Угловое разрешение телескопа в чем измеряется

Формулы для расчёта телескопа

Основные формулы, показывающие на что примерно способен телескоп.
Не забывайте только, что это теория, на деле всё сильно зависит от качества изделия, правильности настройки и состояния атмосферы.

Кратность или увеличение телескопа (Г)

Максимальное увеличение (Г max)

Светосила

Светосила телескопа определяется в виде отношения D:F. Если не особо заморачиваться, то чем меньше это отношение, тем лучше телескоп подходит для наблюдения галактик и туманностей (например 1:5). А более длиннофокусный телескоп с соотношением вроде 1:12 лучше подходит для наблюдения Луны.

Разрешающая способность (b)

Из сказанного выше видно, что в обычных условиях минимальная разрешающая способность в 1″ достигается при апертуре 150мм у рефлекторов и около 125мм у планетников-рефракторов. Более апертуристые телескопы дают более чёткое изображение только в теории, ну или высоко в горах, где чистая атмосфера, либо в те редкие дни, когда «с погодой везёт».
Однако, не забывайте, что чем больше телескоп, тем ярче изображение, тем виднее более тусклые детали и объекты. Поэтому, с точки зрения обычного наблюдателя, изображение у больших телескопов всё равно оказывается лучше, чем у маленьких.
Вдобавок, в короткие промежутки времени атмосфера над вами может успокоиться настолько, что большой телескоп покажет картинку более чёткую, чем при том самом пределе в 1″, а вот маленький телескоп упрётся в это ограничение и будет очень обидно.
Так что, нет особого смысла ограничиваться 150-ю миллиметрами 😉

Предельная звёздная величина (m)

Приведу для справки таблицу соответствия апертуры телескопа D и предельной звёздной величины:

Предельные звёздные величины (m) в зависимости от апертуры телескопа (D)

D, ммmD, ммm
329,613212.7
5010,615013
601120013,6
7011,325014,1
8011,630014,5
9011,935014,8
11412,440015,1
12512,650015,6

Выходной зрачок

Поле зрения телескопа

Поле зрения телескопа = поле зрения окуляра / Г
Поле зрения окуляра указано в его паспорте, а увеличение Г телескопа с данным окуляром мы уже знаем как расчитать: Г=F/f.
Чем полезно знание поля зрения телескопа?
Чем больше поле зрения телескопа, тем больший кусок неба виден, но тем мельче объекты.
Зная какое поле (угол) захватит ваш телескоп при заданном увеличении, и зная уговые размеры искомого объекта, можно прикинуть какую часть поля зрения займёт этот объект, то есть прикинуть общий вид того, что вы увидите в окуляре.
Если вы ищете объект не по координатам, а по картам, то полезно сделать из проволоки колечки, которые соответствуют на карте угловым полям зрения ваших окуляров в составе данного телескопа. Тогда гораздо легче ориентироваться: двигая телескоп от звезды к звезде и одновременно перемещая колечко на карте, вы легко можете сверять оба изображения.

Теперь, когда примерно ясна взаимосвязь характеристик телескопа, можно другими глазами посмотреть на то, что можно увидеть в телескопы разных размеров.

Владимир, 19 июля 2020 г.

Владимир, юмор оценил, разработками шпионского оборудования не занимаюсь 🙂

Николай, 19 July, 2020

Как решить эту задачу,не понимаю.
Фотоаппаратом с фокусным расстоянием объектива 9 см фотографировали далекие предметы на максимально близком для данного аппарата расстоянии 81 см. Определить, на сколько при этом пришлось выдвинуть вперед объектив.

Матвей, 25 июня 2020 г.

В таком виде я тоже условие не понимаю. Но, если предположить, что в задаче пропущено, что сначала просто фоткали далёкие предметы, а потом на максимально близком для данного фотоаппарата, то это похоже на задачу на формулу тонкой линзы:
1/f2 = 1/F-1/d2 = 1/9-1/81 = 9/81-1/81 = 8/81;
f2 = 81/8 = 10.125 см
f2-f1= 10.125-9 = 1.125см
Если что, я не виноват 🙂

Николай, 26 June, 2020

Как определить (по какой формуле) диапазон телескопа, если он необходим для наблюдения за звездами с атмосферной температурой, например, 10000:К?

Елена, 22 мая 2020 г.

Николай, 26 May, 2020

Максим, 30 апреля 2020 г.

Николай, 12 May, 2020

А мой телескоп наверное самый такой простой. Levenhuk Skyline 76*700AZ очень обидно то,что я могу посмотреть только окружность звезды я середина её тёмная. почему?ответьте если можно.

Татьяна, 16 февраля 2020 г.

Николай, 16 February, 2020

Елена Александровна, 16 августа 2019 г.

Николай, 16 August, 2019

Большое спасибо за статью и другие статьи вашего сайта, очень понятно и подробно, спасибо.

Александр, 16 августа 2019 г.

Пожалуйста. Спрашивайте, если что 🙂

Николай, 16 August, 2019

Замечательная статья. Благодарю. Celestron 120/1000 OMNI

Андрей, 24 ноября 2018 г.

Очень интересно и подробно всё описано. Для меня это очень нужная статья, т.к. недавно начал заниматься астрономией. Мой телескоп: Sturman HQ1400150EQ. Спасибо вам большое!

Виктор, 9 ноября 2018 г.

Источник

СОДЕРЖАНИЕ

Определение терминов

Критерий Рэлея

Угловое разрешение телескопа в чем измеряется

Взаимодействие между дифракцией и аберрацией можно охарактеризовать функцией рассеяния точки (PSF). Чем уже апертура линзы, тем больше вероятность того, что в PSF преобладает дифракция. В этом случае угловое разрешение оптической системы можно оценить (по диаметру апертуры и длине волны света) по критерию Рэлея, определенному лордом Рэлеем : два точечных источника считаются только что разрешенными, когда главный дифракционный максимум (центр) диска Эйри одного изображения совпадает с первым минимумом диска Эйри другого изображения, как показано на прилагаемых фотографиях. (На фотографиях, показывающих предел критерия Рэлея, центральный максимум одного точечного источника может выглядеть так, как будто он лежит за пределами первого минимума другого, но проверка с помощью линейки подтверждает, что два действительно пересекаются.) Если расстояние больше, две точки разрешены хорошо, и если она меньше, они считаются неразрешенными. Рэлей защищал этот критерий на источниках равной силы.

Учитывая дифракцию через круглую апертуру, это означает:

Конкретные случаи

Угловое разрешение телескопа в чем измеряется

Одиночный телескоп

Угловое разрешение телескопа R обычно можно аппроксимировать следующим образом:

Массив телескопов

Наивысшего углового разрешения можно достичь с помощью массивов телескопов, называемых астрономическими интерферометрами : эти инструменты могут достигать углового разрешения 0,001 угловой секунды в оптических длинах волн и гораздо более высоких разрешений на длинах волн рентгеновского излучения. Для получения изображений с синтезом апертуры требуется большое количество телескопов, расположенных в 2-мерном порядке с точностью размеров лучше доли (0,25x) требуемого разрешения изображения.

Угловое разрешение R решетки интерферометра обычно можно аппроксимировать следующим образом:

Например, чтобы сформировать изображение в желтом свете с длиной волны 580 нм с разрешением 1 милли-дуговая секунда, нам нужны телескопы, расположенные в виде массива размером 120 м × 120 м с точностью размеров лучше, чем 145 нм.

Микроскоп

Отсюда следует, что NA как объектива, так и конденсора должны быть как можно более высокими для максимального разрешения. В случае, если оба НА одинаковы, уравнение можно свести к следующему:

р знак равно 1,22 × 400 нм 1,45 + 0,95 знак равно 203 нм <\ Displaystyle R = <\ гидроразрыва <1,22 \ times 400 \, <\ mbox <нм>>> <1,45 \ + \ 0,95>> = 203 \, <\ mbox <нм>>> Угловое разрешение телескопа в чем измеряется

что составляет около 200 нм.

Источник

astro-talks

форум для любителей астрономии

Важные характеристики телескопов

Модератор: Ernest

Угловое разрешение телескопа в чем измеряется

Важные характеристики телескопов

Сообщение Ernest » 31 авг 2011, 12:04

Что такое увеличение телескопа?

Что такое апертура телескопа?

Что такое апертурная лихорадка?

Это естественное следствие из кардинального свойства апертуры ограничивать проницание и разрешение телескопа. Владелец менее апертурного телескопа, войдя во вкус наблюдательной астрономии, хочет сменить его на более апертурный (с большим диаметром линз/зеркала), чтобы иметь возможность увидеть больше. По ряду соображений, имеет смысл переходить на размер апертуры примерно в полтора раза больший, чем предыдущая. В некоторых случаях этот естественный ход событий приобретает клиническую форму, когда смена апертуры на большую происходит задолго до исчерпания возможностей наличного инструмента – просто как погоня за дюймами, не взирая на те трудности, с которыми придется столкнуться используя габаритный и тяжелый инструмент. Что и называют апертурной лихорадкой.

Что важнее увеличение телескопа или его апертура?

С каким максимальным увеличением я смогу наблюдать?

Обычно отвечают, что для этого надо умножить диаметр апертуры телескопа, измеренный в миллиметрах, на полтора или 40 апертур выраженных в дюймах. То есть для 10” инструмента (диаметр апертуры 254 мм) максимальное разумное составит около 400 крат.
Но тут надо отметить ряд обстоятельств. Это число не догма – обычно телескоп используется с меньшим увеличением подобранным для наблюдений того или иного класса объектов. Кроме того, при больших остаточных аберрациях объектива телескопа, плохой юстировке, неудачном климате места наблюдений (турбулентная атмосфера), тусклых объектах наблюдений, отсутствии часового ведения телескопа увеличения придется ограничивать меньшим, чем предельное, значением увеличением. При ярких объектах наблюдений, при проведении некоторым технических наблюдений (связанных с юстировкой телескопа или разрешением тонкой дифракционной структуры двойных звезд) неважной остроте зрения наблюдателя и надежном часовым двигателе монтировки, который отрабатывает компенсацию вращения Земли, вполне может оказаться полезным использование и несколько больших значений увеличений. Чем больше увеличение, тем меньше яркость изображения, меньше поле зрения телескопа, заметнее проявления дефектов оптики телескопа. И наоборот чем увеличение меньше, тем больше поле зрения телескопа, больше яркость изображения, оно выглядит более контрастным и резким.
см. также статью из ЧАВО «Какое максимальное увеличение имеет смысл для телескопа?»

Что такое разрешение телескопа?

Что такое проницание телескопа?

Что такое поле зрения телескопа?

Важна ли светосила для объектива телескопа?

Светосила объектива телескопа или его относительное отверстие (отношение диаметра апертуры к фокусному расстоянию) – важная характеристика для астрографа, телескопа используемого для производства фоторабот. Этот параметр (наряду со временем выдержки) определяет экспозицию при получении одного кадра. Чем светосила больше, тем меньшее время требуется для достижения той же экспозиции – того же уровня полезного сигнала на фотоматериале. Длительность выдержек при фотографировании широких звездных полей и туманностей обеспечивается довольно сложными системами слежения за суточным вращением неба, компенсацией несовершенства механики монтировки и поэтому для астрографа в ряде случаев важно уменьшить время выдержки и максимально увеличить светосилу объектива (без потерь в качестве изображения).
При визуальных наблюдениях в первом приближении светосила объектива телескопа не столь существенна. То насколько ярким глаз увидит изображения в телескоп, определяется не светосилой объектива, а размером выходного зрачка телескопа. Диаметр выходного зрачка равен диаметру апертуры объектива деленному на увеличение. То есть, чем больше увеличение, тем меньше выходной зрачок и тем меньше яркость изображения.
Светосила объектива телескопа косвенно определяет размер поля зрения. Чем светосильнее объектив телескопа – тем большее поле зрения возможно получить в пределах его окулярного тубуса или зафиксированном размере фотоприемника (кадра камеры). Кроме того как у визуального так и у фотографического астрономического телескопа (рефлектора или рефрактора) продольный размер трубы, обычно, тем меньше, чем больше относительное отверстие его объектива.

При фотоработах по широким полям (звездные поля, туманности, галактики и т.п.) относительное отверстие (отношение диаметра входной апертуры к фокусному расстоянию) выбирают побольше, чтобы получить лучшую проработку тусклых объектов (см. выше про важность светосилы). Но при стремлении к наивысшему проницанию по звездам требуется согласовывать относительное отверстие объектива и сумму его остаточных аберраций с размером пиксела фотоприемника. Вполне может статься, что меньшая светосила объектива даст лучшее проницание.
А вот для визуальных инструментов большее относительное отверстие объектива интересно постольку, поскольку позволяет получить большее поле зрения при том же размере фокусера (полевой диафрагмы обзорного окуляра).
При этом надо иметь ввиду, что большая светосила объектива обычно сопровождается большими остаточными аберрациями (как расчетными, так и ошибками производства, разюстирокой). Так что при желании достичь предельного разрешения (например, по планетам) лучше предпочесть телескопы с нефорсированным (небольшим) относительным отверстием объектива. Кроме того, в зеркальных системах большее относительное отверстие влечет за собой большее центральное экранирование, что также не добавляет контраста изображению на предельных увеличениях.

Фокусное расстояние телескопа

В окулярную трубку фокусера (фокусировщика) телескопа вставляют окуляры и проч. узлы. Двухдюймовый фокусер в любом случае лучше, хотя бы потому, что переходники для посадки 1.25″ окуляров и проч. аксессуаров в 2-дюймовый фокусер есть, а обратных переходников (во всяком случае без потерь в поле зрения) – нет. 2-дюймовый фокусер предоставляет больше свободы в выборе окулярных аксессуаров. Особенно важно иметь больший диаметр окулярной трубки фокусера в астрографе. Но 2″ аксессуары дороже и габаритнее.
см. также статью из ЧАВО «2» или 1.25″?»

В телескоп все видно вверх ногами?!

Среди астро-товаров, как и в мире всех прочих гаджетов, есть особенно дорогие, в том числе с карбоновыми трубами. Первоисточник этого карбона – стремление создать трубу астрографа минимально подверженную уходу фокуса из-за температурного дрейфа в процессе съемки. Масляная иммерсия между линзами апохромата позволяет увеличить размер «склейки» против допустимых при традиционном способе склеивания и получить все преимущества склеенного блока – минимальные возможности для разъюстировки, потерь света и т.п.

Это возможность сочетать быструю перефокусировку с точной высокочувствительной подстройкой фокуса на больших увеличениях, что особенно актуально для светосильных телескопов.

Что ограничивает мобильность телескопа?

Обычная схема астрономических наблюдений с выездом за город – вынос из дома к автомобилю частей телескопа (труба, монтировка, тренога), сумки или чемоданчика с аксессуарами (окуляры, фильтры, карты, фонарь), расфасовка всего этого добра по салону и в багажник, а по прибытии на место наблюдения вдали от городских огней сборка телескопа.
При таком подходе мобильность ограничена только весом и габаритом самой тяжелой и габаритной из частей телескопа, размерами дверных проемов, дверей в лифте, объемом багажного отделения (а то и прицепа) автомобиля, силой и количеством рук наблюдателя и его помощников, трудоемкость сборки/разборки телескопа на части.

Можно ли будет перевозить телескоп на автомобиле?

Да – это наиболее обычный способ доставить телескоп к месту наблюдений для жителей больших городов.

Каковы примерные размеры телескопов?

Источник

Разрешающая способность телескопа

Угловое разрешение телескопа в чем измеряетсяПод разрешающей способностью телескопа понимают минимальный различимый угол между двумя зрительными линиями, проведенными к двум точкам – например, к находящимся вблизи друг от друга звездам. Когда два объекта, расположенные в 5 угловых секундах углового расстояния друг от друга, с трудом видны в телескоп одновременно, считается, что показатель его разрешающей способности составляет пять угловых секунд. Увеличение разрешающей способности телескопа позволяет получить более детальную картину небесного тела при наблюдении.

Согласно критерию Рэлея, возможность разделения двух близко расположенных друг к другу объектов исчезает, когда угловое расстояние между ними имеет значение меньше менее 2,5 х 105λ/D. В этой формуле D обозначает ширину линзы объектива, а λ – длину световой волны.

Например, телескоп-рефлектор с шириной линзы в 100 миллиметров дает возможность воспринимать отдельно звезды, угловое расстояние между которыми равно одной секунде дуги.

В реальности вычисляемая по этой формуле разрешающая способность недоступна телескопам, у которых диаметр объектива превышает полметра. На практике она будет несколько ниже, вследствие рассеивания света в атмосфере. А для телескопа «Хаббл», который находится за пределами атмосферы, не существует атмосферных помех. Потому (а еще благодаря линзе диаметром 2,4 метра) с его помощью можно достичь теоретического значения разрешений, а именно 0,04 угловой секунды. В итоге телескоп Хаббла, с его разрешающей способностью, выдает заметно более подробную картинку, чем устройства аналогичной величины, находящиеся на земной поверхности.

При выборе телескопа для наблюдений стоит определиться с необходимой вам разрешающей способностью. Логично, что чем выше разрешающая способность, тем больше деталей вы сможете увидеть. Выбирайте соответствующий телескоп, богатый ассортимент которых представлен на страницах нашего магазина.

Как известно, по оптической модели телескопы делятся на три крупных класса – рефлекторы, рефракторы и катадиоптрики (зеркально-линзовые).

Рефлекторы, имеющие диагональное зеркало, при прочих равных характеристиках отличаются невысокой разрешающей способностью в сравнении с рефракторами. Их преимущество – невысокая цена. Но если вы планируете внимательно рассмотреть поверхность Луны, увидеть структуру объектов глубокого космоса, разделить двойные звезды, стоит отдать предпочтение телескопам-рефракторам. Малое рассеивание света и отсутствие центрального экранирования позволяют существенно увеличить разрешающую способность телескопа и получить максимально четкое изображение!

4glaza.ru
Декабрь 2017

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Угловое разрешение телескопа в чем измеряется

Угловое разрешение телескопа в чем измеряется

Угловое разрешение телескопа в чем измеряется

Другие обзоры и статьи о телескопах и астрономии:

Обзоры оптической техники и аксессуаров:

Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:

Все об основах астрономии и «космических» объектах:

Источник

astro-talks

форум для любителей астрономии

Чему равно разрешение телескопа

Модератор: Ernest

Угловое разрешение телескопа в чем измеряется

Чему равно разрешение телескопа

Сообщение Ernest » 02 ноя 2009, 12:22

Как привязать это разрешение к практике?
Например, при таком то разрешении я могу увидеть кратер такого диаметра на Луне?

Например, в телескоп апертурой 100 мм предельное угловое разрешение будет около 1.2 угл. сек.
При расстоянии до Луны 360 тыс.км, получаем дифракционный предел 360000·1.2/60/60/58 = 2 км.
Но с учетом описанного выше эффекта на терминаторе могут быть видны кратеры и в 1 км, а в виде ярких точек за темной границей терминатора и еще меньшие.

Как считается предел линейного разрешение объектива телескопа или астрографа?

Это на фотоприемнике. Ну, если опять отвлечься от аберраций и учитывать только дифракцию, то тут все просто. Минимальный элемент разрешения на фотоприемнике пропорционален относительному фокусу и длине волны света на которой происходит съемка:

То есть для идеального (дифракционно ограниченного) объектива вырисовывается следующая табличка пределов разрешения в обычном визуальном диапазоне с центром λ = 550 нм, без учета потерь на пикселизацию и проч.:

Kд, мкмлиний на мм
10.551800
1.40.771300
21.1900
2.81.54650
42.2450
5.63.08324
84.4225
116.05165
168.8113
2212.180
3217.656
6435.228

Если же имеется ввиду предел разрешения на предмете наблюдения, то и тут можно использовать ту-же формулу:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *