Узел сетки в математике что это

Метод узлов в задаче B5

Существует замечательная формула, которая позволяет считать площадь многоугольника на координатной сетке почти без ошибок. Это даже не формула, а настоящая теорема. На первый взгляд, она может показаться сложной. Но достаточно решить пару задач — и вы поймете, насколько это крутая фишка. Так что вперед!

Для начала введем новое определение:

— это любая точка, лежащая на пересечении вертикальных и горизонтальных линий этой сетки.

Узел сетки в математике что это

На первой картинке узлы вообще не обозначены. На второй обозначены 4 узла. Наконец, на третьей картинке обозначены все 16 узлов.

Какое отношение это имеет к задаче B5? Дело в том, что вершины многоугольника в таких задачах всегда лежат в узлах сетки. Как следствие, для них работает следующая теорема:

Теорема. Рассмотрим многоугольник на координатной сетке, вершины которого лежат в узлах этой сетки. Тогда площадь многоугольника равна:

Узел сетки в математике что это

где n — число узлов внутри данного многоугольника, число узлов, которые лежат на его границе (граничных узлов).

В качестве примера рассмотрим обычный треугольник на координатной сетке и попробуем отметить внутренние и граничные узлы.

Узел сетки в математике что это

На первой картинке дан обычный треугольник. На второй отмечены его внутренние узлы, число которых равно На третей картинке отмечены узлы лежащие на границе, их всего

Возможно, многим читателям непонятно, как считать числа Начните с внутренних узлов. Тут все очевидно: закрашиваем треугольник карандашом и смотрим, сколько узлов попало под закраску.

С граничными узлами чуть сложнее. Граница многоугольника — замкнутая ломаная, которая пересекает координатную сетку во многих точках. Проще всего отметить какую-нибудь «стартовую» точку, а затем обойти остальные.

Граничными узлами будут только те точки на ломаной, в которых одновременно пересекаются

Посмотрим, как все это работает в настоящих задачах.

Задача. Найдите площадь треугольника, если размер клетки равен 1 x 1 см:

Узел сетки в математике что это

Для начала отметим узлы, которые лежат внутри треугольника, а также на его границе:

Узел сетки в математике что это

Получается, что внутренний узел всего один: Граничных узлов — целых шесть: три совпадают с вершинами треугольника, а еще три лежат на сторонах.

Теперь считаем площадь по формуле:

Узел сетки в математике что это

Вот и все! Задача решена.

Задача. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см. Ответ дайте в квадратных сантиметрах.

Узел сетки в математике что это

Снова отмечаем внутренние и граничные узлы. Внутренних узлов всего Граничных узлов: из которых 4 являются вершинами четырехугольника, а еще 3 лежат на сторонах.

Узел сетки в математике что это

Остается подставить числа в формулу площади:

Узел сетки в математике что это

Обратите внимание на последний пример. Эту задачу реально предлагали на диагностической работе в 2012 году. Если работать по стандартной схеме, придется делать много дополнительных построений. А методом узлов все решается практически устно.

Важное замечание по площадям

Но формула — это еще не все. Давайте немного перепишем формулу, приведя слагаемые в правой части к общему знаменателю. Получим:

Узел сетки в математике что это

Числа n и k — это количество узлов, они всегда целые. Значит, весь числитель тоже целый. Мы делим его на 2, из чего следует важный факт:

Площадь всегда выражается целым числом или дробью. Причем в конце дроби всегда стоит «пять десятых»: 10,5; 17,5 и т.д.

Таким образом, площадь в задаче B5 всегда выражается целым числом или дробью Если ответ получается другим, значит, где-то допущена ошибка. Помните об этом, когда будете сдавать настоящий ЕГЭ по математике!

Источник

Задача B5: метод узлов

Сегодня мы научимся считать площади фигур в задаче B5 методом узлов. Для начала введем два определения:

Давайте посмотрим, как эти узлы выглядят на конкретной фигуре в задаче B5 из ЕГЭ по математике:

Задача. Найдите площадь четырехугольника изображенного на клетчатой бумаге с размером клетки 1 см × 1 см. Ответ дайте в квадратных сантиметрах.

Узел сетки в математике что это

Крестиками обозначены внутренние узлы. Очевидно, их количество n = 3. Кружками обозначены граничные узлы. Их общее количество равно k = 11.

