Угол равностороннего треугольника в градусах чему равен
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
Равносторонний треугольник, свойства, признаки и формулы
Равносторонний треугольник, свойства, признаки и формулы.
Равносторонний треугольник – это треугольник, у которого все стороны равны между собой по длине, все углы также равны и составляют 60°.
Равносторонний треугольник (понятие, определение):
Равносторонний треугольник – это треугольник, у которого все стороны равны между собой по длине, все углы также равны и составляют 60°.
Равносторонний треугольник называется также правильным или равноугольным треугольником.
По определению, каждый правильный (равносторонний) треугольник также является равнобедренным, но не каждый равнобедренный треугольник – правильным (равносторонним). Иными словами, правильный (равносторонний) треугольник является частным случаем равнобедренного треугольника.
Рис. 1. Равносторонний треугольник
АВ = ВС = АС – стороны треугольника, ∠ АВС = ∠ BАC = ∠ BСA = 60° – углы треугольника
Свойства равностороннего треугольника:
1. В равностороннем треугольнике все стороны равны между собой.
2. В равностороннем треугольнике углы равны и составляют 60°.
3. В равностороннем треугольнике каждая медиана, проведенная к каждой стороне, является биссектрисой и высотой, и они равны между собой.
В равностороннем треугольнике биссектриса, проведенная к каждой стороне, является медианой и высотой, и они равны между собой.
В равностороннем треугольнике высота, проведенная к каждой стороне, является биссектрисой и медианой, и они равны между собой.
Рис. 2. Равносторонний треугольник
4. В равностороннем треугольнике высоты, биссектрисы, медианы и серединные перпендикуляры пересекаются в одной точке, которая называется центром равностороннего треугольника. Она же является центром вписанной и описанной окружностей.
Рис. 3. Равносторонний треугольник
R – радиус описанной окружности, r – радиус вписанной окружности
5. В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной.
6. Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, если считать от вершин.
Рис. 4. Равносторонний треугольник
AO : OK = BO : OА = CO : OD = 2 : 1
Признаки равностороннего треугольника:
– если в треугольнике три угла равны, то он равносторонний;
– если в треугольнике три стороны равны, то он равносторонний.
Формулы равностороннего треугольника:
Пусть a – длина стороны равностороннего треугольника, h – высота (l – биссектриса, m – медиана) равностороннего треугольника, проведенная к каждой стороне, α – угол равностороннего треугольника, α = 60°, R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 6).
Рис. 6. Равносторонний треугольник
Формула радиуса вписанной окружности (r):
.
Формула радиуса описанной окружности (R):
,
.
Формулы периметра (Р) равностороннего треугольника:
.
Формулы площади (S) равностороннего треугольника:
.
Формулы высоты (h), медианы (m) и биссектрисы (l) треугольника:
.
Равносторонний треугольник (ЕГЭ 2022)
И вот мы снова изучаем треугольники. Это всё больше похоже на заговор…
Не волнуйся: после прочтения этой статьи тайн не останется, ведь ты будешь знать всё о равностороннем треугольнике!
Тема простая, но очень важная!
Равносторонний треугольник — коротко о главном
Равносторонний треугольник —треугольник, у которого все стороны равны. \(AB=BC=AC=a\)
В равностороннем треугольнике все углы равны между собой и равны \(<<60>^
>\).
В равностороннем треугольнике каждая медиана совпадает с биссектрисой и высотой, которые проведены из той же вершины;
Точки пересечения высот, биссектрис, медиан и серединных перпендикуляров равностороннего треугольника совпадают.
Центры вписанной и описанной окружностей равностороннего треугольника совпадают: точка \(O\);
В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны \(a\):
Определение равностороннего треугольника
Равносторонний треугольник —треугольник, у которого все стороны равны.
Какие же особенные свойства присущи равностороннему треугольнику?
Свойства равностороннего треугольника
Свойство 1. В равностороннем треугольнике все углы равны между собой и равны \(<<60>^
>\)
Естественно, не правда ли? Три одинаковых угла, в сумме \(<<180>^
Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).
Почему так? А посмотрим-ка на равносторонний треугольник.
Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.
Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!
В равностороннем треугольнике оказалось не \(12\) особенных линий, как во всяком обычном треугольнике, а всего три!
Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.
Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. \(R=2\cdot r\)
Уже должно быть очевидно, отчего так.
Посмотри на рисунок: точка\( O\) – центр треугольника.
Значит, \(OB\) – радиус описанной окружности (обозначили его \(R\)), а \(OK\) – радиус вписанной окружности (обозначим \(r\)).
Но ведь точка \(O\) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины.
Поэтому \(OB=2\cdot OK\), то есть \(R=2\cdot r\).
Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.
Давай удостоверимся в этом.
Высота равностороннего треугольника
Рассмотрим \(\Delta ABK\) – он прямоугольный.
Радиус описанной окружности равностороннего треугольника
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Радиус вписанной окружности равностороннего треугольника
Это уже теперь должно быть совсем ясно:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Бонус 1. Статьи о других треугольниках
Подробная информация о других треугольниках в следующих статьях:
А в нашем учебнике по подготовке к ЕГЭ по математике вы найдете подробную информацию о других разделах математики:
Бонус 2: Вебинары о треугольниках, чтобы набить руку в решении задач
А в этих видео из нашего курса подготовки к ЕГЭ по математике вы можете потренироваться, решая задачи вместе с нашим репетитором Алексеем Шевчуком.
Это не просто вебинары, «бла-бла-бла» о теории математики. Это разбор задач в режиме реального времени.
Вы точно научитесь решать любые задачи на эти темы, если их прослушаете.
Хотите получить максимум от этих вебинаров? Берите ручку и бумагу и решайте вместе с Алексеем Шевчуком.
ЕГЭ 6. Прямоугольный треугольник: свойства, теорема Пифагора, тригонометрия
Подавляющее большинство задач в планиметрии решается через прямоугольные треугольники.
Как это так? Ведь далеко не в каждой задаче речь идёт о треугольниках вообще, не то что прямоугольных.
Но в этом видео мы убедимся, что это действительно так. Дело в том, что редкая сложная задача решается какой-то одной теоремой — почти всегда она разбивается на несколько задач поменьше. И в итоге мы имеем дело с треугольниками, зачастую — прямоугольными.
На этом уроке мы научимся решать задачи о прямоугольных треугольниках из ЕГЭ, выучим все необходимые теоремы и затронем основы тригонометрии.
ЕГЭ 6. Равнобедренный треугольник, произвольный треугольник
В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Также мы научимся решать и «обычные» треугольники. Убедимся в утверждении из прошлого урока — очень часто решение задач сводится к нескольким прямоугольным треугольникам.
ЕГЭ 16. Подобие треугольников. Задачи на доказательство
Итак, задача 16 профильного ЕГЭ. Подобие треугольников. Это одна из самых сложных задачи в профильном ЕГЭ.
Полные 3 балла за эту задачу получают менее 1% выпускников! Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства.
Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.
В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.
Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.
Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.
равносторонний треугольник площадь, высота, радиус вписанной и описанной
Что такое равносторонний треугольник, площадь равносторонних треугольников, равносторонние треугольники примеры.
Если все углы треугольника равны то, то это равносторонний треугольник и все стороны у такого треугольника равны.
Всё о равностороннем треугольнике!
Что такое равносторонний треугольник
В равностороннем треугольнике все углы равны аксиома.
На странице виды треугольников, мы упоминали о таком виде треугольников, как равносторонний треугольник.
Что из себя представляет равносторонний треугольник!?
Из самого названия видно, что все стороны данного треугольника равны:
Равносторонний треугольник называют еще правильным.
Какой первый интересный вопрос у вас возникает при виде равностороннего треугольника!?
Сколько градусов составляет угол в равностороннем треугольнике!?
Нет!? Не угадал. жаль.
Но тем не менее, раз уж вопрос задан, то узнать сколько градусов составляет угол разностороннего треугольника :
180° разделить на 3.
Поскольку у нас треугольник равносторонний. то все углы у такого треугольника будут равны.
Равносторонний треугольник максимальный угол
Высота равностороннего треугольника
Формула высоты равностороннего треугольника, если сторону выразить через символ «a», то формула звучит так :
Высота равностороннего треугольника формула через сторону
Если мы опустим высоту из верхнего угла, то это будет биссектрисой, которая в данном случае не только разделит угол пополам, но и сторону противолежащую.
И если верхний угол будет поделен на 2, то он будет равен :
И если мы прибавим 30 и например оставшийся справа 60, то получим 60 + 30 = 90.
И далее мы можем получить угол между высотой «h» и стороной «a».
И мы получим прямоугольный треугольник, в котором все стороны обозначены.
. и отсюда мы уже можем вывести по теореме пифагора
c² = a² + b² a² = a² 2² + h² = a² 4 + h²
Обе стороны умножим на 4, чтобы избавиться от 4 в дроби :
высоту оставляем одну слева и получаем:
И осталось извлечь квадратный корень из правой стороны.
И далее получаем
Площадь равностороннего треугольника
Какая формула для площади равностороннего треугольника!?
Площадь равностороннего треугольника равна : корень из 3 деленное на 4, умноженное на сторону в квадрате:
Выше мы уже доказали, чему равна высота. возьмем одну сторону треугольника на высоту h.
Вторая сторона будет равна а/2
И далее нам нужно умножить высоту на сторону, поделив на 2. По правилу вычисления площади прямоугольного треугольника.
Мы получаем предварительный результат:
И поскольку у нас два таких треугольника, то правую сторону надо умножить на 2, две двойки сокращаются.
И далее заменим высоту из выше пройденного пункта:
Радиус окружности, вписанной в равносторонний треугольник
Или вам может встретиться вторая формула вписанной окружности в равносторонний треугольник :
Почему встречаются две формулы радиуса вписанной окружности!?
Сможете доказать самостоятельно выше озвученный тезис?
Доказательство первой формулы радиус вписанной окружности равностороннего треугольника
Соотношение радиуса вписанной и описанной окружностей 1 : 2(на момент написания данной страницу мы еще это не прошли на сайте)
Отсюда мы получаем, что :
Подставляем ранее выведенную высоту
r = 1 3 * √ 3 2 a = √ 3 6 a
Доказательство второй формулы радиус вписанной окружности равностороннего треугольника
Не будем здесь доказывать, что два треугольника «ABM» и «AOK» подобные и отличаются в своих размерах и других показателях на коэффициент «Х».
Из этого мы можем создать зависимость:
«AK» и «BM» равны одному и тому же а/2.
Далее мы можем записать эту зависимость как :
Как вы знаете, что при делении подобные выражения ведут себя не так, как при умножении(скоро и про это напишем), поэтому заменим деление на умножение:
Теперь мы можем избавиться в левой стороне от дроби 2/а, умножив две стороны на а/2 :
В последней дроби заменяем «h» на наши значение из пункта 2 и поскольку получается опять деление, меняем знак и переворачиваем дробь( см.: деление дробей)
r = а 2 * а 2 * 1 h = а 2 * а 2 * 2 √ 3 * а
r = а 2 * а 2 * 2 √ 3 * а
И в итоге получаем :
Радиус описанной окружности равностороннего треугольника
С описанной окружностью доказывается аналогично, лишь с той разницей, что радиус больше в два раза:
Задача : Вписанный квадрат в равносторонний треугольник.
Докажите, что вписанный квадрат в равносторонний треугольник делит одним углом, сторону треугольника пополам или не делит.
Решение задачи :
Мы знаем, что в равностороннем треугольнике все углы равны 60 :
То стороны у этого треугольника будут равны между собой.
И одна из сторон совпадает со стороной квадрата.
Поэтому сторона » AB » равна стороне квадрата » BC » и стороне » BE «
Но » BE » не равна » BD «. Катет всегда будет меньше гипотенузы.
Если » BE » не равно » BD «, то » BD » не равно » AB «, что означает, что точка B не находится в середине отрезка » AD «.
Отсюда мы делаем вывод :
Угол вписанного квадрата не делит сторону равностороннего треугольника пополам!
Периметр равностороннего треугольника формула
Напишите «формулу периметра равностороннего треугольника»:
Обозначается периметр буквой P
Поскольку все стороны у равностороннего треугольника равны,
то периметр равностороннего треугольника будет равен :
3 умноженное на сторону а треугольника:
Формула периметра равностороннего треугольника
Конечно, можно еще представить данную формулу таким образом:
Но такого написания, я никогда не встречал.
Задача : найти высоту равностороннего если известна сторона вписанного квадрата.
Известна сторона «CB» вписанного квадрата, требуется найти высоту равностороннего треугольника «AM».
В пункте №6 и подпункте 4, мы вывели, что :
Сторона «AB» равна стороне квадрата «BC» и стороне «BE»
Поэтому, высота «AN» маленького треугольника будет равна :
И далее мы уже можем вывести высоту треугольника :
Задача : найти сторону равностороннего треугольника через площадь.
Известна площадь равностороннего треугольника «S», требуется узнать его сторону «а».
Я уже вывел площадь равностороннего треугольника в этом пункте, там же было доказательство!
Нам понадобится данная формула для решения выше озвученной задачи!
Нам всего-то навсего нужно выразить сторону «а» через «S»
Умножаем обе стороны на
Справа, в выражении дробь сократится, а слева появится данная дробь в перевернутом виде:
Далее, чтобы получить сторону через площадь, нам нужно извлечь корень :
Преобразуем еще раз:
Ответ задачи : найти сторону равностороннего треугольника через площадь.
Сторона равностороннего треугольника равна корню из площади умноженное на 2, и деленное на корень 4 степени из 3.
Задача : если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний
Повстречал вот такой поисковый запрос :
«если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний«
Данную формулировку можно перефразировать и будет выглядеть совсем по другому:
Докажите, что радиус вписанной окружности равностороннего треугольника больше в два раза, радиуса описанной окружности
А почему, вы узнаете дальше.
Для доказательства данного утверждения нам понадобится :
Радиус вписанной окружности равностороннего треугольника, о котором я рассказывал здесь :
Как вы наверное знаете, что при делении одной дроби н вторую существует правило, по которому вторую дробь нужно перевернуть и знак будет умножить.
После этого, смотрим, что можно сократить
Сокращаются квадратный корень из 3.
6 и 3, сокращаются только на 3. Сверху остается 2.