Угол падения равен углу отражения что это
Что представляет собой закон отражения света: полная формулировка
Трансформацию освещения мы наблюдаем повсеместно: в витринах магазинов, солнечные блики от воды и конечно в зеркале. Но мы совсем не задумываемся о механизмах и принципах этого явления. Но эти основы активно применяются в различных сферах нашей жизни. Давайте чуть глубже узнаем: что собой представляет свет, как он преломляется и как это применяется в жизни.
Основы знаний о свете
Основы физических знаний являются наиболее доступными для понимания, так как их принципы мы воочию наблюдаем каждый день вокруг себя. То же касается и закона отражения света. Этот закон описывает момент, когда световые волны, попадая на поверхность, изменяют свое направление и возвращаются обратно только под другим углом.
Это касается не только зеркальных поверхностей. Любой объект мы видим, потому что он отражает естественное солнечное или искусственное освещение.
При изменении своего направления лучи проходят в одной среде и сталкиваются с другой, часть их возвращается обратно в первичную среду. Если часть спектра проникает в другое вещество мы наблюдаем явление – преломления.
Чтобы не запутаться в теории, давайте разберемся с терминологией:
Рекомендуем посмотреть видео на тему “Закон отражения света”.
На основе этих определений можно вывести коэффициент отражения. Этот коэффициент показывает, какая часть светового потока вернется обратно в первоначальную среду. На показатель возвращения в первую очередь влияет характер лучей и угол падения на поверхность.
Небольшой исторический экскурс
Фундамент теоретических знаний о законах распространения света был заложен древнегреческим математиком Евклидом и Аристотелем. Они первые попытались описать процессы трансформации солнечной активности с точки зрения физики еще в 3 веке до н.э.
Далее теоретические материалы изучались и подтверждались опытным путем Ньютоном, Гюйгенсом. Именно он первый объяснил геометрические закономерности оптических явлений с точки зрения волновой природы излучения. Его доказательства основываются на геометрических аксиомах о равнобедренных треугольниках.
Эти принципы мы разберем немного подробней.
Закон отражения света
Закон отражения света описывает закономерности при явлении, когда луч, проходящий в одном веществе, на поверхности соприкосновения с другим веществом возвращается обратно.
Если среда прозрачная, то спектр проходит через нее и возвращения мы не увидим.
Наше зрение воспринимает свет от его излучателя, либо от предметов, отражающих световые волны. При этом если предмет отражает часть энергии обратно, то он сам становится объектом излучения, для наших глаз.
Чтобы описать закономерности геометрической оптики существуют, два закона:
То есть сначала световой пучок попадает на зеркальную поверхность, и в точке падения становится источником вторичного излучения. Это произойдет спустя миллисекунды. Исходя из принципа Гюйгенса, если рассматривать падение и возвращение потока с точки зрения равнобедренных треугольников (∠АВС = ∠DAC).
Второй закон можно представить в виде равенства:
То есть вся энергия будет направлена на отражение света, при этом преломленного освещения не будет совсем. Этот феномен называется – явление полного отражения света.
Зеркальное и диффузионное отражение
Существует два типа возвращения лучей в вещество откуда они упали: зеркальное и диффузное. Это зависит от структуры поверхности.
Рекомендуем посмотреть видео на тему “Зеркальное и диффузное отражение”.
Явление обратного отражения
Если поверхность абсолютно плоская и зеркальная, то можно наблюдать процесс обратного отражения. Это явление, когда волны полностью возвращаются после попадания на зеркальное основание к источнику их излучения по параллельной прямой.
То есть, если взять зеркало и направить на него освещение прямо перпендикулярно, оно вернется точно обратно.
Наглядно этот феномен можно наблюдать, если разместить два зеркала перпендикулярно друг к другу. Под каким бы наклоном не направить освещение, спектр будет возвращаться обратно параллельно первоначальному излучению.
Использование закона на практике
На практике мы можем наблюдать эти физические закономерности повсюду. Чтобы было наглядней, возьмите лазерный фонарик с тонким пучком света. Выключите свет и направьте его на зеркало под разными углами.
Если вы будете менять направление освещения, будет меняться и плоскость его возвращения. Такой эффект применяется в оптическом оснащении современной экспериментальной техники. Вогнутые зеркальные плоскости применяются для фокусировки лучей в одной точке. Выпуклые же наоборот рассеивают попадающий на них спектр. При этом увеличивается угол обзора.
Принцип полного внутреннего возврата спектра энергии, применяется в изготовлении оптико-волоконного производства кабелей для скоростной передачи цифровых данных.
В заключение
Явления, которые мы наблюдаем ежедневно, имеют свои принципы и описания. Мы не всегда задумываемся о том, почему видим свое отражение в водоеме, или искаженный портрет в комнате смеха. Однако, эти закономерности активно применяются в производстве оптики. Где еще мы можем наблюдать действие закона отражения света в повседневной жизни, делитесь в комментариях и социальных сетях.
Закон отражения света: определение, формула, применение
Определение.
Закон отражения света имеет следующее определение: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости. Более подробно о физическом смысле закона и о том на базе чего он был сформулирован читайте далее в этой статье.
Небольшое вступление.
Если вы не знаете, что находится по ту сторону зеркала, спросите физика! Он скажет вам, что вы найдете там не перевернутую копию нашего мира, а другой, столь же загадочный мир физики. Он произнесет множество благозвучных физических названий, таких как видимый образ, закон отражения и луч света.
Хотя сегодня мы не можем представить себе жизнь без зеркал, или плоских стеклянных зеркал, их история не особенно длинна. Однако само явление отражения, благодаря которому зеркала могут существовать и работать, известно уже много веков и не менее увлекательно, чем они сами.
Явление отражения света
Проведите наблюдение, которое позволит вам понять механизм формирования изображения при отражении световых лучей, как вы это наблюдаете на поверхности зеркала или поверхности воды.
Что вам понадобится?
Инструкция.
Подведём итог эксперимента.
Для того чтобы избежать двусмысленности в описании наблюдаемого нами явления, следует сначала выучить определения нескольких терминов.
В физике все гладкие поверхности, отражающие свет, называются зеркалами. Линия, перпендикулярная поверхности зеркала, называется нормалью. Свет фонаря падал в точку, где перпендикуляр (нормаль) пересекался с поверхностью зеркала. Угол между падающим лучом и перпендикуляром называется углом падения. Падающий луч отражается от поверхности зеркала, и получается отраженный луч. Угол между отраженным лучом и перпендикуляром называется углом отражения.
Наблюдения показали, что изменение угла, под которым свет фонаря падает на зеркало после прохождения через расчёску, влечет за собой изменение угла, под которым отражается падающий свет. Когда угол падения увеличивается, угол его отражения также увеличивается; когда он уменьшается, угол отражения также уменьшается.
Закона отражения света
Изменяя угол падения, мы одновременно изменяем угол отражения. Угол падения и угол отражения вместе с перпендикуляром лежат в одной плоскости и равны друг другу.
Иллюстрация закона отражения света
Формулировка закона и его формула.
Закон отражения света гласит так: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости.
В виде формулы закон отражения света записывается следующим образом: ∠ α = ∠ β.
Применение
Закон отражения используется во многих оптических системах. Повседневное значение имеют применения, описанные ниже.
Закон отражения используется для всех типов зеркал (плоские зеркала, вогнутые зеркала, выпуклые зеркала, параболические зеркала) и их применения (например, фары, фонари, косметические зеркала).
Он также используется для светоотражателей, которые должны быть установлены, например, на велосипедах. Они имеют гладкие стеклянные или пластиковые поверхности снаружи и множество маленьких призм внутри, на которых свет отражается таким образом, что выходит в том же направлении, откуда вошел. Поэтому велосипеды, находящиеся точно по направлению движения автомобиля, могут быть распознаны в темноте гораздо раньше, чем это было бы возможно без дополнительного оснащения светоотражателями.
Также закон отражения должен соблюдаться и в других местах. Гладкая поверхность воды отражает свет. И в тоже время, отражение тел видно на поверхности воды.
В помещениях, освещаемых сфокусированными прожекторами — например, на сцене театра — установка больших стеклопакетов может быть запрещена строительными нормами. Это связано с тем, что стекла воспринимаются только в том случае, если глаз смотрит на отраженный луч света. Для всех остальных людей существует опасность столкнуться со стеклом. В музеях, где много стеклянных витрин с точечным освещением, можно неоднократно наблюдать, как гости ударяются головой о стеклянную обшивку, потому что не заметили само стекло. Поэтому комнаты с большим количеством стеклянных витрин должны иметь рассеянное освещение.
Обратимость световых лучей
Световые пути обычно обратимы. Что это значит, показано на двух рисунках на рис. 2 на простом примере.
В левом изображении на рис. 2 свет исходит слева и отражается от зеркала. Читая угловую шкалу, можно увидеть, что закон отражения выполняется.
В правом изображении на рис. 2 луч света падает на зеркало точно с того направления, в котором луч света был отражен ранее. Вы видите, что теперь отраженный луч света проходит точно там же, где раньше проходил луч падающего света: поэтому путь света является обратимым.
Обратимость светового пути является важным основным принципом геометрической оптики, а также применима к гораздо более сложным явлениям, например, к преломлению света на воде.
Законы отражения света и история их открытия
Закон отражения света был открыт в результате наблюдений и экспериментов. Конечно, это можно вывести теоретически, но все принципы, которые используются сейчас, определены и обоснованы на практике. Знание основных характеристик этого явления помогает при планировании освещения и выборе оборудования. Этот принцип работает и в других областях: радиоволны, рентгеновские лучи и т.д. Ведут себя точно так же при отражении.
Что такое отражение света и его разновидности, механизм
Закон формулируется следующим образом: падающий и отраженный лучи лежат в одной плоскости, имеющей перпендикуляр к отражающей поверхности, выступающей из точки падения. Угол падения равен углу отражения.
По сути, отражение — это физический процесс, в котором луч, частицы или излучение взаимодействуют с плоскостью. Направление волн меняется на границе двух сред, так как они обладают разными свойствами. Отраженный свет всегда возвращается в окружающую среду, откуда он исходит. Очень часто при отражении также наблюдается явление преломления волн.
Это схематическое объяснение закона отражения света.
Зеркальное отражение
В этом случае существует четкая взаимосвязь между отраженными и падающими лучами, это главная особенность данной разновидности. Вот несколько ключевых моментов о зеркальном отражении:
В случае зеркального отражения углы падения и отражения всегда одинаковы.
В этом случае показатели преломления зависят от свойств плоскости и характеристик света. Это отражение можно найти везде, где есть гладкие поверхности. Но для разных сред условия и принципы могут меняться.
Полное внутреннее отражение
Типично для звуковых и электромагнитных волн. Это происходит там, где встречаются две среды. В этом случае волны должны падать из среды с меньшей скоростью распространения. Что касается света, то можно сказать, что показатели преломления в этом случае значительно увеличиваются.
Полное внутреннее отражение характерно для водной поверхности.
Угол падения светового луча влияет на угол преломления. С увеличением его значения интенсивность отраженных лучей увеличивается, а интенсивность преломленных лучей уменьшается. При достижении определенного критического значения показатели преломления уменьшаются до нуля, что приводит к полному отражению лучей.
Критический угол рассчитывается индивидуально для разных сред.
Диффузное отражение света
Этот вариант отличается тем, что при попадании на неровную поверхность лучи отражаются в разные стороны. Отраженный свет просто рассеивается, поэтому вы не можете увидеть свое отражение на неровной или непрозрачной плоскости. Явление диффузии лучей наблюдается, когда неровности равны длине волны или превышают ее.
При этом одна и та же плоскость может диффузно отражать свет или ультрафиолетовое излучение, но при этом хорошо отражать инфракрасный спектр. Все зависит от характеристик волн и свойств поверхности.
Диффузное отражение хаотично из-за неровностей поверхности.
Обратное отражение
Это явление наблюдается, когда лучи, волны или другие частицы отражаются назад, то есть к источнику. Это свойство можно использовать в астрономии, естествознании, медицине, фотографии и других областях. Благодаря системе выпуклых линз в телескопах можно видеть свет звезд, невидимый невооруженным глазом.
Обратным отражением можно управлять за счет сферической формы отражающей поверхности.
важно создать определенные условия для возврата света к источнику, чаще это достигается за счет оптики и направления луча лучей. Например, этот принцип используется в ультразвуковых исследованиях, благодаря отраженным ультразвуковым волнам на мониторе выводится изображение исследуемого органа.
История открытия законов отражения
Это явление известно давно. Впервые об отражении света упоминается в произведении «Катоптрика», датируемом 200 г до н.э и написанном древнегреческим ученым Евклидом. Первые опыты были простыми, поэтому на тот момент не появилось никаких теоретических оснований, но именно он открыл это явление. В этом случае для зеркальных поверхностей использовался принцип Ферма.
Формулы Френеля
Огюст Френель был французским физиком, который разработал ряд формул, широко используемых по сей день. Они используются для расчета интенсивности и амплитуды отраженных и преломленных электромагнитных волн. Кроме того, они должны проходить через резкую границу между двумя средами с разными значениями преломления.
Все явления, которые соответствуют формулам французского физика, называются отражением Френеля. Но следует помнить, что все полученные закономерности верны только тогда, когда средние изотропны и граница между ними четкая. В этом случае угол падения всегда равен углу отражения, а величина преломления определяется по закону Снеллиуса.
важно, что когда свет падает на плоскую поверхность, может быть два типа поляризации:
Френель вывел целый ряд формул, которые позволяют выполнять все необходимые вычисления.
Формулы для ситуаций с разной поляризацией разные. Это связано с тем, что поляризация влияет на характеристики луча и по-разному отражается. Когда свет падает под определенным углом, отраженный луч может быть полностью поляризован. Этот угол называется углом Брюстера, он зависит от преломляющих характеристик среды на границе раздела.
Говоря о которых! Отраженный луч всегда поляризован, даже если падающий свет не поляризован.
Принцип Гюйгенса
Гюйгенс — голландский физик, которому удалось вывести принципы, позволяющие описывать волны любой природы. Именно с его помощью часто демонстрируются как закон отражения, так и закон преломления света.
Это простейшее схематическое изображение принципа Гюйгенса.
В данном случае под светом понимается плоская волна, то есть все поверхности волны плоские. В этом случае поверхность волны представляет собой набор точек с колебаниями в одной фазе.
Формулировка такова: каждая точка, до которой доходит возмущение, становится источником сферических волн.
В видео закон физики 8-го класса объясняется очень простыми словами с помощью графики и анимации.
Сдвиг Федорова
его еще называют эффектом Федорова-Амбера. В этом случае происходит смещение светового пучка с полным внутренним отражением. В этом случае смещение незначительное, оно всегда меньше длины волны. Из-за этого смещения отраженный луч не лежит в той же плоскости, что и падающий, что противоречит закону отражения света.
Диплом о научном открытии был вручен Ф.И. Федорову в 1980 году.
Боковое смещение лучей было теоретически доказано советскими учеными в 1955 году благодаря математическим расчетам. Что касается экспериментального подтверждения этого эффекта, то вскоре его сделал французский физик Эмбер.
Использование закона на практике
Примеры отражения света вездесущи.
Рассматриваемый закон гораздо более распространен, чем кажется. Этот принцип широко используется в различных сферах:
Говоря о которых! Через отражение света мы видим луну и звезды.
Закон отражения света объясняет многие природные явления, а знание его характеристик позволило нам создать оборудование, которое широко используется в наше время.
Законы отражения света
На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.
Рис. 1.3. Отражение и преломление света.
Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.
Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.
Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.
Законы отражения света
1 | Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. |
2 | Угол отражения γ равен углу падения α : |
Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.
На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.
Рис. 1.4. Построение Гюйгенса.
А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).
Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.
Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.
Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.
Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.
Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.
Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.
Рис. 1.5. Диффузное отражение света.
Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.
Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.
Рис. 1.6. Зеркальное отражение света.
Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.
Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.
Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.
Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.
Луч SO1 падает на зеркало под углом α и отражается под углом γ ( α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.
Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.
Рис. 1.8. Отражение от плоского зеркала.
Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.
Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.
Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.
Рис. 1.9. Изображение предмета в плоском зеркале.
В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.