Обратите внимание: под узлами подразумеваются только те точки, которые лежат на пересечении горизонтальных и вертикальных линий нашей сетки. Другими словами, следующие две точки не являются узлами, хотя в них граница фигуры также пересекается с линиями сетки:

Узел сетки в математике что это

Переходим к решению задачи. Для того, чтобы решать задачи B5 ЕГЭ по математике методом узлов, вам потребуется запомнить следующую теорему:

Пусть дана фигура с n внутренними узлами и k граничными узлами. Тогда площадь этой фигуры S считается по формуле:

Вот так все просто! Главное — запомните, что n — это число внутренних узлов, а k — число граничных узлов.

В нашем случае мы уже подсчитали, что n = 3, k = 11. Подставляем полученные числа в формулу и получаем:

S = 3 + 0,5 · 11 − 1 = 3 + 5,5 − 1 = 7,5

Вот и все решение! Мы получили ответ: площадь четырехугольника равна 7,5. Как видите, задача свелась практически к устному счету. Поэтому обязательно возьмите данный прием на вооружение, ведь велика вероятность того, что на настоящем ЕГЭ по математике вам попадется именно такая задача B5 — площадь фигур на координатной сетке.

Источник

Узел (математика)

Узел сетки в математике что это

Содержание

Понятие математического узла

Узлы — предметы простые и наглядные. Вы, конечно, встречались с ними в повседневной жизни, но, может быть, не подозревали, что это ещё и математические объекты; более того, в последние 20 лет математики и физики с огромным интересом и удивительной интенсивностью стали заниматься соответствующими теориями, особенно теорией узлов. Достаточно сказать, что за это время четыре медали Филдса были получены именно за работы, связанные с этой теорией. А именно, лауреатами медали Филдса в разное время стали Владимир Дринфельд из Харькова, работающий в Чикаго, Максим Концевич из Москвы, работающий в Париже, Воган Джонс из Новой Зеландии, работающий в Калифорнии, и Эдвард Виттен, физик-теоретик, работающий в Принстоне.

Узел сетки в математике что это

Чем отличается математический узел от узлов, которые завязывают на галстуках или на шнурках ботинок? Естественно, в математике узел — это некая абстракция: рассматривается не верёвка и не шнур, а бесконечно тонкая, гибкая и растяжимая нить. Кроме того, рассматривая математический узел, нужно либо как-то зафиксировать его концы (обычно говорят, что один конец уходит в бесконечность «вверх», а другой — в бесконечность «вниз», либо просто соединить их (см. рис.). В последнем случае модель узла — замкнутая несамопересекающаяся кривая в пространстве. Будем предполагать, что эта кривая является ломаной, то есть состоит из отрезков (впрочем, на рисунках мы почти всегда будем изображать узлы в виде гладких кривых, считая отдельные звенья ломаной. Самый простой узел — тривиальный (простая окружность). Узел называется нетривиальным, если он не эквивалентен тривиальному, то есть его нельзя «пошевелить» (возможно растягивая, но не разрывая верёвку) так, чтобы он превратился в тривиальный.

Узел сетки в математике что это

Узел сетки в математике что это

Вот несколько примеров нетривиальных узлов: узел на рис. слева называется трилистником, узел на рис. справа — восьмёркой. (Обычно узлы рассматривают с ориентацией, то есть считают, что задано направление обхода кривой, это направление изображается стрелкой.)

Группа узлов

Узел сетки в математике что это

Если считать узлы кривыми, концы которых уходят в бесконечность, то умножение узлов определяется естественным образом: произведение узлов а и b — это просто нить, на которой завязан сначала узел а, затем узел b (рис. справа). Это умножение ассоциативно: для любых узлов а, b и с верно равенство: (ab)c=a(bc). Ясно, что тривиальный узел (то есть просто вертикальная прямая) является единичным элементом. Ни один нетривиальный узел не имеет обратного. Покажем, что два узла, завязанные на одной веревке, можно переставить. Действительно, пусть на нити завязан сначала узел a, затем узел b. Сперва, не трогая узел a, «затянем» узел b в маленький узелок. Потом заключим этот узелок в маленький стеклянный шарик и будем двигать его вверх по нити. В итоге этот шарик окажется наверху, и его можно превратить опять в узел b. Таким образом, умножние узлов коммутативно: ab=ba.
Итак, верна

Теорема об узлах. Узлы образуют ассоциативную и коммутативную систему относительно умножения.

В этой системе есть единичный элемент, но нет обратных.

Компьютер развязывает узлы

Первый шаг в этой теории состоит в сведении (сложной) пространственной задачи развязывания узла к (более простой) задаче применения простых операций к кривым на плоскости. Эти операции придумал в 1920-е годы немецкий математик Рейдемейстер.
Имеет место

Лемма Рейдемейстера. Если узел можно развязать (превратить в окружность) в пространстве, то его плоскую диаграмму можно распутать на плоскости с помощью операций Рейдемейстера.

