Установи что происходит во время темновой фазы фотосинтеза
Этапы пути прохождения темновой стадии фотосинтеза
Существует две стадии процесса фотосинтеза. Они принципиально отличаются по химическим реакциям, происходящим в клетках растения. Первая или световая стадия напрямую связана с наличием световой энергии. 2 или темновая стадия названа так, поскольку процессы, происходящие во время нее, не зависят от наличия света. Химические процессы, которые происходят в темновую фазу фотосинтеза, различны у разных видов растений.
Что такое ферментативная фаза фотосинтеза
Темновая или ферментативная стадия фотосинтеза характеризуется: синтезом глюкозы, фиксацией углекислого газа и протеканием процессов в хлоропластах. Она запускается после расщепления воды под действием энергии света на 1 световой стадии и образования ее конечных продуктов:
Далее во время темновой стадии растение поглощает из атмосферы СО2. Из этого соединения и водорода, отдаваемого молекулой НАДФН, синтезируется органическое соединение глюкоза (C6H12O6). Реакции синтеза проходят с поглощением энергии. Энергия для этого процесса выделяется молекулами АТФ, которые превращаются в АДФ (аденозиндифосфат).
Химические процессы, которые происходят в темновой стадии фотосинтеза, можно представить следующим уравнением:
В темновой стадии фотосинтеза энергия для синтеза высвобождается при распаде АТФ на АДФ и фосфорную кислоту:
АТФ → Q + АДФ + фосфорная кислота
Темновая фаза фотосинтеза разделяется на несколько этапов в зависимости от пути прохождения, присущих разным видам растений. Результатом темновой фазы фотосинтеза независимо от ее пути прохождения всегда является органическое соединение — глюкоза. Ниже представлена общая схема фотосинтеза: световая и темновая фаза.
Где протекают реакции темновой стадии фотосинтеза
Реакции темновой фазы фотосинтеза происходят, протекают в специальных клеточных структурах растения — в стромах хлоропластов. Хлоропласт – зеленая пластида, содержащая хлорофилл и отвечающая за химические реакции, проходящие во время всех стадий фотосинтеза. Хлоропласт имеет достаточно сложную структуру.
Основными его частями являются:
Вся 1 световая стадия фотосинтеза проходит в гранах тилакоидов. Внутри них имеется хлорофилл – зеленый пигмент, способный поглощать световую энергию.
2 темновая стадия фотосинтеза проходит в строме хлоропласта. В состав стромы входят необходимые ферменты, которые обеспечивают прохождение химических реакций синтеза углеводов.
Цикл Кальвина
Самым распространенным видом фотосинтеза является С3 фотосинтез, который называется циклом Кальвина. Процессы, проходящие в цикле Кальвина, характерны для большинства видов растений нашей планеты. С3— фотосинтез делится на 3 фазы:
В фазе карбоксилирования углекислый газ, поглощаемый растением из воздуха, связывается с ферментом (рибулозобисфосфат), образуя фосфоглицериновую кислоту (3-ФГК). Это 3-углеродное соединение дало название данному виду фотосинтеза – С3.
В следующей фазе восстановления 3-ФГК восстанавливается до 3-фосфоглицеринового альдегида (3-ФГА). Этот процесс происходит с участием НАДФН и АТФ. В фазе регенерации часть молекул 3-ФГА покидают цикл.
Из них во время темновой стадии фотосинтеза образуется вещество — глюкоза. Остальные молекулы данного вещества регенерируют в рибулозобисфосфат, способный связывать углекислый газ. Цикл Кальвина повторяется. Для синтеза одной молекулы глюкозы цикл должен пройти 6 раз.
Растения, использующие С3— фотосинтез должны непрерывно получать углекислый газ из окружающей атмосферы. При его дефиците или отсутствии темновая фаза фотосинтеза не может проходить у них эффективно.
Они должны постоянно держать устьица на своих листьях открытыми, чтобы поглощать СО2. В случае же его дефицита такие растения переходят в режим дыхания и выделяют углекислый газ, необходимый им в дальнейших фазах фотосинтеза.
Также через эти отверстия испаряется много влаги. Поэтому растения с С3-фотосинтезом не могут существовать в жарких и засушливых регионах. Там живут растения, которые используют другие виды фотосинтеза.
Цикл Хэтча-Слэка
Существует множество видов растений, фотосинтез которых проходит по пути С4. Он отличается от С3-фотосинтеза тем, что поступивший СО2 при участии ферментов образует не 3-углеродное, а 4-углеродное соединение.
Путь фотосинтеза С4 называется циклом Хэтча-Слэка в честь его первооткрывателей. Цикл Хэтча-Слэка проходит в 3 этапа:
В процессе акцептации углекислый газ, поступивший в клетки растения из окружающей среды, соединяется не с рибулозобисфосфатом, как в цикле Кальвина, а с 3-углеродным соединением — фосфоенолпировиноградной кислотой.
В результате этой реакции получается 4-углеродное соединение – щавелевоуксусная кислота. Затем в зависимости от вида растения это вещество превращается в другие 4-углеродные соединения: яблочную и яспарагиновую кислоты.
На этапе декарбоксилирования из полученных 4-углеродных соединений получается свободный углекислый газ. Он не выделяется в атмосферу, а сразу поступает в цикл Кальвина. Оставшиеся 3-углеродные молекулы вновь могут использоваться для захвата СО2 в начале цикла Хэтча-Слэка.
Рассмотренный вариант фотосинтеза намного прогрессивнее, чем С3-фотосинтез. Здесь растение может накапливать углекислый газ в составе 4-углеродных кислот, чтобы потом использовать его по необходимости. Это обеспечивает непрерывный и эффективный цикл синтеза глюкозы, не зависящий от присутствия углекислоты в атмосфере.
У таких видов растений очень редко происходит процесс дыхания. Фотосинтез С4 обнаружен у более 900 видов растений. Среди них есть немало сельскохозяйственных культур, в том числе просо, сорго, кукуруза и сахарный тростник. Все эти виды приспособлены к жизни в засушливых районах с повышенной температурой воздуха.
Исследования показали, что при повышении температуры эффективность фотосинтеза у них значительно повышается. В то же время они не испытывают дефицита влаги. Среди комнатных растений также немало видов, использующих С4-фотосинтез.
Такими свойствами обладают все бромелиевые. Не следует располагать их рядом с С3-растениями. Пока последние будут медленно усваивать углекислый газ, С4-виды быстро поглотят всю углекислоту из воздуха, создавая для обычных разновидностей неблагоприятные условия.
Этапы САМ-фотосинтеза
Существует модификация пути С4, которая называется САМ (Crassulacean Аcid Metabolism). Этот путь фотосинтеза типичен для всех суккулентов, которые приспособлены выживать в жарком климате с дефицитом воды.
Этапы САМ-фотосинтеза ничем не отличаются от С4 пути, но его этапы разделены во времени. Углекислый газ поступает в клетки растения только ночью, когда устьица на листьях открыты. Таким образом, в ночное время возможно прохождение этапов: акцептации и декарбоксилирования.
Значение темновой стадии фотосинтеза для растений
Темновая стадия фотосинтеза позволяет растению завершить синтез органического вещества из неорганических. Этот процесс имеет в их жизни решающее значение. Глюкоза, синтезируемая растениями, принимает участие во многих биологических процессах, проходящих в растительных клетках. Вот основные из них:
Белки жиры и сложные углеводы входят в состав клеток растения. Их необходимо синтезировать, чтобы растение могло расти и развиваться. Глюкоза является одним из важнейших материалов, используемых для такого синтеза.
Также растение вынуждено дышать, если вокруг него недостаточно углекислого газа, необходимого для фотосинтеза. Тогда часть конечного продукта темновой фазы фотосинтеза, которым является синтезированная глюкоза, расщепляется с выделением СО2. При накоплении питательных веществ глюкоза переходит в более стойкое вещество – крахмал, который и накапливается в органах растения.
Крахмал может использоваться по необходимости, расщепляясь сначала до глюкозы, а затем в конечные продукты окисления – воду и СО2. Запасы позволяют растению расходовать их в наступивших неблагоприятных условиях, сохраняя жизнеспособность.
Лекция № 12. Фотосинтез. Хемосинтез
Фотосинтез
Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:
У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.
Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.
Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.
Световая фаза
Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:
Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:
Радикалы •ОН объединяются, образуя воду и свободный кислород:
Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:
2Н + + 2е — + НАДФ → НАДФ·Н2.
Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.
1 — строма хлоропласта; 2 — тилакоид граны.
Темновая фаза
Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.
Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:
Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.
С3-фотосинтез
Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.
Фотодыхание
Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.
Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:
О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).
Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).
С4-фотосинтез
С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.
Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.
Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.
Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.
Строение С4-растений: С4-фотосинтез: Значение фотосинтезаКупить проверочные работы
Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации. При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час. ХемосинтезСинтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий. Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3). Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+ ). Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4). В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза. Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др. Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков» Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз» Смотреть оглавление (лекции №1-25) Темновая фаза фотосинтеза – кратко и понятно о процессе (10 класс, биология)Процесс фотосинтеза завершается реакциями темновой фазы, в ходе которых образуются углеводы. Для осуществления этих реакций используется энергия и вещества, запасённые в ходе световой фазы: за открытие данного цикла реакций в 1961 году была присуждена Нобелевская премия. Постараемся рассказать кратко и понятно про темновую фазу фотосинтеза. Локализация и условияРеакции темновой фазы проходят в строме (матриксе) хлоропластов. Они не зависят от наличия света, т. к. необходимая для них энергия уже запасена в форме АТФ. Для синтеза углеводов используется водород, полученный при фотолизе воды и связанный в молекулах НАДФН₂. Также необходимо наличие сахаров, к которым будет присоединяться атом углерода из молекулы СО₂. Источником сахаров для прорастающих растений является эндосперм – запасные вещества, которые находятся в семени и получены от родительского растения. ИзучениеСовокупность химических реакций темновой фазы фотосинтеза, ведущую к образованию глюкозы, открыл со своими сотрудниками М. Кальвин. Рис. 1. Мелвин Кальвин в лаборатории. Первым этапом фазы является получение соединений с тремя атомами углерода. Для некоторых растений первым этапом будет образование органических кислот с 4 атомами углерода. Этот путь был открыт австралийскими учёными М. Хетчем и С. Слэком и называется С₄ – фотосинтезом. Итогом С₄ – фотосинтеза также является глюкоза и другие сахара. Связывание СО₂За счёт энергии АТФ, полученной в световой фазе, в строме активируются молекулы рибулозофосфата. Он превращается в высокореакционное соединение рибулозодифосфат (РДФ), имеющее 5 атомов углерода. Рис. 2. Схема присоединение СО₂ к РДФ. Образуются две молекулы фосфоглицериновой кислоты (ФГК), имеющей три углеродных атома. На следующем этапе ФГК реагирует с АТФ и образует дифосфоглицериновую кислоту. ДиФГК взаимодействует с НАДФН₂ и восстанавливается до фосфоглицеринового альдегида (ФГА). Все реакции происходят только под воздействием соответствующих ферментов. ФГА образует фосфодиоксиацетон. Образование гексозыНа следующем этапе путём конденсации ФГА и фосфодиоксиацетона образуется фруктозодифосфат, который содержит 6 атомов углерода и является исходным материалом для образования сахарозы и полисахаридов. Рис. 3. Схема темновой фазы фотосинтеза. Фруктозодифосфат может взаимодействовать с ФГА и другими продуктами темновой фазы, давая начало цепям 4-, 5-, 6-, 7-углеродных сахаров. Одним из устойчивых продуктов фотосинтеза является рибулозофосфат, который снова включается в цикл реакций, взаимодействуя с АТФ. Чтобы получить молекулу глюкозы проходит 6 циклов реакций темновой фазы. Углеводы являются основным продуктом фотосинтеза, но также из промежуточных продуктов цикла Кальвина образуются аминокислоты, жирные кислоты, гликолипиды. Таким образом, в организме растения многие функции зависят от того, что происходит в темновой фазе фотосинтеза. Вещества, полученные в этой фазе, используются в биосинтезе белков, жиров, дыхании и других внутриклеточных процессах. Что мы узнали?Изучая в 10 классе фотосинтез, мы разобрались какие процессы происходят в обеих его фазах. Темновая фаза характеризуется следующими признаками: образование органических веществ, превращение АТФ в АДФ и высвобождение энергии, поглощение углекислого газа. Ключевое значение в цикле Кальвина имеют: рибулозодифосфат, как акцептор СО₂, фруктозодифосфат, как первый шестиатомный углевод, включающий связанный атом углерода СО₂. Темновая фаза фотосинтеза
Всего получено оценок: 348. Всего получено оценок: 348. Процесс фотосинтеза завершается реакциями темновой фазы, в ходе которых образуются углеводы. Для осуществления этих реакций используется энергия и вещества, запасенные в ходе световой фазы: за открытие данного цикла реакций в 1961 году была присуждена Нобелевская премия. Постараемся рассказать кратко и понятно про темновую фазу фотосинтеза. Локализация и условияРеакции темновой фазы проходят в строме (матриксе) хлоропластов. Они не зависят от наличия света, т. к. необходимая для них энергия уже запасена в форме АТФ. Для синтеза углеводов используется водород, полученный при фотолизе воды и связанный в молекулах НАДФН₂. Также необходимо наличие сахаров, к которым будет присоединяться атом углерода из молекулы СО₂. Источником сахаров для прорастающих растений является эндосперм – запасные вещества, которые находятся в семени и получены от родительского растения. ИзучениеСовокупность химических реакций темновой фазы фотосинтеза, ведущую к образованию глюкозы, открыл со своими сотрудниками М. Кальвин. которые читают вместе с этой Первым этапом фазы является получение соединений с тремя атомами углерода. Для некоторых растений первым этапом будет образование органических кислот с 4 атомами углерода. Этот путь был открыт австралийскими учёными М. Хетчем и С. Слэком и называется С₄ – фотосинтезом. Итогом С₄ – фотосинтеза также является глюкоза и другие сахара. Связывание СО₂За счёт энергии АТФ, полученной в световой фазе, в строме активируются молекулы рибулозофосфата. Он превращается в высокореакционное соединение рибулозодифосфат (РДФ), имеющее 5 атомов углерода. Образуются две молекулы фосфоглицериновой кислоты (ФГК), имеющей три углеродных атома. На следующем этапе ФГК реагирует с АТФ и образует дифосфоглицериновую кислоту. ДиФГК взаимодействует с НАДФН₂ и восстанавливается до фосфоглицеринового альдегида (ФГА). Все реакции происходят только под воздействием строго специфичных ферментов. ФГА образует фосфодиоксиацетон. Образование гексозыНа следующем этапе путём конденсации ФГА и фосфодиоксиацетона образуется фруктозодифосфат, который содержит 6 атомов углерода и является исходным материалом для образования сахарозы и полисахаридов. Рис. 3. Схема темновой фазы фотосинтеза. Фруктозодифосфат может взаимодействовать с ФГА и другими продуктами темновой фазы, давая начало цепям 4-, 5-, 6-, 7-углеродных сахаров. Одним из устойчивых продуктов фотосинтеза является рибулозофосфат, который снова включается в цикл реакций, взаимодействуя с АТФ. Чтобы получить молекулу глюкозы проходит 6 циклов реакций темновой фазы. Углеводы являются основным продуктом фотосинтеза, но также из промежуточных продуктов цикла Кальвина образуются аминокислоты, жирные кислоты, гликолипиды. Таким образом, в организме растения многие функции зависят от того, что происходит в темновой фазе фотосинтеза. Вещества, полученные в этой фазе, используются в биосинтезе белков, жиров, клеточном дыхании и других внутриклеточных процессах. Что мы узнали?Изучая в 10 классе фотосинтез, мы разобрались какие процессы происходят в обеих его фазах. Темновая фаза характеризуется следующими признаками: образование органических веществ, превращение АТФ в АДФ и высвобождение энергии, поглощение углекислого газа. Ключевое значение в цикле Кальвина имеют: рибулозодифосфат, как акцептор СО₂, фруктозодифосфат, как первый шестиатомный углевод, включающий связанный атом углерода СО₂.
|