Устойчивость rtt без sack что это

СОДЕРЖАНИЕ

Операция

Окно перегрузки

Медленный старт

Хотя эта стратегия называется медленным запуском, ее рост окна перегрузки является довольно агрессивным, более агрессивным, чем фаза предотвращения перегрузки. До того, как в TCP был введен медленный старт, начальная фаза предотвращения перегрузки была еще быстрее.

По достижении ssthresh TCP переходит с алгоритма медленного старта на алгоритм линейного роста (предотвращение перегрузки). В этот момент окно увеличивается на 1 сегмент для каждого времени задержки приема-передачи (RTT).

Аддитивное увеличение / мультипликативное уменьшение

Это алгоритм, описанный в RFC 5681 для состояния «предотвращения перегрузки».

Быстрая ретрансляция

Когда отправитель получает три повторяющихся подтверждения, можно с достаточной степенью уверенности в том, что сегмент, несущий данные, следующие за последним упорядоченным байтом, указанным в подтверждении, был потерян. Отправитель с быстрой повторной передачей затем немедленно повторно передаст этот пакет, не дожидаясь его тайм-аута. По получении повторно переданного сегмента получатель может подтвердить последний байт полученных данных по порядку. В приведенном выше примере это подтвердит конец полезной нагрузки пятого пакета. Нет необходимости подтверждать промежуточные пакеты, поскольку TCP по умолчанию использует кумулятивные подтверждения.

Алгоритмы

Соглашение об именах для алгоритмов управления перегрузкой (CCA) могло появиться в статье 1996 года Кевина Фолла и Салли Флойд.

Ниже приводится одна из возможных классификаций по следующим свойствам:

Некоторые известные механизмы предотвращения перегрузки классифицируются по этой схеме следующим образом:

ВариантОбратная связьНеобходимые измененияПреимуществаСправедливость
(Новое) РиноПотеряЗадерживать
ВегасЗадерживатьОтправительМеньше потерьПропорциональный
ВысокоскоростнойПотеряОтправительВысокая пропускная способность
BICПотеряОтправительВысокая пропускная способность
КУБИЧЕСКИЙПотеряОтправительВысокая пропускная способность
C2TCPПотеря / ЗадержкаОтправительСверхнизкая задержка и высокая пропускная способность
NATCPМногобитовый сигналОтправительПочти оптимальная производительность
Эластичный TCPПотеря / ЗадержкаОтправительВысокая пропускная способность / короткие и большие расстояния
Agile-TCPПотеряОтправительВысокая пропускная способность / короткие расстояния
H-TCPПотеряОтправительВысокая пропускная способность
БЫСТРОЗадерживатьОтправительВысокая пропускная способностьПропорциональный
Составной TCPПотеря / ЗадержкаОтправительВысокая пропускная способностьПропорциональный
WestwoodПотеря / ЗадержкаОтправительL
ДжерсиПотеря / ЗадержкаОтправительL
BBRЗадерживатьОтправительBLVC, Bufferbloat
ЗАЖИММногобитовый сигналПриемник, МаршрутизаторVМакс-мин
TFRCПотеряОтправитель, ПолучательНет повторной передачиМинимальная задержка
XCPМногобитовый сигналОтправитель, Получатель, МаршрутизаторBLFCМакс-мин
VCP2-битный сигналОтправитель, Получатель, МаршрутизаторBLFПропорциональный
MaxNetМногобитовый сигналОтправитель, Получатель, МаршрутизаторBLFSCМакс-мин
JetMaxМногобитовый сигналОтправитель, Получатель, МаршрутизаторВысокая пропускная способностьМакс-мин
КРАСНЫЙПотеряМаршрутизаторУменьшенная задержка
ECNОднобитовый сигналОтправитель, Получатель, МаршрутизаторСниженная потеря

ПТС Тахо и Рино

Алгоритмы TCP Tahoe и Reno были ретроспективно названы в честь версий или разновидностей операционной системы 4.3BSD, в которой каждая из них впервые появилась (которые сами были названы в честь озера Тахо и близлежащего города Рино, штат Невада ). Алгоритм Tahoe впервые появился в 4.3BSD-Tahoe (который был создан для поддержки миникомпьютера CCI Power 6/32 «Tahoe» ), а позже стал доступным для лицензиатов, не имеющих лицензии AT&T, как часть 4.3BSD Networking Release 1; это обеспечило его широкое распространение и внедрение. В 4.3BSD-Reno были внесены улучшения, которые впоследствии были выпущены для широкой публики как Networking Release 2 и более поздняя версия 4.4BSD-Lite.

Хотя оба считают тайм-аут повторной передачи (RTO) и дублирующиеся ACK как события потери пакетов, поведение Tahoe и Reno различается в первую очередь тем, как они реагируют на дублирующиеся ACK:

Как в Tahoe, так и в Reno, если время ожидания ACK истекло (время ожидания RTO), используется медленный запуск, и оба алгоритма сокращают окно перегрузки до 1 MSS.

TCP Vegas

TCP Vegas не получил широкого распространения за пределами лаборатории Петерсона, но был выбран в качестве метода контроля перегрузки по умолчанию для прошивки DD-WRT v24 SP2.

TCP Нью-Рино

TCP New Reno, определенный в RFC 6582 (который устарел предыдущие определения в RFC 3782 и RFC 2582 ), улучшает повторную передачу во время фазы быстрого восстановления TCP Reno. Во время быстрого восстановления, чтобы окно передачи оставалось полным, для каждого возвращаемого дублирующего ACK отправляется новый неотправленный пакет с конца окна перегрузки. Для каждого ACK, который частично продвигается в пространстве последовательности, отправитель предполагает, что ACK указывает на новую дыру, и отправляется следующий пакет после ACKed порядкового номера.

Проблема возникает с New Reno, когда нет потери пакетов, но вместо этого пакеты переупорядочиваются более чем с 3 порядковыми номерами пакетов. В этом случае New Reno по ошибке входит в быстрое восстановление. Когда переупорядоченный пакет доставляется, происходит продвижение по порядковому номеру ACK, и с этого момента до конца быстрого восстановления, весь прогресс по порядковому номеру вызывает дублирующую и ненужную повторную передачу, которая немедленно подтверждается.

New Reno работает так же хорошо, как SACK при низкой частоте ошибок пакетов и существенно превосходит Reno при высокой частоте ошибок.

TCP Hybla

TCP Hybla стремится устранить штрафы к TCP-соединениям, которые включают наземные или спутниковые радиоканалы с высокой задержкой. Усовершенствования Hybla основаны на аналитической оценке динамики окна перегрузки.

TCP BIC

TCP CUBIC

Agile-SD TCP

TCP Westwood +

Составной TCP

Пропорциональное снижение скорости TCP

TCP BBR

Сохейл Аббаслоо и др. (авторы C2TCP) показывают, что BBRv1 плохо работает в динамических средах, таких как сотовые сети. Они также показали, что у BBR есть проблема несправедливости. Например, когда поток CUBIC (который является реализацией TCP по умолчанию в Linux, Android и MacOS) сосуществует с потоком BBR в сети, поток BBR может доминировать над потоком CUBIC и получать от него всю полосу пропускания канала (см. Рисунок 16 дюймов).

C2TCP

Исследователи из Нью-Йоркского университета показали, что C2TCP превосходит по задержке и изменению задержки различные современные схемы TCP. Например, они показали, что по сравнению с BBR, CUBIC и Westwood в среднем, C2TCP снижает среднюю задержку пакетов примерно на 250%, 900% и 700% соответственно в различных средах сотовой сети.

Эластичный TCP

Elastic-TCP был предложен в феврале 2019 года для увеличения использования полосы пропускания в сетях с высоким BDP для поддержки облачных вычислений. Это CCA на базе Linux, предназначенная для ядра Linux. Это алгоритм на стороне приемника, который использует подход, основанный на потерях и задержках, с использованием нового механизма, называемого взвешивающей функцией с оконной корреляцией (WWF). Он имеет высокий уровень эластичности, позволяющий работать с различными сетевыми характеристиками без необходимости ручной настройки. Он был оценен путем сравнения его производительности с Compound TCP (CCA по умолчанию в MS Windows), CUBIC (по умолчанию для Linux) и TCP-BBR (по умолчанию в Linux 4.9, используемом Google) с использованием симулятора NS-2 и испытательного стенда. Elastic-TCP значительно улучшает общую производительность с точки зрения средней пропускной способности, коэффициента потерь и задержки.

NATCP

Другие алгоритмы предотвращения перегрузки TCP

Когда произведение пропускной способности и задержки на поток увеличивается, независимо от схемы организации очереди, TCP становится неэффективным и подверженным нестабильности. Это становится все более важным, поскольку Интернет развивается и включает оптические каналы с очень высокой пропускной способностью.

TCP Interactive (iTCP) позволяет приложениям подписываться на события TCP и соответствующим образом реагировать, обеспечивая различные функциональные расширения TCP извне уровня TCP. Большинство схем перегрузки TCP работают внутренне. iTCP дополнительно позволяет расширенным приложениям напрямую участвовать в управлении перегрузкой, например, управлять скоростью генерации источника.

Классификация по осведомленности о сети

CCA классифицируются в зависимости от осведомленности о сети, то есть степени, в которой эти алгоритмы осведомлены о состоянии сети, и состоят из трех основных категорий: черный ящик, серый ящик и зеленый ящик.

Алгоритмы черного ящика предлагают слепые методы контроля перегрузки. Они оперируют только двоичной обратной связью, полученной при перегрузке, и не предполагают никаких сведений о состоянии сетей, которыми они управляют.

Алгоритмы серого ящика используют экземпляры времени для получения измерений и оценок полосы пропускания, конкуренции потоков и других сведений о сетевых условиях.

Алгоритмы зеленого ящика предлагают бимодальные методы контроля перегрузки, которые измеряют справедливую долю общей полосы пропускания, которая должна быть выделена для каждого потока в любой момент во время работы системы.

Черный ящик

Серая коробка

Зеленая коробка

Следующие алгоритмы требуют добавления настраиваемых полей в структуру пакета TCP:

Источник

TCP Congestion Control или Почему скорость прыгает

Бывало ли у вас такое, что ставите файл на закачку, и скорость медленно, но верно возрастает, затем, в какой-то момент, резко снижается, затем опять возрастает? Закачка файла в один поток не обеспечивает полную скорость канала? Запускаете торрент-клиент, и пинг в игре сильно прыгает? Используете 3G-модем (или другую линию с относительно большой потерей пакетов) и не можете это терпеть?
Наверняка вы винили во всем ваш роутер, либо обвиняли своего провайдера в кривой настройке шейпера? Это влияет, но виноваты не они.
Итак, встречайте:

TCP Congestion Control, или TCP Congestion Avoidance Algorithm.

Что это такое?

Вкратце ­— алгоритмы, которые пытается сделать все возможное, чтобы обеспечить наиболее быструю скорость передачи данных между двумя узлами, передающими данные через TCP. Они управляют размером TCP-окна и могут ориентироваться на RTT (Round Trip Time — время от отправки запроса до получения ответа), потерю пакетов, время ожидания отправки пакета из очереди и т.д. Каждый алгоритм по разному ведет себя в той или иной ситуации и нет какого-то универсального.

Долгое время, в ходу были алгоритмы Reno, разработанный в 1990 году, и BIC. Первый применялся во всех ОС Windows до XP, а второй — в Linux до 2.6.18. Затем, в Windows Vista появился новый алгоритм Compound TCP, а в Linux сменили BIC на Cubic.

Какие есть алгоритмы?

Тест 3G

К сожалению, CUBIC, который используется по умолчанию во всех дистрибутивах, совершенно не подходит, например, для 3G-соединений. Ниже представлен график сравнения 4 алгоритмов congestion avoidance для HSDPA сетей за конец 2012 года из TCP Congestion Control over HSDPA: an Experimental Evaluation:
Устойчивость rtt без sack что это

Как видите, CUBIC в отстающих. Он значительно повысил RTT на полной утилизации 3G канала, в то время как Westwood+ и NewReno более-менее справляются с этой проблемой.
Давайте взглянем на количество ретрансмиссий:

Устойчивость rtt без sack что это

Как видно из графика, у CUBIC относительно большое количество ретрансмиссий

Устойчивость rtt без sack что это

В то же время, он лидирует в скорости передачи данных за единицу времени.

Что это значит? Это значит, что с использованием Westwood+ или NewReno вы сможете комфортней серфить интернет, пока у вас скачивается большой файл.

Тест WiMAX и WiFi каналов

Тест взят из Comparative Performance Evaluation of TCP Variants in WiMAX (and WLANs) Network Configurations — еще одного интересного сравнения алгоритмов для беспроводных сетей.

В тесте №1 используется соединение компьютер-wimax.роутер-wimax.клиент с пропускной способностью между компьютером и роутером в 100 мбит/с и RTT в 45 мс и соотношением DL:UL 1:1 между wimax роутером и клиентом.
Зависимость эффективной передачи данных от потери пакетов:
Устойчивость rtt без sack что это

Чуть изменим тест. В тесте №2 используется схема компьютер-роутер1-роутер2-wimax.роутер-wimax.клиент, где RTT 10 мс. между компьютером и первым роутером, далее используется 10 мбит/с канал с 25 мс. RTT, между вторым и wimax роутером канал опять 100 мбит/с c RTT в 10 мс.

Устойчивость rtt без sack что это
Устойчивость rtt без sack что это

Как видно из графиков, лидерство держит Westwood.
Картина для WiFi схожа с WiMAX:

Устойчивость rtt без sack что это

Тест высокоскоростного канала

Этот тест взят из технического отчета алгоритма YeAH-TCP за 2006 год. Теоретически, YeAH является самым продвинутым алгоритмом и нацелен работать как можно лучше на высокоскоростных линиях, на линиях с высокой задержкой или высокими потерями пакетов.
Тесты делались с импользованием канала пропускной способностью в 500 mbit/s

В эффективной передаче данных в зависимости от RTT лидирует YeAH
Устойчивость rtt без sack что это

Зависимость эффективной передачи данных и потери пакетов, опять YeAH занимает первое место
Устойчивость rtt без sack что это

К сожалению, с YeAH на ядре 3.7 какие-то проблемы, через некоторое время он весит систему software interrupt’ами. Такого поведения не наблюдается на 3.6.

Как поменять?

Вместо заключения

На каналах вроде домашнего вайфая, рекомендую использовать Westwood или H-TCP. Для проводных каналов хорошим выбором может быть YeAH (если у вас не наблюдается с ним проблем), H-TCP или Illinois.

Источник

Тонкая настройка сетевого стека на Windows-хостах

Тонкая настройка сетевого стека на Windows-хостах

Сетевая подсистема в Windows NT прошла достаточно длительный путь – изначально являясь сетевой операционной системой, NT сразу ставила задачу предоставлять надежные, сбалансированные и эффективные сетевые решения.

Беда в том, что с точки зрения большинства админов под “настройкой сетевых параметров” понимаются видные глазом базовые минимальные пункты – как задание IP-адреса, маски и шлюза, а даже тот факт, что IP-адресов на интерфейсе может быть несколько, уже вызывает удивление.

Фактически же количество сетевых настроек в Windows NT достаточно велико, и, хорошо зная работу сетевой подсистемы, можно ощутимо улучшить работу ОС. И наоборот тоже. Поэтому данная статья обязательна к ознакомлению тем, кто хочет “покрутить параметры”.

Диспозиция

Я предполагаю, что Вы, товарищ читатель, знаете на приемлемом уровне протокол TCP, да и вообще протоколы сетевого и транспортного уровней. Чем лучше знаете – тем больше КПД будет от прочтения данной статьи.

Речь будет идти про настройку для ядра NT 6.1 (Windows 7 и Windows Server 2008 R2). Всякие исторические ссылки будут, но сами настройки и команды будут применимы к указанным ОС, если явно не указано иное.

В тексте будут упоминаться ключи реестра. Некоторые из упоминаемых ключей будут отсутствовать в официальной документации. Это не страшно, но перед любой серьёзной модификацией рабочей системы лучше фиксировать то, что Вы с ней делаете, и всегда иметь возможность удалённого доступа, не зависящую от состояния сетевого интерфейса (например KVM).

Это – первая часть статьи. Потому что настроек достаточно много. В следующей части я расскажу про другие.

Содержание

Настраиваем RSS в Windows

Аббревиатура RSS обычно ассоциируется совсем с другим, нежели с настройкой TCP. Хотя, в общем, это у всех по-разному – кто-то PHP с ходу расшифровывает как Penultimate Hop Popping, а кто-то думает, что КВД – это НКВД без первой буквы. Все люди разные. Мы будем говорить про тот RSS, который Receive Side Scaling.

Суть технологии RSS достаточно проста – входящий поток данных сетевого уровня разбивается на несколько очередей, обработка каждой из которых (вызов прерываний, копирование информации) производится выделенным виртуальным процессором (т.е. или отдельным физическим, или ядром). То есть в случае наличия нескольких процессоров Вы можете распределить интенсивный сетевой трафик по ним, снизив количество вызовов прерываний, переключений контекста, очистки кэша и прочих неприятностей, которые, если происходят много тысяч раз в секунду, могут ощутимо навредить производительности системы в целом.

Суть-то простая, да вот в реализации столько тонкостей, что можно написать отдельную статью. Пока это не является целью, поэтому постараюсь описать оные тонкости сжато и компактно 🙂

Для начала необходимо, чтобы сетевая карта умела формировать вышеупомянутые очереди, и умела делать это хорошо. По сути, эта задача требует от сетевой карты функционала, отдалённо напоминающего CEF (который Cisco Express Forwarding) – коммутации 3го уровня с определением и разделением отдельных потоков пакетов. Давайте попробуем разобраться на примере, как и зачем это может работать.

Допустим, у Вас есть быстрый сетевой адаптер (например, 10Гбит), и по нему к Вам приходит много данных. И эти данные хорошо разделяются на много потоков (например, когда мы ведём вебинары, на каждого слушателя идёт почти по десятку TCP-сессий, а слушателей бывает и 40). По сути, все эти потоки данных выглядят потоками только на транспортном уровне, а на сетевом сливаются в общий поток. Это, в общем, и есть работа протоколов транспортного уровня – мультиплексировать потоки данных от различных приложений на различных хостах. Но от этого нашей принимающей стороне не легче – ведь ей надо из входящего потока сформировать:

И практически каждое событие во всей этой пачке сессий – это вызов прерывания и его обработка. Крайне затратно, особенно учитывая, допустим, негативный сценарий (10 гигабит поток, ip-пакеты по 1КБ). Можно даже сказать проще – ощутимое количество процентов мощности процессора (весьма дорогого, заметим) уйдёт на решение этих задач тех.обслуживания. Как с этим бороться? Да просто – пусть адаптер формирует отдельные очереди пакетов – тогда на каждую из них можно “привязать” свой процессор/ядро, и нагрузка в плане прерываний и прочего распределится. Но тут нас поджидает неочевидная проблема.

Дело в том, что просто так распределить не получится. Т.е. если мы придумаем очень простой критерий распределения (например, две очереди, четные пакеты – налево, нечетные – направо), то у нас может получиться следующая ситуация – у потоков данных часть пакетов попадёт в “четную” очередь, а часть – в “нечетную”. А в этом случае мы потеряем все возможные бонусы, возникающие при обработке непрерывного потока пакетов (обычно эти бонусы выглядят как “первый пакет обрабатываем по-полной, кэшируем все возможные результаты обработки, и все последующие пакеты обрабатываем по аналогии”). Т.е. нам надо всячески избегать ситуации, когда одному процессору придётся, обрабатывая, например, поток очень однотипных мультимедийных пакетов (какой-нибудь RTP например), пытаться “сбегать почитать” в соседнюю очередь. Скажем проще – никуда он вообще бегать тогда не будет, а придётся тогда нам выключать всяческие ускорения обработки TCP/UDP/IP-потоков, потому что работать они будут только в случае ситуации, когда весь поток однотипных пакетов обрабатывается одним ядром/процессором. А это приведёт к тому, что на процессоры придётся переводить вообще всю нагрузку по обработке сетевых данных, что с гарантией “убьёт” даже достаточно мощный CPU.

То есть, наша задача-максимум – это распределить входящие данные по нескольким отдельным очередям приёма, да так, чтобы потоки пакетов легли в очереди “целиком”, да и ещё желательно, чтобы заполнились эти очереди равномерно. Тогда мы и распределим нагрузку по процессорным ядрам, и не потеряем другие возможности по ускорению обработки потоков пакетов. Для решения этой задачи нам надо будет действовать сообща – и ОС, и оборудованию.

Хороший RSS начинается с сетевой карты. В сетевых картах, которые умеют RSS (а уже понятно, что это не карты минимального уровня), такой функционал есть – например в очень даже недорогой Intel 82576 (в моём случае – встроена в сервер) есть функционал и включения RSS сразу, и выбора количества очередей – 1, 2, 4 или 8.

Почему же количество очередей RSS будет выбираться из целочисленных степеней двойки? Тут начинается интересное, что будет роднить логику работы RSS и, допустим, логику балансировки у etherchannel.

Примечание: Разные реализации RSS используют разную логику, поэтому тут рассматривается достаточно распространённый вариант

Дело в том, что для того, чтобы определить “принадлежность” пакета к потоку, RSS использует следующую логику – берутся несколько ключевых полей пакета – SRC IP, DST IP, код протокола L4, SRC PORT, DST PORT – и от них вычисляется хэш, по последним битам которого (соответственно, для 2х очередей достаточно и одного бита, для 4х – двух, для 8 – трёх) и определяется принадлежность пакета к буферу. Соответственно, пакеты одного протокола, идущие с одного фиксированного порта и IP-адреса на другой адрес и порт, будут формировать поток и попадать в одну очередь. Такой подход достаточно быстр и прост с точки зрения балансировщика, но, как понятно, никак не решает ситуацию “Есть два стула две TCP-сессии – одна 1% канала занимает, другая 99%”. И даже не гарантирует, что обе эти сессии не попадут (с вероятностью 1/2) в одну и ту же очередь, что вообще превратит всю задачу в бессмыслицу.

Поэтому, в общем-то, остановимся на следующем факте – если у сетевой карты есть поддержка RSS, то её надо как минимум включить, чтобы первичное разделение входящего трафика на несколько очередей, притом с сохранением потоков, происходило без участия CPU.

Ну а вот дальше – уже задача операционной системы – что есть не один, а несколько потоков, и на каждый надо выделить свой процессор или ядро. Это как раз и будет тот самый RSS, который мы будем включать. Он уже будет создавать в драйвере NDIS отдельные очереди и выделять на каждую из них по процессору/ядру.

Нововведением в Windows Server 2008 R2 является то, что этим можно управлять – правда, только через реестр. В частности, управлению будут поддаваться 2 параметра – стартовое количество процессорных ядер, выделяемое для всех RSS-очередей на адаптере, и максимальное количество ядер для данной задачи. Параметры эти будут находиться по адресу HKLM\SYSTEM\CurrentControlSet\Control\Class\гуид сетевого адаптера\номер сетевого адаптера\ и называться, соответственно, *RssBaseProcNumber и *MaxRSSProcessors.

Примечание: Звёздочка в начале – не опечатка, так и надо вводить. Параметры, как понятно, 32bit DWORD.

Примечание: У RSS в Windows Server 2008 R2 есть негативный момент – распределение потоков идёт только между ядрами без HT/SMT. То есть на процессорах с Hyper Threading делите количество доступных ядер пополам.

Пример использования данных параметров – допустим, у Вас есть сервер с 16 ядрами (2 процессора по 8 ядер или 4 по 4 – не суть). Есть три сетевых адаптера – один используется для управления системой, два других – для привязки к ним виртуальных машин. Вы можете выставить указанные параметры только у двух интерфейсов, на которых будет подразумеваться высокая нагрузка, притом следующим образом – поставить RssBaseProcNumber равным 2, а MaxRSSProcessors – например, 12. Тогда тот интерфейс, который будет активнее принимать трафик, сможет “отъесть” до 12 ядер системы на обработку очередей, при этом не надо будет жестко задавать этот параметр вручную (это удобно, если нагрузка переместится на другой интерфейс). Безусловно, в этом примере надо, чтобы сетевые адаптеры тоже поддерживали RSS, и, желательно, хотя бы очередей 8.

Подводя итоги – RSS – это достаточно практичная и нужная технология, требующая поддержку и со стороны оборудования, и со стороны операционной системы. И становящаяся всё более актуальной, так как на данный момент скорости сетевых интерфейсов растут, равно как и количество процессорных ядер, а, следовательно, старый подход, когда одно ядро “разгребает” единую входящую очередь, становится всё менее эффективным.

Как включить RSS в Windows

Настраиваем логику алгоритма контроля перегрузки (CTCP) в Windows

Compound TCP – это Microsoft’овский протокол управления “окном перегрузки” (congestion window). Адресно предназначен для форсированного изменения окна при работе в сетевых средах с относительно большой задержкой (например, по WiMax или спутниковым каналам). Соответственно, не сильно полезен в сценарии широкополосного доступа в Интернет или работе по локальной сети.

По сути, всё, что он делает, это форсирует быстрое увеличение окна со стороны отправителя в случае, если обнаруживается, что сеть имеет малое время отклика, и быстро уменьшает окно в случае задержек на канале.

Примечание: Не путайте Congestion Windows (CWND) и Receive Windows (RWND). Это разные параметры TCP-сессии с разной логикой обработки

Как включить CTCP в Windows

Настраиваем использование NetDMA в Windows

Говоря проще, если Ваша сетевая плата не может “вытащить” на себя полную обработку TCP-соединений, то NetDMA хотя бы разгрузит процессор от самой унылой части задачи по обслуживанию сетевых соединений – копированию данных между сетевой подсистемой и использующими её приложениями.

Что нужно для включения NetDMA в Windows

Нужно оборудование, которое поддерживает NetDMA – в случае Windows это процессор с поддержкой технологий семейства Intel® I/O Acceleration Technology (I/OAT), которые, в свою очередь, входят в Intel Virtual Technology for Connectivity (VT-c). Включение NetDMA на оборудовании AMD эффекта, увы, не принесёт – не поверив, проверил на домашнем феноме 1055T – действительно, NetDMA не включается.

Как включить NetDMA в Windows

Локально:

Через Group Policy:

Секретный уровень

Настраиваем использование DCA (прямого доступа к кэшу NetDMA) в Windows

По сути, Direct Cache Access – это дополнение к NetDMA, которое появляется только в NetDMA 2.0 и является опциональным (т.е. факт наличия NetDMA не говорит о том, что DCA будет работать). Задачи, которые решает DCA, просты – он “привязывает” конкретную сетевую сессию к определённому ядру процессора, и позволяет копировать данные не по трассе “сетевой интерфейс”->”оперативная память”->”кэш процессора”, а напрямую с сетевого интерфейса в кэш процессора. В ряде сценариев (быстрая сеть и много сессий и ядер CPU) выигрыш может быть ощутимым – судя по исследованиям IEEE за 2009й год, в случае загруженной на

80% 10Gbit сети плюс 12ти ядер нагрузка CPU падает примерно на треть.

Технология работоспособна для гигабитных и более быстрых сетевых адаптеров. И, как понятно, имеет смысл только в случае, когда сетевой адаптер не умеет Chimney Offload (что, в общем-то, уже достаточно сложно – в случае наличия нагрузки, при которой DCA эффективен, обычно используются сетевые адаптеры, которые на аппаратном уровне умеют обрабатывать TCP).

Кстати, интересный момент – DCA есть в Windows Server 2008, но не работает в Vista. В NT 6.1 работает везде, включая Windows 7.

Как включить DCA в Windows

Локально:

Через Group Policy:

Настраиваем уведомления о перегрузке (ECN’ы) в Windows

Технология ECN в явном виде относится и к IP, а не только к TCP, но все равно про неё стоит тут написать.

Протокол IP изначально не особо любил технологии класса Quality of Service – QOS, поэтому в заголовке IPv4 выделен байт с целью “использовать для целей управления качеством”. Притом этот байт может содержать данные в разных форматах, и то, как его интерпретировать, решает конкретный хост. Используется два возможных формата данного байта – DSCP (он же DiffServ) и IP Precedence. По умолчанию этот байт (называющийся ToS – Type of Service) обрабатывается как IP Precedence и представляет собой копию данных канального уровня (в него копируются три бита от CoS – Class of Service, которые передаются в 802.3 кадре в составе 802.1p компонента заголовка 802.1Q).

Кратко, чтобы не запутаться раньше времени:
QoS – общее название семейства технологий, занимающихся классификацией сетевых данных.
ToS – поле размером в 1 байт в заголовке IPv4, которое предназначено для записи туда вспомогательных данных QoS.
802.3 – “код” протоколов семейства Ethernet.
CoS – поле размером 3 бита в заголовке 802.1Q (это поле имеет собственное название – 802.1p), которое содержит числовой код приоритета пакета (от 0 до 7, что логично).
802.1Q – дополнительный заголовок канального уровня, добавляемый в 802.3 (да и не только туда, а и, допустим, в 802.11 (WiFi)), чтобы передавать данные о принадлежности кадра к VLAN и данные о классе обслуживания.
IP Precedence – логика прочтения поля ToS в заголовке IP-пакета, когда первые 3 бита определяют относительный приоритет данного пакета перед другими (т.е. пакет со значением 2 в этом поле является всегда более приоритетным для обработки, чем пакет со значением 1).

Но нас будет интересовать ситуация, когда в заголовке IP-пакета – в поле ToS, разумеется – данные интерпретируются в формате DSCP. В этом случае на номер класса трафика отдаётся 6 бит (что даёт возможность сделать в организации 2^6 = 64 класса трафика и удобно управлять приоритетами), а оставшиеся 2 бита отдаются как раз на сигнализацию о “заторах”.

Говоря проще, если у промежуточного устройства буфер пакетов близок к перегрузке, то оно сигнализирует Вам, отправляя служебный пакет на IP отправителя, что “пакеты скоро будет некуда девать и придётся их выбрасывать, притормози”. Отправляет их, выставляя как раз специфические биты в поле ToS. Соответственно, включая поддержку данной технологии, Вы будете включать и возможность генерации подобных пакетов, и возможность анализа оных.

Простейший пример ситуации, в которой это поможет – на пути Вашего трафика стоит маршрутизатор, который в Вашу сторону смотрит интерфейсом со скоростью 1 Gbit, а дальше – интерфейсом со скоростью 100 Mbit. Если Вы будете отдавать ему трафик с максимально возможной скоростью, то его очередь пакетов, пытающихся “выйти” через интерфейс со скорость 100 Mbit, очень быстро переполнится, и если он не сможет Вам об этом сказать (ну или если Вы не включите со своей стороны возможность услышать эти сообщения от него), то ему придётся просто в определённый момент перестать принимать пакеты, сбрасывая их. А это приведёт к тому, что начнётся потеря данных, которые надо будет восстанавливать – а служебный трафик при восстановлении данных достаточно значителен. Т.е. гораздо проще передать чуть медленнее, чем потерять много пакетов и выяснить это на уровне TCP-подключения, после чего запрашивать их повторно, теряя время и тратя трафик.

Кстати, проверить поддержку ECN ближайшим маршрутизатором можно бесплатной утилитой Internet Connectivity Evaluation Tool.

Как включить ECN в Windows

Примечание: Включится и описаный выше механизм ECN, и его специфичная часть, использующая TCP

Настраиваем TCP Timestamps (по RFC 1323) в Windows

TCP Timestamps – базовая низкоуровневая технология, которая позволяет стеку TCP измерять два важных параметра для соединения: RTTM (задержку канала) и PAWS (защита от дублирующихся TCP-сегментов). В случае, если TCP Timestamps не включены хотя бы с одной стороны подключения, оба механизма вычисления этих параметров отключены и система не может высчитать данные значения. Это приводит к тому, что становится невозможным быстро и эффективно менять размер окна TCP (без знания времени задержки на канале-то). Поэтому включать TCP Timestamps в случае работы с большими объёмами данных (например, обращение к быстрому серверу в локальной сети – типовой сценарий корпоративной LAN) необходимо – ведь иначе протокол TCP не сможет быстро “раскачать” окно передачи.

Как включить TCP Timestamps в Windows

Побочные эффекты включения TCP Timestamps в Windows

Практически не наблюдаются. Рост локальной загрузки CPU отсутствует, т.к. алгоритм достаточно прост, рост объёмов служебного трафика – так же (RTTM высчитывается, исходя из “времени оборота” обычных сегментов TCP, а не каких-то специальных дополнительных).

Настраиваем автоматический подбор размера окна TCP (WSH) в Windows

Данный параметр достаточно прост. Эта настройка – Window Scale Heuristic – говорит о том, будете ли Вы сами выбирать логику поведения протокола TCP для выбора размеров окна, либо отдадите это на усмотрение операционной системе.

Примечание: WSH – это именно Window Scale Heuristic (т.е. эвристика масштабирования ОКНА, которое окно TCP), а не Windows Scale Heuristic (эвристика масштабирования продукта фирмы Microsoft под названием Windows).

Как включить Window Scaling Heuristic в Windows

Настраиваем базовую безопасность TCP (параметр Memory Pressure Protection) в Windows

Данная функция предназначена для защиты от достаточно известной атаки – локального отказа в обслуживании, вызванного тем, что удалённый атакующий инициирует множество TCP-сессий к нашей системе, система выделяет под каждую сессию буферы и оперативная память, возможно, заканчивается (ну или просто забивается до степени, когда начинается свопинг и производительность ощутимо падает.

Параметр включен по умолчанию в Windows Server 2008 R2, поэтому обычно нет смысла его настраивать, но если что – Вы можете его включить вручную. Более того, Вы можете выбрать, на каких портах эту защиту включать, а на каких – нет. Это имеет смысл, если доступны снаружи лишь некоторые порты, а не все.

Как включить Memory Pressure Protection в Windows

Включение MPP для отдельного порта (например, у нас наружу опубликован веб-сервер)

Выключение MPP для всех портов, кроме указанного (например, кроме LDAP)

Дополнительно

На самом деле, можно включать или выключать MPP для протоколов IP разных версий отдельно, а не глобально для всех. Для этого будут два ключа реестра с предсказуемыми названиями:

Параметр EnableMPP в каждом из случаев имеет тип 32bit DWORD и ставится либо в единицу, либо в нуль.

Вместо заключения

Данный краткий обзор части возможностей настроек сетевой подсистемы Windows имеет собой цель не побудить к немедленной правке всего вышеупомянутого, а показать то, что в данной ОС присутствует достаточно много инструментов тюнинга, хорошее знание которых может очень позитивно повлиять на работу системы. Только надо учитывать, что хорошее знание – это не “какая утилитка какие ключики правит”, а в первую очередь – отличное знание базовых сетевых технологий, которое, увы, сейчас в сообществе специалистов по Windows встречается крайне редко. Но я верю, что у Вас, при надлежащем системном подходе, всё будет хорошо.

UPDATE

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *