Установка гидрокрекинга что это
Гидрокрекинг
предназначен для получения малосернистых топливных дистиллятов из различного сырья
ИА Neftegaz.RU. Гидрокрекинг (Hydrocracking) предназначен для получения малосернистых топливных дистиллятов из различного сырья.
В качестве сырья на установках гидрокрекинга используют вакуумный и атмосферный газойль, газойль термического и каталитического крекинга, деасфальтизаты, мазут, гудрон.
Технологическая установка гидрокрекинга состоит обычно из 2 х блоков:
Продуктами гидрокрекинга являются автомобильные бензины, реактивное и дизельное топливо, сырье для нефтехимического синтеза и СУГ (из бензиновых фракций).
Гидрокрекинг позволяет увеличить выход компонентов бензина, обычно за счет превращения сырья типа газойля.
Качество компонентов бензина, которое при этом достигается, недостижимо при повторном прохождении газойля через процесс крекинга, в котором он был получен.
Гидрокрекинг также позволяет превращать тяжелый газойль в легкие дистилляты (реактивное и дизельное топливо). При гидрокрекинге не образуется никакого тяжелого неперегоняющегося остатка (кокса, пека или кубового остатка), а только легко кипящие фракции.
Катализатор и водород дополняют друг друга в нескольких аспектах:
Выходящая из реактора смесь продуктов реакции и циркуляционного газа охлаждается в теплообменнике, холодильнике и поступает в сепаратор высокого давления.
Здесь водородсодержащий газ для обратного направления в процесс и смешивания с сырьем отделяется от жидкости, которая с низа сепаратора через редукционный клапан, поступает далее в сепаратор низкого давления.
В сепараторе выделяется часть углеводородных газов, а жидкий поток направляется в теплообменник, расположенный перед промежуточной ректификационной колонной, для дальнейшей перегонки.
В колонне при небольшом избыточном давлении выделяются углеводородные газы и легкий бензин.
Керосиновую фракцию можно выделить, как боковой погон или оставить вместе с газойлем в качестве остатка от перегонки.
Напомним, что из 1 ед. сырья получается около 1,25 ед. продукции.
Здесь не указано требуемое количество водорода, которое измеряется в стандартных фт 3 /барр сырья.
Обычный расход составляет 2500 ст.
Этот продукт часто направляют на установку риформинга для облагораживания.
Керосиновые фракции являются хорошим реактивным топливом или сырьем для дистиллятного (дизельного) топлива, поскольку они содержат мало ароматики (в результате насыщения двойных связей водородом).
Существует несколько моделей установок гидрокрекинга, которые были сконструированы специально для переработки остатка или остатка от вакуумной перегонки.
На выходе получается более 90% остаточного (котельного) топлива.
Задачей данного процесса является удаление серы в результате каталитической реакции серосодержащих соединений с водородом с образованием сероводорода.
Таким образом, остаток с содержанием серы не более 4% может быть превращен в тяжелое жидкое топливо, содержащее менее 0,3% серы.
Использовать установки гидрокрекинга необходимо в общей схеме переработки нефти.
С одной стороны, установка гидрокрекинга является центральным пунктом, так как она помогает установить баланс между количеством бензина, дизельного топлива и реактивного топлива.
С другой стороны, скорости подачи сырья и режимы работы установок каталитического крекинга и коксования не менее важны.
Кроме того, алкилирование и риформинг также следует учитывать при планировании распределения продуктов гидрокрекинга.
Установка гидрокрекинга
Назначение
Гидрокрекинг представляет собой каталитический химический процесс, используемый на нефтеперерабатывающих заводах для преобразования высококипящих составляющих углеводородов нефти (тяжелых остатков) в более ценные низкокипящие продукты, такие как:
Процесс протекает в среде водорода, при повышенных температурах (260-425 °C) и давлениях (12-17 МПа).
В процессе гидрокрекинга высококипящие углеводороды с высоким молекулярным весом сначала расщепляются до низкокипящих низкомолекулярных олефиновых и ароматических углеводородов, а затем они гидрируются.
Любая сера и азот, присутствующие в сырье для гидрокрекинга, в значительной степени также гидрируются и образуют газообразный сероводород (H2S) и аммиак (NH3), которые впоследствии удаляются. В результате продукты гидрокрекинга практически не содержат примесей серы и азота и состоят в основном из парафиновых углеводородов.
Установки гидрокрекинга способны перерабатывать широкий спектр сырья с различными характеристиками для производства широкого набора продуктов. Они могут быть спроектированы и эксплуатироваться для максимизации производства компонента для смешивания бензина или для максимизации производства дизельного топлива.
Сырье и продукты
В зависимости от типа получаемых продуктов установка гидрокрекинга может перерабатывать различные типы сырья.
Сырье
Наиболее распространенные типы сырья:
Продукты
Гидрокрекинг может производить широкий спектр продуктов в зависимости от того, какое сырье он перерабатывает и как он спроектирован и работает:
Катализатор
Катализаторы гидрокрекинга бифункциональны, т.е. имеют два типа активных центров:
Технологическая схема
Существует множество различных запатентованных конфигураций гидрокрекинга.
Также существует ряд различных конфигураций технологического оборудования гидрокрекинга.
Типичная схема установки двухступенчатого гидрокрекинга: 1 – печь, 2 – реактор гидроочистки, 3 – реактор гидрокрекинга 1-й ступени, 4 – компрессор циркулирующего ВСГ, 5 – сепаратор ВСГ, 6 – абсорбер сухого газа, 7 – фракционирующая колонна, 8 – сепаратор высокого давления, 9 – сепаратор низкого давления, 10 – реактор гидрокрекинга 2-й ступени, 11 – печь
Предварительный подогрев и реактор гидроочистки
Сырьевой газойль смешивается с потоком водорода под высоким давлением и затем проходит через теплообменник, где он нагревается теплотой продуктов, выходящих из реактора первой стадии гидрокрекинга. Затем сырье затем нагревают в трубчатой печи, после чего газосырьевая смесь поступает в верхнюю часть реактора гидроочистки.
Условия температуры и давления в реакторе гидроочистки зависят от конкретной лицензированной конфигурации гидрокрекинга, свойств сырья, желаемых продуктов, используемого катализатора и других переменных. Давление в реакторе первой ступени может составлять от 3,5 до 20 МПа, а температура может колебаться от 260 до 480 °С. После реактора гидроочистки очищенное сырье поступает в реактор гидрокрекинга.
В реакторы гидрокрекинга и гидроочистки в нескольких точках для контроля температуры в реакторе подают водород. Это необходимо для защиты от возможного неконтролируемого роста температуры в результате реакций гидрокрекинга. Также это поможет избежать возможной дезактивации катализатора вследствие высоких температур.
Реактор гидрокрекинга и блок сепарации 1-й ступени
После того, как газопродуктовая смесь из нижней части реактора охлаждается за счет нагревания сырья, он направляется в сепаратор высокого давления для разделения на три фазы: водородсодержащий газ (ВСГ), углеводородная жидкость и кислая вода. Соединения серы и азота, присутствующие в исходном газойле превращаются в газообразный сероводород и аммиак путем гидрирования, которое происходит в реакторах. Для растворения некоторых сероводородных и аммиачных газов, присутствующих в потоке продукта реакции первой стадии, подается водная промывка. Полученный водный раствор гидросульфида аммония (NH4HS) называется кислой водой и, как правило, направляется на очистку за границы установки.
ВСГ из сепаратора высокого давления направляется в сепаратор, где из него удаляется углеводородный конденсат. После этого ВСГ направляется на прием циркуляционного компрессора. Жидкая углеводородная фаза из сепаратора высокого давления поступает в сепаратор низкого давления. Отходящий газ из сепаратора низкого давления направляется в абсорбер, где разделяется на сухой газ и нестабильную нафту. Жидкие продукты с низа сепаратора низкого давления и абсорбера сухого газа направляются на фракционирование.
Фракционирующая колонна
Фракционирующая колонна может представлять из себя как одну сложную колонну, так и целый блок фракционирования, состоящий из нескольких ректификационных колонн.
Во фракционирующей колонне происходит разделение продуктов гидрокрекинга на головную фракцию (СУГ), нафту, керосин и дизельное топливо, непрореагировавший остаток гидрокрекинга, который затем отправляется в рецикл.
Реактор 2-й ступени
Нижний поток ректификационной колонны состоит из непревращенных углеводородов реактора первой ступени. Этот поток смешивают с водородом высокого давления и рециркулируют в качестве сырья в реактор второй ступени. Сначала его нагревают теплотой продуктов реактора второй ступени, а затем нагревают далее в печи. После этого газосырьевая смесь поступает в верхнюю часть реактора второй ступени. Условия температуры и давления в реакторе второй ступени зависят от тех же переменных, которые определяют условия в реакторе первой ступени. После того, как газопродуктовая смесь из нижней части реактора охлаждается за счет нагревания сырья, она направляется на блок сепарации 1-й ступени и далее на фракционирование.
Достоинства и недостатки
Недостатки
Достоинства
Материальный баланс
Материальный баланс установки гидрокрекинга ПАО «ТАНЕКО».
ВХОД | Тыс. тонн/год | % мас. |
Сырьевая смесь | 2812 | 96,7 |
Водород | 96 | 3,3 |
ИТОГО ВЗЯТО | 2908 | 100 |
ВЫХОД | ||
Углеводородный газ | 109 | 3,7 |
ВСГ | 25 | 0,8 |
Бензин | 609 | 20,9 |
Керосин | 371 | 12,8 |
Дизельное топливо | 1119 | 38,6 |
Остаточная фракция (гидроочищенный газойль) | 561 | 19,3 |
Сероводород | 114 | 3,9 |
ИТОГО ПОЛУЧЕНО | 2908 | 100 |
Существующие установки
В настоящее время на отечественных НПЗ функционируют восемь установок ГК, из которых шесть работают по технологии ГК под давлением (15 – 17 МПа). ГК в мягких условиях (5 – 10 МПа) представлен лишь НПК в Рязани (2005 г.).
В 2004 г. ГК с блоком гидродеароматизации ДТ реализован в Перми (ОАО «Лукойл») по технологии T-Star компании Texaco. В 2005 г. на ОАО «Славнефть-Ярославнефтеоргсинтез» (Ярославский НПЗ) был открыт комплекс ГК мощностью 2,14 млн. тонн в год (UOP).
В 2014 – 2017 гг. в эксплуатацию были введены три комплекса глубокой переработки нефти, включающие установки ГК ВГО: «Киришинефтеоргсинтез» (ОАО «Сургутнефтегаз»), АО «ТАНЕКО» (г. Нижнекамск) – мощность каждого составляет 2,9 млн. т/г; ОАО «Лукойл» (г. Волгоград) – 3,5 млн. т/г.
В ходе модернизации, на Хабаровском НПЗ был введен в эксплуатацию современный комплекс ГК (2014 г.). Реконструкция установки гидрокрекинга на заводе «Уфанефтехим», которая должна завершиться после 2019 года.
Основной объект модернизации Орского НПЗ – комплекс гидрокрекинга – был выведен на технологический режим с получением гарантийных показателей в конце августа 2018 года.
Гидрокрекинг
предназначен для получения малосернистых топливных дистиллятов из различного сырья
ИА Neftegaz.RU. Гидрокрекинг (Hydrocracking) предназначен для получения малосернистых топливных дистиллятов из различного сырья.
В качестве сырья на установках гидрокрекинга используют вакуумный и атмосферный газойль, газойль термического и каталитического крекинга, деасфальтизаты, мазут, гудрон.
Технологическая установка гидрокрекинга состоит обычно из 2 х блоков:
Продуктами гидрокрекинга являются автомобильные бензины, реактивное и дизельное топливо, сырье для нефтехимического синтеза и СУГ (из бензиновых фракций).
Гидрокрекинг позволяет увеличить выход компонентов бензина, обычно за счет превращения сырья типа газойля.
Качество компонентов бензина, которое при этом достигается, недостижимо при повторном прохождении газойля через процесс крекинга, в котором он был получен.
Гидрокрекинг также позволяет превращать тяжелый газойль в легкие дистилляты (реактивное и дизельное топливо). При гидрокрекинге не образуется никакого тяжелого неперегоняющегося остатка (кокса, пека или кубового остатка), а только легко кипящие фракции.
Катализатор и водород дополняют друг друга в нескольких аспектах:
Выходящая из реактора смесь продуктов реакции и циркуляционного газа охлаждается в теплообменнике, холодильнике и поступает в сепаратор высокого давления.
Здесь водородсодержащий газ для обратного направления в процесс и смешивания с сырьем отделяется от жидкости, которая с низа сепаратора через редукционный клапан, поступает далее в сепаратор низкого давления.
В сепараторе выделяется часть углеводородных газов, а жидкий поток направляется в теплообменник, расположенный перед промежуточной ректификационной колонной, для дальнейшей перегонки.
В колонне при небольшом избыточном давлении выделяются углеводородные газы и легкий бензин.
Керосиновую фракцию можно выделить, как боковой погон или оставить вместе с газойлем в качестве остатка от перегонки.
Напомним, что из 1 ед. сырья получается около 1,25 ед. продукции.
Здесь не указано требуемое количество водорода, которое измеряется в стандартных фт 3 /барр сырья.
Обычный расход составляет 2500 ст.
Этот продукт часто направляют на установку риформинга для облагораживания.
Керосиновые фракции являются хорошим реактивным топливом или сырьем для дистиллятного (дизельного) топлива, поскольку они содержат мало ароматики (в результате насыщения двойных связей водородом).
Существует несколько моделей установок гидрокрекинга, которые были сконструированы специально для переработки остатка или остатка от вакуумной перегонки.
На выходе получается более 90% остаточного (котельного) топлива.
Задачей данного процесса является удаление серы в результате каталитической реакции серосодержащих соединений с водородом с образованием сероводорода.
Таким образом, остаток с содержанием серы не более 4% может быть превращен в тяжелое жидкое топливо, содержащее менее 0,3% серы.
Использовать установки гидрокрекинга необходимо в общей схеме переработки нефти.
С одной стороны, установка гидрокрекинга является центральным пунктом, так как она помогает установить баланс между количеством бензина, дизельного топлива и реактивного топлива.
С другой стороны, скорости подачи сырья и режимы работы установок каталитического крекинга и коксования не менее важны.
Кроме того, алкилирование и риформинг также следует учитывать при планировании распределения продуктов гидрокрекинга.
Гидрокрекинг
предназначен для получения малосернистых топливных дистиллятов из различного сырья
ИА Neftegaz.RU. Гидрокрекинг (Hydrocracking) предназначен для получения малосернистых топливных дистиллятов из различного сырья.
В качестве сырья на установках гидрокрекинга используют вакуумный и атмосферный газойль, газойль термического и каталитического крекинга, деасфальтизаты, мазут, гудрон.
Технологическая установка гидрокрекинга состоит обычно из 2 х блоков:
Продуктами гидрокрекинга являются автомобильные бензины, реактивное и дизельное топливо, сырье для нефтехимического синтеза и СУГ (из бензиновых фракций).
Гидрокрекинг позволяет увеличить выход компонентов бензина, обычно за счет превращения сырья типа газойля.
Качество компонентов бензина, которое при этом достигается, недостижимо при повторном прохождении газойля через процесс крекинга, в котором он был получен.
Гидрокрекинг также позволяет превращать тяжелый газойль в легкие дистилляты (реактивное и дизельное топливо). При гидрокрекинге не образуется никакого тяжелого неперегоняющегося остатка (кокса, пека или кубового остатка), а только легко кипящие фракции.
Катализатор и водород дополняют друг друга в нескольких аспектах:
Выходящая из реактора смесь продуктов реакции и циркуляционного газа охлаждается в теплообменнике, холодильнике и поступает в сепаратор высокого давления.
Здесь водородсодержащий газ для обратного направления в процесс и смешивания с сырьем отделяется от жидкости, которая с низа сепаратора через редукционный клапан, поступает далее в сепаратор низкого давления.
В сепараторе выделяется часть углеводородных газов, а жидкий поток направляется в теплообменник, расположенный перед промежуточной ректификационной колонной, для дальнейшей перегонки.
В колонне при небольшом избыточном давлении выделяются углеводородные газы и легкий бензин.
Керосиновую фракцию можно выделить, как боковой погон или оставить вместе с газойлем в качестве остатка от перегонки.
Напомним, что из 1 ед. сырья получается около 1,25 ед. продукции.
Здесь не указано требуемое количество водорода, которое измеряется в стандартных фт 3 /барр сырья.
Обычный расход составляет 2500 ст.
Этот продукт часто направляют на установку риформинга для облагораживания.
Керосиновые фракции являются хорошим реактивным топливом или сырьем для дистиллятного (дизельного) топлива, поскольку они содержат мало ароматики (в результате насыщения двойных связей водородом).
Существует несколько моделей установок гидрокрекинга, которые были сконструированы специально для переработки остатка или остатка от вакуумной перегонки.
На выходе получается более 90% остаточного (котельного) топлива.
Задачей данного процесса является удаление серы в результате каталитической реакции серосодержащих соединений с водородом с образованием сероводорода.
Таким образом, остаток с содержанием серы не более 4% может быть превращен в тяжелое жидкое топливо, содержащее менее 0,3% серы.
Использовать установки гидрокрекинга необходимо в общей схеме переработки нефти.
С одной стороны, установка гидрокрекинга является центральным пунктом, так как она помогает установить баланс между количеством бензина, дизельного топлива и реактивного топлива.
С другой стороны, скорости подачи сырья и режимы работы установок каталитического крекинга и коксования не менее важны.
Кроме того, алкилирование и риформинг также следует учитывать при планировании распределения продуктов гидрокрекинга.
НЕФТЕПЕРЕРАБОТКА
ГИДРОГЕНИЗАЦИОННЫЕ ПРОЦЕССЫ
Назначение процесса, катализаторы, состав установки
Процесс гидрокрекинга предназначен в основном для получения малосернистых топливных дистиллятов из различного сырья. Обычно гидрокрекингу подвергают вакуумные и атмосферные газойли, газойли термического и каталитического крекинга, деасфальтизаты и реже мазуты и гудроны с целью производства автомобильных бензинов, реактивных и дизельных топлив, сырья для нефтехимического синтеза, а иногда и сжиженных углеводородных газов (из бензиновых фракпий). Водорода при гидрокрекинге расходуется значительно больше, чем при гидроочистке тех же видов сырья.
Гидрокрекинг осуществляется в одну или две ступени на неподвижном (стационарном) слое катализатора при высоком парциальном давлении водорода. По технологическому оформлению модификации процесса различаются преимущественно применяемыми катализаторами. При производстве топливных дистиллятов из прямогонного сырья обычно используют одноступенчатый вариант с рециркуляцией остатка, совмещая в реакционной системе гидроочистку, гидрирование и гидрокрекинг. При двухступенчатом процессе гидроочистку и гидрирование сырья проводят в первой ступени, а гидрокрекинг во второй. В этом случае достигается более высокая глубина превращения тяжелого сырья.
Для гидрокрекинга наибольшее распространение получили алюмокобальтмолибденовые катализаторы, а также на первой ступени — оксиды или сульфиды никеля, кобальта, вольфрама и на второй ступени — цеолитсодержащие катализаторы с платиной.
Процесс гидрокрекинга — экзотермический, и для выравнивания температуры сырьевой смеси по высоте реактора предусмотрен ввод холодного водородсодержащего газа в зоны между слоями катализатора. Движение сырьевой смеси в реакторах нисходящее.
Технологические установки гидрокрекинга состоят обычно из двух основных блоков: реакционного, включающего один или два реактора, и блока фракционирования, имеющего разное число дистилляционных колонн (стабилизации, фракционирования жидких продуктов, вакуумную колонну, фракционирующий абсорбер и др.). Кроме того, часто имеется блок очистки газов от сероводорода. Мощность установок может достигать 13 000 м 3 /сут.
Технологическая схема
Технологическая схема одноступенчатого гидрокрекинга с получением преимущественно дизельного топлива из вакуумного газойля в стационарном слое катализатора.
Сырье, подаваемое насосом 1, смешивается со свежим водородсодержащим газом и циркуляционным газом, которые нагнетаются компрессором 8. Газосырьевая смесь, пройдя теплообменник 4 и змеевики печи 2, нагревается до температуры реакции и вводится в реактор 3 сверху. Учитывая большое тепловыделение в процессе гидрокрекинга, в реактор в зоны между слоями катализатора вводят холодный водородсодержащий (циркуляционный) газ с целью выравнивания температур по высоте реактора.
Выходящая из реактора смесь продуктов реакции и циркуляционного газа охлаждается в теплообменнике 4, холодильнике 5 и поступает в сепаратор высокого давления 6. Здесь водородсодержащий газ отделяется от жидкости, которая с низа сепаратора через редукционный клапан 9, поступает далее в сепаратор низкого давления 10. В сепараторе 10 выделяется часть углеводородных газов, а жидкий поток направляется в теплообменник 11, расположенный перед промежуточной ректификационной колонной 15. В колонне при небольшом избыточном давлении выделяются углеводородные газы и легкий бензин.
Бензин частично возвращается в колонну 15 в виде острого орошения, а балансовое его количество через систему «защелачивания» откачивается с установки. Остаток колонны 15 разделяется в атмосферной колонне 20 на тяжелый бензин, дизельное топливо и фракцию >360°С.
Бензин атмосферной колонны смешивается с бензином промежуточной колонны и выводится с установки. Дизельное топливо после отпарной колонны 24 охлаждается, «защелачивается» и откачивается с установки. Фракция >360°С используется в виде горячего потока внизу колонны 20, а остальная часть (остаток) выводится с установки. В случае производства масляных фракций блок фракционирования имеет также вакуумную колонну.
Водородсодержащий газ подвергается очистке водным раствором моноэтаноламина и возвращается в систему. Необходимая концентрация водорода в циркуляционном газе обеспечивается подачей свежего водорода (например, с установки каталитического риформинга).
Регенерация катализатора проводится смесью воздуха и инертного газа, срок службы катализатора 4—7 мес.
Технологический режим
Материальный баланс
Показатели | Вакуумный дистиллят сернистых нефтей (350-500°С) | Вакуумный дистиллят арланской нефти | Дистиллят кокосования гудрона сернистых нефтей (200-350°С) | |||||
Фракция 200-450°С | Фракция 350-450°С | |||||||
Взято, % (масс.) | ||||||||
сырьё | 100,0 | 100,0 | 100,0 | 100,0 | ||||
водород 100-%ный | 0,9 | 0,9 | 0,9 | 0,9 | ||||
Итого | 100,9 | 100,9 | 100,9 | 100,9 | ||||
Получено, % (масс.) | ||||||||
бензин (НК-180°С) | 2,8 | 4,3 | 3,2 | 5,6 | ||||
дизельное топливо (180-360°С) | 43,3 | 73,3 | 49,2 | 70,7 | ||||
остаток >360°С | 49,0 | 17,0 | 41,4 | 18,7 | ||||
сероводород | 2,1 | 2,3 | 3,4 | 2,0 | ||||
аммиак | 0,2 | 0,2 | 0,2 | 0,16 | ||||
углеводородные газы | 2,5 | 2,8 | 2,6 | 3,24 | ||||
потери | 1,0 | 1,0 | 1,0 | 1,0 | ||||
Итого | 100,9 | 100,9 | 100,9 | 100,9 |
Свойства продуктов в зависимости от сырья
Показатели | Вакуумный дистиллят сернистых нефтей (350-500°С) | Вакуумный дистиллят арланской нефти | Дистиллят кокосования гудрона сернистых нефтей (200-350°С) | ||||||
Фракция 200-450°С | Фракция 350-450°С | ||||||||
бензин | дизельное топливо | бензин | дизельное топливо | бензин | дизельное топливо | бензин | дизельное топливо | ||
Плотность при 20°С, кг/м 3 | 783 | 861 | 777 | 841 | 781 | 861 | 769 | 861 | |
Фракционный состав, °С: | |||||||||
НК | 119 | 180 | 85 | 193 | 89 | 173 | 92 | 181 | |
КК (98%) | 181 | 354 | 186 | 355 | 181 | 355 | 184 | 350 | |
Иодное число, г I/100 г: | 3,6 | 5,1 | 4,4 | 5,2 | 4,3 | 4,2 | 7,3 | 4,6 | |
Температура застывания, °С: | — | — 10 | — | — 10 | — | — 12 | — | — 10 | |
Содержание: | |||||||||
серы, % (масс.) | 0,02 | 0,12 | 0,02 | 0,17 | 0,02 | 0,05 | 0,02 | 0,09 | |
фактических смол, мг/100 мл | 2 /с | — | 5,6 | — | 5,9 | — | 4,8 | — | — |
Октановое (ММ) или цетановое число | 50 | 46 | 61,5 | 49 | 54 | 49 | 55 | 45 |
Тяжелый газойль гидрокрекинга рассматривается как хорошее пиролизное сырье для получения этилена, а фракции С5—85°С и 85—193°С, богатые нафтеновыми углеводородами, — как превосходное сырье для каталитического риформинга, направленного на производство ароматических углеводородов. Легкий газойль обычно используется как компонент дизельного топлива.