида

3) гидратации стирола 4) хлорбензола с гидроксидом калия

Взаимосвязь, качественные реакции.

20. Метанол. этиленгликоль и глицерин являются:

1)гомологами; 2)первичным, вторичным и третичным спиртами;

32)изомерами; 4) одноатомным, двухатомным, трехатомным спиртами

22.Взаимодействуют между собой

1)этанол и водород 2)уксусная кислота и хлор

3)фенол и оксид меди (II) 4)этиленгликоль и хлорид натрия

23.Вещество Х может реагировать с фенолом, но не реагирует с этанолом. Это вещество:

1)Na 2) O 2 3)HNO 3 4)бромная вода

24. Ярко-синий раствор образуется при взаимодейст­вии гидроксида меди (II) с

1)этанолом 2) глицерином 3) этаналем 4) толуолом

25. Гидроксид меди (II) может быть использован для обнаружения

1) C 2 H 5 OH 2) C 2 H 5 COOH 3) CH 3 COOH 4) C 6 H 11 OH

27.В схеме превращений этанол à Х à бутан веществом Х является

1)бутанол-1 2)бромэтан 3)этан 4)этилен

28. В схеме превращений пропанол-1 à Х à пропанол-2 веществом Х является

1) 2-хлорпропан 2) пропановая кислота 3) пропин 4) пропен

29.Водные растворы этанола и глицерина можно различить с помощью:

1)бромной воды 2)аммиачного раствора оксида серебра

4) металлического натрия 3)свежеприготовленного осадка гидроксида меди (II);

30. Отличить этанол от этиленгликоля можно с помощью:

1) натрия; 2) NaOH; 3) Cu(OH) 2 4) FeCl 3

31. Отличить фенол от метанола можно с помощью:

1) натрия; 2) NaOH; 3) Cu(OH) 2 4) FeCl 3

32. Отличить фенол от простого эфира можно с помощью:

1) Cl 2 2) NaOH 3) Cu(OH) 2 4) FeCl 3

33. Отличить глицерин от пропанола-1 можно с помощью:

1) натрия 2)NaOH 3) Cu(OH) 2 4) FeCl 3

34. Какое вещество надо использовать для того, чтобы в ла­бораторных условиях отличить друг от друга этанол и этиленгликоль?

1) Натрий 2) Соляную кислоту 3) Гидроксид меди (II) 4) Гидроксид натрия

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *