Ультразвуковая дефектоскопия что это
Ультразвуковая дефектоскопия как инструмент качества
Что такое ультразвуковая дефектоскопия и для чего она нужна. Эхо-импульсный, эхо-зеркальный и теневой методы. Достоинства и недостатки ультразвуковой дефектоскопии.
Содержание статьи
Что такое ультразвуковая дефектоскопия?
Ультразвуковая дефектоскопия представляет собой совокупность методов неразрушающего контроля, использующих для нахождения дефектов в изделиях ультразвуковые волны. Полученные данные затем анализируются, выясняется форма дефектов, размер, глубина залегания и другие характеристики.
Позволяет надёжно и эффективно проверять качество стального литья, сварных соединений, литых заготовок. Применяется при изготовлении и эксплуатации железнодорожных рельс, частей авиационных двигателей, трубопроводов в атомных реакторах и контроля иных ответственных изделий. Самый совершенный инструмент диагностики — дефектоскоп на фазированных решетках.
Ультразвуковые преобразователи к содержанию
В промышленности металлы, как правило, проверяют ультразвуком с частотой в диапазоне от 0,5 МГц до 10 МГц. В определённых случаях сварные швы обследуют волнами, имеющими частоту до 20 МГц. Благодаря этому можно выявлять дефекты весьма небольшого размера. Объекты значительной толщины, в частности отливки, поковки, сварные соединения, сделанные электрошлаковой сваркой, а также металлы крупнозернистого строения, например, чугун и некоторые виды стали проверяют ультразвуком с низкими частотами.
Пьезоэлектрическими преобразователями называются приборы, которые возбуждают и принимают ультразвуковые волны.
Совмещённые преобразователи имеют в своём составе пьезоэлемент, который может в один момент времени испускать ультразвук, а в следующий принимать.
В раздельно-совмещенных аппаратах один пьезоэлемент является источником ультразвуковых волн, а другой их улавливает.
В раздельных пьезоэлемент служит либо генератором, либо приёмником ультразвука.
В контактных преобразователях ультразвуковые волны излучаются в исследуемый объект через тонкую прослойку жидкости.
В иммерсионном устройстве его поверхность и изделие разделены слоем жидкости, во много раз превышающим длину волны. Для этого образец помещают в иммерсионную ванну, применяют струю воды и т.д.
В контактно-иммерсионном преобразователе имеется специальная ванна с эластичной мембраной, контактирующей с проверяемым изделием.
В бесконтактных установках ультразвуковые колебания возбуждаются с помощью различных физических эффектов через воздушный промежуток. Их чувствительность уступает преобразователям других типов в десятки тысяч раз.
Способы контроля с помощью ультразвука к содержанию
Эхо-импульсный способ самый широко распространённый и простой. Преобразователь излучает зондирующие сигналы и сам же регистрирует отражённые дефектами эхо-сигналы.
По временному интервалу между посылаемыми сигналами и эхо можно узнать, где и на какой глубине находится дефект, а по амплитуде сигнала – каковы его размеры. К достоинствам данного способа следует отнести:
К достоинствам данного способа следует отнести:
Основные его недостатки это:
Эхо-зеркальный метод нуждается в двух преобразователях. Их располагают по одну сторону проверяемого изделия так, чтобы один прибор мог улавливать сигнал излучаемый другим. В приёмник поступает ультразвук, отражённый от дефекта и от донной поверхности.
К недостаткам следует отнести необходимость менять через определённые промежутки времени расстояние между преобразователями.
Теневой метод требует доступа преобразователей к проверяемому изделию с двух сторон, причём устройства обязаны находиться на одной акустической оси. О присутствии в объекте дефекта судят по серьёзному снижению амплитуды принимаемого сигнала либо его полному исчезновению. Основные достоинства подобного метода это: хорошая помехоустойчивость и низкая зависимость амплитуды сигнала от ориентации дефекта.
Преимущества и недостатки ультразвуковой дефектоскопии к содержанию
Ультразвуковой контроль в промышленности используется с 50 годов прошлого века. В то время инструментами для диагностики сварных соединений и обнаружения других дефектов на трубопроводах служили ламповые дефектоскопы и УЗК преобразователи на основе пьезокерамических элементов. За прошедшие более чем 60 лет накоплен богатый опыт применения ультразвукового контроля, появились новые цифровые дефектоскопы и новые методы неразрушающего контроля.
Ультразвуковой контроль – самый универсальный метод НК
Для чего проводят ультразвуковой контроль
В силу всех этих факторов ультразвуковой контроль всё чаще противопоставляют радиографическому. В пользу первого говорит ещё и то, что он безвреден для человеческого здоровья. Приборы для УЗК хороши своей портативностью, удобство работы в полевых условиях, большим многообразием датчиков, призм, сканеров и прочих принадлежностей для самых разных задач дефектоскопии.
Ультразвуковой контроль сварных соединений: последовательность действий
5) расшифровку данных, оформление заключения. Обычно дефекты классифицируются на допустимые и недопустимые по амплитуде, протяжённые и непротяжённые, поперечные, в корне и в сечении шва. Формат заключения/протокола/акта по результатам УЗК утверждается в нормативно-технической документации на контроль и согласовывается с заказчиком. Запись дефектов осуществляется с использованием условных обозначений, указанием глубины залегания, координат относительно начала отсчёта, амплитуды, протяжённости и пр. Чтобы упростить выборку дефекта и ремонт ОК, рекомендуется указывать начальные и конечные координаты каждого дефекта. В зависимости от того, какие дефекты обнаружены и какими параметрами они обладают, объект контроля относят к категории «годен», «ремонтировать» или «вырезать».
На каких объектах практикуется ультразвуковой контроль
Виды ультразвукового контроля
Заканчивая этот блок, нельзя не сказать и об ультразвуковой толщинометрии (УЗТ). Измерение толщины металла – один из ключевых способов коррозионного мониторинга. По результатам УЗТ можно судить об остаточном ресурсе конструкции (механизма, оборудования и пр.).
Как и в ультразвуковом контроле, принцип построен на использовании импульсов, которые излучает преобразователь. Прибор измеряет скорость, за которую они проходят через стенку. Если конкретнее, то известно 3 основных режима:
1) однократного эхо-сигнала. Измеряется время, которое проходит между начальным импульсом возбуждения и первым эхо-сигналом. Значение корректируется с учётом толщины протектора ПЭП, компенсации степени изнашивания и слоя контактной среды;
2) однократного эхо-сигнала линии задержки. Измеряется время от конца линии задержки до первого донного эхо-сигнала;
3) многократных эхо-сигналов. Измеряется время прохождения между донными эхо-сигналами.
Дефектоскопы и другое оборудование для ультразвукового метода контроля
Помимо этого, в УЗК активно применяются различные призмы, координатные устройства и сканеры. Для настройки и калибровки не обойтись без стандартных образцов (СОП, СО) и настроечных мер. Для улучшения акустического контакта на поверхность объекта предварительно наносят контактную жидкость/гель.
Для проведения УЗТ требуется толщиномер. Такой прибор технически проще, компактнее, дешевле классического дефектоскопа.
Обучение и аттестация специалистов по ультразвуковому методу контроля
По завершении обучения необходимо сдать квалификационный экзамен, состоящий из теоретической и практической части.
Разумеется, в каждом учебном центре есть своя библиотека методической и образовательной литературы. Дополнительно к этому можно почитать «классику» учебников по УЗК – труды И.Н. Ермолова, В.Г. Щербинского, В.В. Клюева, А.Х. Вопилкина и др. Посмотреть информацию об изданиях можно в специальном разделе «Библиофонд» онлайн-библиотеки «Архиус».
Для тех, кто открыт для новых знаний и обмена опытом, на форуме «Дефектоскопист.ру» предусмотрен свой раздел. Начать рекомендуем с веток «Изучение УЗ-контроля» и «Обучение УЗК».
Ультразвуковая дефектоскопия (УЗК, УЗД)
Ультразвуковая дефектоскопия (диагностика)
Ультразвуковой диагностика сварных швов — это неразрушающий целостности сварочных соединений метод контроля и поиска скрытых и внутренних механических дефектов не допустимой величины и химических отклонений от заданной нормы. Методом ультразвуковой дефектоскопии проводится диагностика разных сварных соединений. УЗД является действенным при выявлении воздушных пустот, химически не однородного состава (шлаковые включения в металле) и выявления присутствия не металлических элементов. Ультразвуковая диагностика, которая превосходит по точности полученных результатов многие другие виды контроля.
Это далеко не новый (впервые УЗК проведен в 1930 году) метод, но является очень популярным и используется практически повсеместно. Это обусловлено тем, что наличие даже небольших дефектов сварочных соединений приводит к неизбежной утрате физических свойств, таких как прочность, а со временем к разрушению соединения и непригодности всей конструкции.
Теория акустической технологии
Ультразвуковая волна при УЗД не воспринимается ухом человека, но она является основой для многих диагностических методов. Не только дефектоскопия, но и другие диагностические отрасли используют различные методики на основе проникновения и отражения ультразвуковых волн. Особенно они важны для тех отраслей, в которых основным является требование о недопустимости нанесения вреда исследуемому объекту в процессе диагностики. Таким образом, ультразвуковой метод контроля сварных швов относиться к неразрушающим методам контроля качества и выявления места локализации тех или иных дефектов (ГОСТ 14782-86).
Качество проведения УЗК зависит от многих факторов, таких как чувствительность приборов, настройка и калибровка дефектоскопа, выбор более подходящего метода проведения диагностики, от опыта оператора и других. Контроль швов на пригодность (ГОСТ 14782-86) и допуск объекта к эксплуатации не возможен без определения качества всех видов соединений и устранения даже мельчайшего дефекта.
Дефекты, выявляемые с помощью ультразвуковой дефектоскопии
С помощью проведения УЗД возможно выявить следующие дефекты:
Принцип работы
Ультразвуковая технология испытания основана на способности высокочастотных колебаний проникать в металл и отражаться от поверхности коррозии, включений в основном металле, пустот и других неровностей. Искусственно созданная, направленная ультразвуковая волна проникает в проверяемое соединение и в случае обнаружения дефекта отклоняется от своего нормального распространения. Оператор УЗК видит это отклонение на экране прибора и по определенным показаниям данных может дать характеристику выявленному дефекту.
Процедура проведения ультразвуковой дефектоскопии
1. Удаляется краска и ржавчина со сварочных швов не менее 100 мм с двух сторон.
2. Для получения более точного результата УЗК требуется хорошее прохождение ультразвуковых колебаний. Поэтому поверхность металла около шва и сам шов обрабатываются трансформаторным, турбинным, машинным маслом или солидолом, глицерином.
3. Прибор предварительно настраивается по определенному стандарту, который рассчитан на решения конкретной задачи УЗК.
4. Контроль:
толщины до 20 мм — стандартные настройки (зарубки);
свыше 20 мм — настраиваются АРД-диаграммы, если это разрешено требованиями к данному НТД;
5. Пьезоэлектрический преобразователь(ПЭП) перемещают продольно-поперечными движениями относительно оси сварного соединения и при этом стараются повернуть вокруг оси на 10-150.
6. При появлении устойчивого сигнала на экране прибора в зоне проведения УЗК, ПЭП поворачивают в сторону максимальной амплитуды отражения УЗ волн.
7. Следует уточнить: не вызвано ли наличие подобного колебания отражением волны от швов, что часто бывает при УЗК.
8. Если нет, то фиксируется дефект и записываются координаты.
9. Контроль сварных швов проводится согласно ГОСТу.
10. Тавровые швы (швы под 90 0) проверяются эхо-методом или по специальным методическим документам.
11. Все результаты проверки дефектоскопист заносит в таблицу данных, по которой можно будет легко повторно обнаружить дефект и устранить его.
Области применения ультразвукового контроля
УЗК чаще всего применяется:
Ультразвуковой метод контроля
Принцип УЗК
Разновидности УЗК
Сегодня в промышленной сфере используют четыре основных методики выполнения ультразвукового метода неразрушающего контроля. Их отличия заключаются в способах, применяемых для получения и оценки информации о дефектах:
1. Импульсный эхо-метод. В ходе диагностики ультразвуковую волну направляют на контролируемую область, а отражённый от дефекта сигнал регистрируют. Эхо-метод предполагает использование одного преобразователя в качестве как приёмника, так и источника волны.
2. Теневая методика. По разные стороны от контролируемой зоны устанавливают два преобразователя. Один из них формирует УЗ-волну, а второй регистрирует отражённый сигнал. При использовании теневого метода о наличии дефекта можно говорить в случае исчезновения УЗ-колебаний. В потоке возникает «глухая зона». Она говорит о том, что в этом месте сигнал не смог пройти из-за дефекта.
3. Зеркальный эхо-метод. В этом случае оба преобразователя устанавливаются на одной стороне. Первый прибор формирует УЗ-колебания, которые отражаются от неровности, а второй регистрирует их. Данный метод особенно эффективен, если необходимо найти дефекты, расположенные под прямым углом относительно поверхности исследуемого изделия (трещины и пр.).
4. Зеркально-теневая методика. По сути – это теневой метод. Однако приборы размещаются на одной стороне. В ходе дефектоскопии оператор регистрирует не прямой, а отражённый от второй поверхности контролируемой зоны поток УЗ-волн. О наличии дефекта говорят «глухие зоны» в отражённых колебаниях.
Неразрушающаяся на первый взгляд конструкция может быть повреждена дефектами, которые возникают во внутренних структурах металла. Поэтому данные методики способны обеспечить безопасную эксплуатацию сооружений, возведённых их продуктов проката.
Выявляемые дефекты
Ультразвуковой неразрушающий контроль используется для выявления:
Преимущества ультразвукового метода контроля
Основные минусы УЗК
Порядок выполнения УЗК
Порядок проведения дефектоскопии будет зависеть от класса металла, который нужно проверить, а также от требований, предъявляемых к нему. Образно можно разделить весь процесс на несколько этапов, это:
1. Визуальный осмотр. Оператор перед проведением дефектоскопии осматривает прокат на предмет видимых повреждений.
2. Выбор характеристик и методов контроля. В зависимости от класса заготовки выбирается метод выполнения УЗК.
3. Подготовка поверхности. С поверхности удаляют остатки шлака, лакокрасочных покрытий, крупные неровности и следы коррозии. Зона выполнения УЗК покрывается специальным составом, включающим воду, минеральные масла или особые густые клейстеры. Это даёт ультразвуковым сигналам возможность проникать внутрь металлического листа без препятствий.
4. Подготовка оборудования. В зависимости от выбранного метода выполнения УЗК мастер размещает, подключает и настраивает приборы.
5. Проведение дефектоскопии. Оператор медленно сканирует металлический лист. При возникновении сигналов от дефектов подбирается контрольный уровень чувствительности. Все данные фиксируются оператором.
6. Подготовка результатов. Информация о найденных дефектах заносится в специальный журнал. Также на основании полученных данных определяется качество стального листа в зависимости от требований, которые к нему предъявляются.
Некоторые предприниматели, занимающиеся производством и реализацией листовой стали, игнорируют этап обязательного неразрушающего контроля. Это может обернуться массой негативных последствий. Листовой металл, не прошедший дефектоскопию, часто становится причиной аварий. Для создания прочных, ответственных и неразрушающихся конструкций он не годится. Поэтому лучше выполнить УЗК в профессиональной лаборатории. Если вас интересуют подобные услуги, обратитесь в ТД «Ареал». Наши специалисты обладают высокой квалификацией, а также оформляют все документы согласно установленным стандартам.
Ультразвуковая дефектоскопия в вопросах и ответах
Выбор оборудования для ультразвуковой дефектоскопии
Подготовка к ультразвуковой дефектоскопии
Как не ошибиться со схемой прозвучивания
Этому посвящено множество обсуждений. Как пример – одна из старейших тем на форуме. В самом последнем сообщении сформулировано правило успеха: нужно внимательно читать документы на контроль. К таковым, например, относится ГОСТ Р 55724-2013.
Схема должна соответствовать типу соединения. Так, для ультразвуковой дефектоскопии стыковых сварных швов нужно использовать прямые и наклонные преобразователи. Прозвучивание осуществляется прямыми лучами, однократно- и двукратно-отражёнными. Тавровые и угловые соединения тоже проверяют с прямыми и наклонными преобразователями, генерируя прямые и/или однократно-отражённые лучи. Для нахлесточных соединений предусмотрены наклонные ПЭП. Прозвучивание осуществляется по совмещённой или раздельной схеме.
На выбор схемы влияет также наличие/отсутствие валика шва, а также характер несплошностей, которые нужно выявить. Одно дело – поперечные трещины, и другое – выявление дефектов, залегающих вблизи поверхности.
Если углубляться в физические основы ультразвуковой дефектоскопии, то легко увидеть ещё один «подводный камень» – структурные шумы и высокий коэффициент затухания у исследуемого материала. Это особенно актуально при контроле композиционных, слоистых, клееных материалов, а также литья и поковок. На этот случай в помощь дефектоскописту в аппаратуре предусмотрены различные фильтры и регулируемый уровень отсечки. Если не уметь пользоваться этими инструментами, то неравномерная структура материала (особенно если не была произведена механическая или термическая обработка) приведёт к большому количеству ложных сигналов.
Определение характеристик дефектов и оформление результатов
Впрочем, функционал современной аппаратуры для ультразвуковой дефектоскопии помогает не допускать таких ошибок. Для большей наглядности многие приборы могут выстраивать А-, В-, С-развёртки, S-сканы, визуализировать профиль изделия, геометрию шва и пр. Режим огибающей максимума сигнала, к примеру, полезен для оценки формы несплошности.
Ультразвуковая дефектоскопия с применением фазированных решёток и ЭМА-преобразователями
По-прежнему считается одной из передовых технологий УЗД. Почему «по-прежнему»? Да потому что в неразрушающем контроле этот метод стал применяться ещё с середины 1990-х годов. Однако и поныне фазированные решётки – прогрессивное направление, благодаря которому можно на полном серьёзе говорить об ультразвуковом контроле как о полноценной альтернативе рентгену.
Собственно, под фазированными решётками понимаются акустические блоки с множеством пьезоэлектрических элементов, каждый из которых формирует луч с определённым сдвигом по фазе. Ультразвуковая дефектоскопия с фазированными решётками (секторное сканирование) сложнее, производительнее и точнее классического УЗК. Вместо традиционного А-скана оператор видит S-скан – гораздо более информативный ввиду того, что позволяет наглядно визуализировать структуру металла, размеры и месторасположение несплошностей.
Наконец, нельзя не упомянуть и электромагнитно-акустические преобразователи (ЭМА-преобразователи, ЭМАП). Принцип их работы основан не на прямом и обратном пьезоэлектрическом эффекте, а на явлениях магнитострикции (явление изменения геометрических размеров ОК из ферромагнитного материала под действием изменяющегося внешнего магнитного поля) и магнитоупругости (обратный этому эффект).
И напоследок
Разумеется, ультразвуковая дефектоскопия – слишком обширное направление, чтобы в одном тексте изложить весь спектр трудностей, с которыми сталкиваются специалисты. Мы обозначили лишь самые крупные – даже не темы, а «блоки» вопросов. А есть ещё, например, УЗК тонкостенных объектов. Так, для технологических трубопроводов на взрывопожароопасных объектах допускается проведение УЗД для толщин от 8 мм, хотя во многих других отраслях этот «порог» намного ниже. Опытные дефектоскописты убеждены: для объектов с малой толщиной стенки, от 4 мм, УЗК гораздо предпочтительнее рентгена. Вопрос наболевший, так как сотни специалистов по всей стране вынуждены «тягать» рентгеновские трубки и дышать реагентами в проявочной вместо того, чтобы проводить УЗК.
Словом, много интересных вопросов и ситуаций. Чтобы глубже изучить методы ультразвуковой дефектоскопии и улучшать свои навыки, присоединяйтесь к сообществу «Дефектоскопист.ру» и следите за обновлениями!