Источник

Метод узлов

Существует замечательная формула, которая позволяет считать площадь многоугольника на координатной сетке почти без ошибок. Это даже не формула, а настоящая теорема. На первый взгляд, она может показаться сложной. Но достаточно решить пару задач — и вы поймете, насколько это крутая фишка. Так что вперед!

Для начала введем новое определение:

— это любая точка, лежащая на пересечении вертикальных и горизонтальных линий этой сетки.

Обозначение Узел сетки в математике что это

На первой картинке узлы вообще не обозначены. На второй обозначены 4 узла. Наконец, на третьей картинке обозначены все 16 узлов.

Какое отношение это имеет к задаче B5? Дело в том, что вершины многоугольника в таких задачах всегда лежат в узлах сетки. Как следствие, для них работает следующая теорема:

Теорема

Рассмотрим многоугольник на координатной сетке, вершины которого лежат в узлах этой сетки. Тогда площадь многоугольника равна:

Узел сетки в математике что это

где n — число узлов внутри данного многоугольника, число узлов, которые лежат на его границе (граничных узлов).

Задача:

Рассмотрим обычный треугольник на координатной сетке и попробуем отметить внутренние и граничные узлы.

Узел сетки в математике что это

На первой картинке дан обычный треугольник. На второй отмечены его внутренние узлы, число которых равно На третей картинке отмечены узлы лежащие на границе, их всего

Возможно, многим читателям непонятно, как считать числа Начните с внутренних узлов. Тут все очевидно: закрашиваем треугольник карандашом и смотрим, сколько узлов попало под закраску.

С граничными узлами чуть сложнее. Граница многоугольника — замкнутая ломаная, которая пересекает координатную сетку во многих точках. Проще всего отметить какую-нибудь «стартовую» точку, а затем обойти остальные.

Граничными узлами будут только те точки на ломаной, в которых одновременно пересекаются

Посмотрим, как все это работает в настоящих задачах.

Задача 2:

Найдите площадь треугольника, если размер клетки равен 1 x 1 см:

Узел сетки в математике что это Решение

Для начала отметим узлы, которые лежат внутри треугольника, а также на его границе:

Узел сетки в математике что это

Получается, что внутренний узел всего один: Граничных узлов — целых шесть: три совпадают с вершинами треугольника, а еще три лежат на сторонах.

Теперь считаем площадь по формуле:

Узел сетки в математике что это

Вот и все! Задача решена.

Задача 3:

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см. Ответ дайте в квадратных сантиметрах.

Узел сетки в математике что этоРешение

Снова отмечаем внутренние и граничные узлы. Внутренних узлов всего Граничных узлов: из которых 4 являются вершинами четырехугольника, а еще 3 лежат на сторонах.

Узел сетки в математике что это

Остается подставить числа в формулу площади:

Узел сетки в математике что этоОтвет: 4,5

Обратите внимание на последний пример. Эту задачу реально предлагали на диагностической работе в 2012 году. Если работать по стандартной схеме, придется делать много дополнительных построений. А методом узлов все решается практически устно.

Важное замечание по площадям

Но формула — это еще не все. Давайте немного перепишем формулу, приведя слагаемые в правой части к общему знаменателю. Получим:

Узел сетки в математике что это

Числа n и k — это количество узлов, они всегда целые. Значит, весь числитель тоже целый. Мы делим его на 2, из чего следует важный факт:

Площадь всегда выражается целым числом или дробью. Причем в конце дроби всегда стоит «пять десятых»:

Таким образом, площадь в задаче B5 всегда выражается целым числом или дробью Если ответ получается другим, значит, где-то допущена ошибка. Помните об этом, когда будете сдавать настоящий ЕГЭ по математике!

Сегодня мы научились считать площади фигур в задаче B5 методом узлов. Повторим, что для начала введят два определения:

Давайте посмотрим, как эти узлы выглядят на конкретной фигуре в задаче B5

Задача. Найдите площадь четырехугольника изображенного на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Узел сетки в математике что это

Крестиками обозначены внутренние узлы. Очевидно, их количество Кружками обозначены граничные узлы. Их общее количество равно

Обратите внимание: под узлами подразумеваются только те точки, которые лежат на пересечении горизонтальных и вертикальных линий нашей сетки. Другими словами, следующие две точки не являются узлами, хотя в них граница фигуры также пересекается с линиями сетки:

Узел сетки в математике что это

Переходим к решению задачи. Для того, чтобы решать задачи B5 ЕГЭ по математике методом узлов, вам потребуется запомнить следующую теорему:

Теорема. Пусть дана фигура с внутренними узлами и граничными узлами. Тогда площадь этой фигуры считается по формуле:

S = n + 0,5 k − 1

Вот так все просто! Главное — запомните, это число внутренних узлов, число граничных узлов.

В нашем случае мы уже подсчитали, что Подставляем полученные числа в формулу и получаем:

Мы получили ответ: площадь четырехугольника

Ответ: 7,5

Как видите, задача свелась практически к устному счету. Поэтому обязательно возьмите данный прием на вооружение, ведь велика вероятность того, что на настоящем ЕГЭ по математике вам попадется именно такая задача B5 — площадь фигур на координатной сетке.

Источник

Математический узел

Содержание

Понятие математического узла

Узлы — предметы простые и наглядные. Вы, конечно, встречались с ними в повседневной жизни, но, может быть, не подозревали, что это ещё и математические объекты; более того, в последние 20 лет математики и физики с огромным интересом и удивительной интенсивностью стали заниматься соответствующими теориями, особенно теорией узлов. Достаточно сказать, что за это время четыре медали Филдса были получены именно за работы, связанные с этой теорией. А именно, лауреатами медали Филдса в разное время стали Владимир Дринфельд из Харькова, работающий в Чикаго, Максим Концевич из Москвы, работающий в Париже, Воган Джонс из Новой Зеландии, работающий в Калифорнии, и Эдвард Виттен, физик-теоретик, работающий в Принстоне.

Узел сетки в математике что это

Чем отличается математический узел от узлов, которые завязывают на галстуках или на шнурках ботинок? Естественно, в математике узел — это некая абстракция: рассматривается не верёвка и не шнур, а бесконечно тонкая, гибкая и растяжимая нить. Кроме того, рассматривая математический узел, нужно либо как-то зафиксировать его концы (обычно говорят, что один конец уходит в бесконечность «вверх», а другой — в бесконечность «вниз», либо просто соединить их (см. рис.). В последнем случае модель узла — замкнутая несамопересекающаяся кривая в пространстве. Будем предполагать, что эта кривая является ломаной, то есть состоит из отрезков (впрочем, на рисунках мы почти всегда будем изображать узлы в виде гладких кривых, считая отдельные звенья ломаной. Самый простой узел — тривиальный (простая окружность). Узел называется нетривиальным, если он не эквивалентен тривиальному, то есть его нельзя «пошевелить» (возможно растягивая, но не разрывая верёвку) так, чтобы он превратился в тривиальный.

Узел сетки в математике что это

Вот несколько примеров нетривиальных узлов: узел на рис. слева называется трилистником, узел на рис. справа — восьмёркой. (Обычно узлы рассматривают с ориентацией, то есть считают, что задано направление обхода кривой, это направление изображается стрелкой.)

Алгебра узлов

Узел сетки в математике что это

А можно ли умножать узлы? Если считать узлы кривыми, концы которых уходят в бесконечность, то умножение узлов определяется естественным образом: произведение узлов а и b — это просто нить, на которой завязан сначала узел а, затем узел b (рис. справа). Это умножение ассоциативно: для любых узлов а, b и с верно равенство: (ab)c=a(bc). Ясно, что тривиальный узел (то есть просто вертикальная прямая) является единичным элементом. Ни один нетривиальный узел не имеет обратного. Покажем, что два узла, завязанные на одной веревке, можно переставить. Действительно, пусть на нити завязан сначала узел a, затем узел b. Сперва, не трогая узел a, «затянем» узел b в маленький узелок. Потом заключим этот узелок в маленький стеклянный шарик и будем двигать его вверх по нити. В итоге этот шарик окажется наверху, и его можно превратить опять в узел b. Таким образом, умножние узлов коммутативно: ab=ba.
Итак, верна
Теорема об узлах. Узлы образуют ассоциативную и коммутативную систему относительно умножения. В этой системе есть единичный элемент, но нет обратных.

Компьютер развязывает узлы

Первый шаг в этой теории состоит в сведении (сложной) пространственной задачи развязывания узла к (более простой) задаче применения простых операций к кривым на плоскости. Эти операции придумал в 1920-е годы немецкий математик Рейдемейстер.
Имеет место
Лемма Рейдемейстера. Если узел можно развязать (превратить в окружность) в пространстве, то его плоскую диаграмму можно распутать на плоскости с помощью операций Рейдемейстера.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *