Углеводы и другие продукты фотосинтеза в растении перемещаются по чему
Фотосинтез
Типы питания
Фотосинтез
Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.
В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»
Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.
Светозависимая фаза (световая)
Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.
Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):
Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).
При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:
Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.
Светонезависимая (темновая) фаза
При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.
Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.
Значение фотосинтеза
Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.
Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.
Значение хемосинтеза
Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.
Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Фотосинтез растений
Что такое фотосинтез растений?
Фотосинтез — это процесс, в котором растения и другие организмы используют энергию света для превращения углекислого газа и воды в простую сахарную глюкозу. При этом фотосинтез обеспечивает основной источник энергии практически для всех организмов.
Основная функция фотосинтеза состоит в том, чтобы преобразовать солнечную энергию в химическую энергию и затем сохранить эту химическую энергию для будущего использования. По большей части живые системы планеты приводятся в действие этим процессом. Это не особенно эффективно по стандартам человеческого инжиниринга, но оно делает свою работу. Фотосинтез происходит в областях клетки, называемых хлоропластами.
Фотосинтез имеет далеко идущие последствия. Как и растения, люди и другие животные зависят от глюкозы в качестве источника энергии, но они не могут производить ее самостоятельно и в конечном итоге должны полагаться на глюкозу, вырабатываемую растениями. Кроме того, кислород, которым дышат люди и другие животные, – это кислород, выделяющийся во время фотосинтеза. Люди также зависят от древних продуктов фотосинтеза, известных как ископаемое топливо, для обеспечения большей части нашей современной промышленной энергии. Эти ископаемые виды топлива, в том числе природный газ, уголь и нефть, состоят из сложной смеси углеводородов, остатков организмов, которые полагались на фотосинтез миллионы лет назад. Таким образом, практически вся жизнь на земле, прямо или косвенно, зависит от фотосинтеза как источника пищи, энергии и кислорода, что делает его одним из самых важных биохимических процессов, известных.
Продукты фотосинтеза растений
Фотосинтез происходит у зеленых растений, морских водорослей и некоторых бактерий. Эти организмы являются настоящими сахарными фабриками, производящими миллионы новых молекул глюкозы в секунду. Растения используют большую часть этой глюкозы, углевода, в качестве источника энергии для создания листьев, цветов, фруктов и семян. Они также превращают глюкозу в целлюлозу, структурный материал, используемый в их клеточных стенках. Однако большинство растений производят больше глюкозы, чем используют, и хранят ее в форме крахмала и других углеводов в корнях, стеблях и листьях. Затем растения могут использовать эти резервы для получения дополнительной энергии или строительных материалов. Каждый год фотосинтезирующие организмы производят около 170 миллиардов тонн дополнительных углеводов, около 30 тонн на каждого человека на земле.
Чрезвычайно важным побочным продуктом фотосинтеза является кислород, от которого зависит большинство организмов.
К продуктам фотосинтеза растений относятся:
Хлорофилл и фотосинтез растений
Фотосинтетические клетки содержат специальные пигменты, которые поглощают энергию света. Различные пигменты реагируют на различные длины волн видимого света. Хлорофилл, основной пигмент, используемый в фотосинтезе, отражает зеленый свет и наиболее сильно поглощает красный и синий свет.
У растений фотосинтез происходит в хлоропластах, которые содержат хлорофилл.
Хлорофилл А является основным пигментом, используемым в фотосинтезе, но существует несколько типов хлорофилла и множество других пигментов, которые реагируют на свет, включая красные, коричневые и синие пигменты. Эти другие пигменты могут помочь направить световую энергию на хлорофилл А или защитить клетку от фотоповреждений.
Например, фотосинтетические протисты, называемые динофлагеллятами, которые ответственны за «красные приливы», (часто приводят к предупреждению употребления в пищу моллюсков), содержат различные светочувствительные пигменты, как хлорофилл, так и красные пигменты, ответственные за их предупреждающее окрашивание.
Фазы фотосинтеза растений
Внутри хлоропласта фотосинтез происходит в две отдельные фазы:
Фотосинтез. Фаза I
Составляет световые реакции, потому и называется световой.
Приводимая в действие световой энергией, вода окисляется: она разделяется на электроны и протоны с высокой энергией. Эти электроны и протоны используются для восстановления окисленного электронного носителя NADP до его восстановленной высокоэнергетической формы NADPH. Энергия, полученная во время световых реакций, также используется для преобразования низкоэнергетического АДФ и неорганического фосфата в высокоэнергетическую АТФ. Продуктом отходов (но одним из важнейших для аэробных организмов, таких как мы) является кислород, обозначенный цифрой. Все это происходит в тилакоидных мешочках с выходом световых реакций, перемещающихся в строму для поддержки второй фазы фотосинтеза.
Фотосинтез. Фаза II
Вторая фаза фотосинтеза использует продукты Фазы 1 в качестве входных данных (исключая кислород, который проникает в атмосферу). Фаза 2 известна как цикл Кальвина, в честь биохимика из Беркли Мелвина Кальвина, который получил Нобелевскую премию за совместное открытие цикла в 1961 году. Поскольку цикл Кальвина не зависит напрямую от света, вторую фазу называют темновой.
Во время цикла Кальвина ключевым внешним входом является диоксид углерода. Используя энергию от АТФ, а также электроны и водород от обогащенного энергией восстановленного электронного носителя NADPH, диоксид углерода восстанавливается, превращаясь в трехуглеродный глицеральдегидфосфат или G3P, которые могут быть преобразованы в глюкозу или что-либо еще, в чем нуждается растение.
Фотосинтез в листьях растений
Структура листа это компромиссы между максимизацией площади поверхности для поглощения света при минимизации потерь воды. Чтобы предотвратить потерю воды, восковая кутикула покрывает верхний и нижний эпидермис. Основная функция эпидермиса — защитная, и большая часть способа защиты заключается в выделении воскообразного слоя на уровне восковой кутикулы.
Вода попадает в лист через пучки сосудистой ткани, которые мы обычно называем венами. Вены также позволяют сахару покидать лист и перемещаться в другие части растения, где они могут, в растении, таком как картофель, превращаться в полисахариды, такие как крахмал, для длительного хранения энергии.
Углекислый газ попадает в растение через поры на нижнем эпидермисе. Эти поры называются устьицами, и они образованы защитными ячейками, которые могут изменять форму, чтобы регулировать размер отверстия устья, даже до точки закрытия, когда растение испытывает недостаток воды.
Внутри листа находятся две другие фотосинтетические ткани. Чуть ниже верхнего эпидермиса находится слой плотно прижатых фотосинтезирующих клеток, которые подвергаются большей части фотосинтеза в растениях, мезофилла палисада. Непосредственно под этим слоем находятся фотосинтетические клетки, которые гораздо более распространены, известные как губчатый мезофилл. Когда защитные камеры находятся близко к воде, этот слой служит резервуаром углекислого газа, который позволяет продолжить фотосинтез даже в замкнутой системе. То есть до тех пор, пока весь газ не будет зафиксирован.
Вода поглощается корнями растения и перемещается по сосудистой системе тканями, известными как ксилемы. Вода поступает в лист и поглощается в фотосинтетических клетках путем осмоса, в сочетании с углекислым газом для производства глюкозы и кислорода. Глюкоза либо используется клеткой напрямую, либо переносится в сосудистую ткань, которая транспортирует глюкозу в другие клетки, неспособные к фотосинтезу (т.е. корни) в сосудистой ткани, известной как флоэма.
Фотосинтез в клетках растений
Как известно, фотосинтез осуществляется в хлоропластах.
Если рассмотреть хлоропласт под микроскопом, можно увидеть несколько остатков его бактериального происхождения. Как и митохондрии (еще один эндосимбионт), хлоропласты имеют двойную мембрану, пережиток древнего эндоцитоза (когда его цианобактериальный предок был поглощен более крупной клеткой и по какой-то причине не переварился). Внешняя мембрана, является остатком пузырька, который принадлежал клетке, которая охватила исходный хлоропласт. Внутренняя мембрана, является остатком мембраны этого исходного хлоропласта.
Хлоропласты поглощают солнечный свет и используют его в сочетании с водой и углекислым газом для производства продуктов питания для растения. Они улавливают световую энергию солнца, чтобы произвести свободную энергию, запасенную в АТФ и НАДФН, посредством процесса, называемого фотосинтезом.
Хлоропласты встречаются только в растениях и фотосинтезирующих водорослях. (Люди и другие животные не имеют хлоропластов.)
Хлоропласты представляют собой дискообразные органеллы, найденные в цитозоле клетки. Они имеют внешнюю и внутреннюю мембраны с межмембранным пространством между ними. Если вы пройдете через два слоя мембраны и достигнете места в центре, вы обнаружите, что он содержит мембранные диски, известные как тилакоиды, расположенные во взаимосвязанных стопках, называемых грана.
Мембрана тилакоидного диска содержит светособирающие комплексы, которые включают хлорофилл, пигмент, который придает растениям зеленый цвет. Тилакоидные диски являются полыми, и пространство внутри диска называется тилакоидным пространством или просветом, в то время как заполненное жидкостью пространство, окружающее тилакоиды, называется стромой.
Хлоропласты являются одной из многих уникальных органелл в организме.
В этом отношении они похожи на митохондрии, но встречаются только в растениях и протистах.
Обе органеллы окружены двухклеточной композитной мембраной с межмембранным пространством; оба имеют свою собственную ДНК и участвуют в энергетическом обмене; и у обоих есть сетчатки, заполняющие их внутренние пространства.
Значение фотосинтеза для растений
– Фотосинтез обеспечивает пищу для растений. Процесс фотосинтеза происходит в зеленых растениях, которые являются основными производителями в пищевой цепи.
– Фотосинтез необходим для поддержания жизни. Это основной источник кислорода и энергии для всех живых организмов.
– Фотосинтез помогает в росте и развитии растений.
– Он превращает атмосферный углекислый газ (выделяемый при дыхании и других видах деятельности) обратно в кислород.
– В процессе фотосинтеза образовавшиеся углеводы, используются для создания клеточных структур — клеточных стенок целлюлозы.
Деревья и другие зеленые растения практикуют дыхание также как животные, но они также практикуют фотосинтез. Вот почему экологи классифицируют зеленые растения как «производителей», а большинство других форм жизни — как «потребителей». Речь идет об энергии. Хорошо, есть и разложители, но это уже другая история, и они все еще зависят от энергии, получаемой производителями.
Деревья часто считаются главным генератором кислорода для планеты, но это не совсем верно. Большая часть планеты покрыта водой, и коллективный фотосинтез низших водорослей является настоящей кислородной машиной.
Тем не менее, деревья и леса действительно являются значительными производителями кислорода. Однако, если бы кислород был единственным преимуществом деревьев и лесов, мы могли бы легко жить без них. А некоторые леса на самом деле производят больше углекислого газа, чем кислорода. К счастью, преимущества как деревьев, так и лесов простираются далеко за пределы чего-то такого узкого, как производство кислорода.
Фотосинтез важен для живых организмов, потому что это источник кислорода номер один в атмосфере. Без фотосинтеза углеродный цикл не состоялся бы, жизнь, требующая кислорода, не выжила бы, и растения погибли бы. Зеленые растения и деревья используют фотосинтез для производства пищи из солнечного света, углекислого газа и воды в атмосфере: это их основной источник энергии. Важность фотосинтеза в нашей жизни — это кислород, который он производит. Без фотосинтеза на планете практически не было бы кислорода.
Процесс фотосинтеза в биологии
Фотосинтез представляет собой биосинтез, состоящий в превращении световой энергии в органические соединения. Свет в виде фотонов захватывается цветным пигментом, связанным с неорганическим или органическим донором электронов, и позволяет использовать минеральный материал для синтеза (производства) органических соединений.
Иными словами, что такое фотосинтез – это процесс синтеза органического вещества (сахара) из солнечного света. Эта реакция происходит на уровне хлоропластов, которые являются специализированными клеточными органеллами, и позволяют потреблять углекислый газ и воду для получения диоксигена и органических молекул, таких как глюкоза.
Фазы фотосинтеза
Он происходит в две фазы:
Световая фаза (фотофосфорилирование) – представляет собой набор светозависимых фотохимических (т. е. светозахватывающих) реакций, в которых электроны транспортируются через обе фотосистемы (PSI и PSII) для получения АТФ (богатая энергией молекула) и NADPHH (восстанавливающий потенциал).
Таким образом, светлая фаза фотосинтеза позволяет непосредственно превращать световую энергию в химическую энергию. Именно через этот процесс наша планета теперь имеет атмосферу, богатую кислородом. В результате высшие растения сумели доминировать на поверхности Земли, обеспечивая пищу многим другим организмам, которые питаются или находят убежище через неё. Первоначальная атмосфера содержала такие газы, как аммоний, азот и углекислый газ, но очень мало кислорода. Растения нашли способ превратить этот CO настолько обильно в пищу, используя солнечный свет.
Темновая фаза – соответствует полностью ферментативному и не зависящему от света циклу Кальвина, в котором аденозинтрифосфат (АТФ) и НАДФН+Н+ (никотин амид адениндинуклеотидфосфат) используются для конверсии углекислого газа и воды в углеводы. Эта вторая фаза позволяет усвоить углекислый газ.
То есть в этой фазе фотосинтеза, примерно через пятнадцать секунд после поглощения CO происходит реакция синтеза и появляются первые продукты фотосинтеза — сахара: триосы, пентозы, гексозы, гептозы. Из определённых гексоз образуются сахароза и крахмал. Помимо углеводов, могут также развиваться липидами и белками путём связывания с молекулой азота.
Этот цикл существует в водорослях, умеренных растениях и всех деревьях, эти растения называются «растениями С3», наиболее важными промежуточными телами биохимического цикла, имеющими молекулу три атома углерода (С3).
В этой фазе хлорофилл после поглощения фотона имеет энергию 41 ккал на моль, некоторые из которых преобразуются в теплоту или флуоресценцию. Использование изотопных маркеров (18O) показало, что кислород, высвобождаемый во время этого процесса, происходит из разложенной воды, а не из поглощённого диоксида углерода.
Как происходит фотосинтез
Фотосинтез происходит главным образом в листьях растений и редко (когда-либо) в стеблях и т. д. Части типичного листа включают: верхний и нижний эпидермис,
Если клетки верхнего и нижнего эпидермиса не являются хлоропластами, фотосинтез не происходит. Фактически они служат прежде всего в качестве защиты для остальной части листа.
Устьица — это дыры, существующие главным образом в нижнем эпидермисе, и позволяют проводить обмен воздуха (CO и O2). Сосудистые пучки (или вены) в листе составляют часть транспортной системы растения, при необходимости перемещая воду и питательные вещества вокруг растения. Клетки мезофилла имеют хлоропласты, вот это и есть место фотосинтеза.
Механизм фотосинтеза очень сложный. Однако эти процессы в биологии имеют особое значение. При энергичном воздействии света хлоропласты (части растительной клетки, содержащие хлорофилл), вступая в реакцию фотосинтеза, объединяют углекислый газ (СО) с пресной водой с образованием сахаров C6H12O6.
Они в процессе реакции превращаются в крахмал C6H12O5, для квадратного дециметра поверхности листа, в среднем 0,2 г крахмала в день. Вся операция сопровождается сильным высвобождением кислорода.
Фактически процесс фотосинтеза состоит в основном из фотолиза молекулы воды.
Формула этого процесса:
6 Н 2 О + 6 СО 2 + свет = 6 O 2 + С 6 Н 12 О 6
Вода + углекислый газ + свет = кислород + глюкоза
В переводе этот процесс означает: растению для вступления в реакцию нужны шесть молекул воды + шесть молекул углекислого газа и света. Это приводит к образованию шести молекул кислорода и глюкозы в химическом процессе. Глюкоза — это глюкоза, которую растение использует в качестве исходного материала для синтеза жиров и белков. Шесть молекул кислорода являются всего лишь «необходимым злом» для растения, которое он доставляет в окружающую среду через закрывающие клетки.
Основные продукты фотосинтеза
Как уже было сказано, углеводы являются наиболее важным прямым органическим продуктом фотосинтеза в большинстве зелёных растений. В растениях образуется мало свободной глюкозы, вместо этого глюкозные единицы связаны с образованием крахмала или соединены с фруктозой, другим сахаром, с образованием сахарозы.
При фотосинтезе синтезируются не только углеводы, как это когда-то считалось, но также:
Минералы поставляют элементы (например, азот, N, фосфор, Р, серы, S), необходимых для образования этих соединений.
Химические связи разрушаются между кислородом (O) и углеродом (С), водородом (Н), азотом и серы, а новые соединения образуются в продуктах, которые включают газообразный кислород (O 2) и органические соединения. Для разрушения связей между кислородом и другими элементами (например, в воде, нитрате и сульфате) требуется больше энергии, чем высвобождается, когда в продуктах образуются новые связи. Это различие в энергии связи объясняет большую часть световой энергии, хранящейся в виде химической энергии в органических продуктах, образующихся при фотосинтезе. Дополнительная энергия хранится при создании сложных молекул из простых.
Факторы, влияющие на скорость фотосинтеза
Скорость фотосинтеза определяется в зависимости от скорости производства кислорода либо на единицу массы (или площади) зелёных растительных тканей, либо на единицу веса всего хлорофилла.
Количество света, подача углекислого газа, температура, водоснабжение и наличие полезных ископаемых являются наиболее важными факторами окружающей среды, которые влияют на скорость реакции фотосинтеза на наземных установках. Его скорость определяется также видами растений и его физиологическим состоянием, например, его здоровьем, зрелостью и цветением.
Место фотосинтеза
Фотосинтез происходит исключительно в хлоропластах (греческий хлор = зелёный, пластообразный) растения. Хлоропласты преимущественно обнаруживаются в палисадах, но также и в губчатой ткани. На нижней стороне листа находятся блокирующие ячейки, которые координируют обмен газами. CO 2 течёт в межклеточные клетки снаружи.
Вода, необходимая для фотосинтеза, транспортирует растение изнутри через ксилему в клетки. Зелёный хлорофилл обеспечивает поглощение солнечного света. После того как углекислый газ и вода превращаются в кислород и глюкозу, закрывающие клетки открывают и выделяют кислород в окружающую среду. Глюкоза остаётся в клетке и превращается растением среди других в крахмал. Сила сравниваются с полисахаридом глюкозы и лишь слегка растворимой, так что даже в высоких потерях воды в прочности растительных остатков.
Важность фотосинтеза в биологии
Из света, полученного листом, отражается 20%, 10% передаются и 70% фактически поглощаются, из которых 20% рассеивается в тепле, 48% теряется при флуоресценции. Около 2% остаётся для фотосинтеза.
Благодаря этому процессу растения играют незаменимую роль на поверхности Земли, на самом деле зелёные растения с некоторыми группами бактерий являются единственными живыми существами, способными выработать органические вещества из минеральных элементов. По оценкам, каждый год 20 миллиардов тонн углерода фиксируются наземными растениями из углекислого газа в атмосфере и 15 миллиардов водорослями.
Зелёные растения являются основными первичными производителями, первое звено в пищевой цепи, не хлорофилловые растения и травоядные и плотоядные животные (включая людей) полностью зависят от реакции фотосинтеза.
Упрощённое определение фотосинтеза заключается в том, чтобы преобразовать световую энергию от солнца в химическую энергию. Этот фотонный биосинтез углевода производится из углекислого газа СО2 с помощью световой энергии.
То есть фотосинтез является результатом химической активности (синтеза) растений хлорофилла, которые продуцируют основные биохимические органические вещества из воды и минеральных солей благодаря способности хлоропластов захватывать часть энергии солнца.