Удельная теплоемкость цинка 400 дж кг с это означает что
§ 8. Удельная теплоёмкость
Мы узнали, от каких величин зависит количество теплоты и каковы единицы его измерения. Нам известно, что для нагревания тел одинаковой массы, взятых при одинаковой температуре, на одну и ту же величину требуется разное количество теплоты. Так, для нагревания 1 кг воды на 1 °С требуется количество теплоты, равное 4200 Дж. Если нагревать 1 кг серебра на 1 °С, то потребуется 250 Дж.
Физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 °С, называется удельной теплоёмкостью вещества.
Удельная теплоёмкость обозначается буквой с и измеряется в Дж / кг • °С
Так, например, удельная теплоёмкость цинка равна 400 Дж / кг • °С. Это означает, что для нагревания цинка массой 1 кг на 1 °С необходимо количество теплоты, равное 400 Дж. При охлаждении цинка массой 1 кг на 1 °С выделится количество теплоты, равное 400 Дж. Это означает, что если меняется температура цинка массой 1 кг на 1 °С, то он или поглощает, или выделяет количество теплоты, равное 400 Дж.
Таблица 1. Удельная теплоёмкость некоторых веществ
Следует помнить, что удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.
Удельная теплоёмкость воды самая большая — 4200 Дж / кг • °С. В связи с этим вода в морях и океанах, нагреваясь летом, поглощает большое количество теплоты. Поэтому в районах, расположенных вблизи водоёмов, летом не бывает очень жарко, а зимой очень холодно. Это связано с тем, что зимой вода остывает и отдаёт большое количество теплоты. Из-за высокой удельной теплоёмкости воду широко используют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, в медицине (в грелках) и др.
Вопросы
Упражнение 7
Задание
В таблице 1 найдите жидкости. Какая из жидкостей при одинаковых условиях будет нагреваться быстрее?
Количество теплоты. Удельная теплоёмкость
1. Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количеством теплоты.
Количеством теплоты называется изменение внутренней энергии тела в процессе теплопередачи без совершения работы.
Количество теплоты обозначают буквой \( Q \) . Так как количество теплоты является мерой изменения внутренней энергии, то его единицей является джоуль (1 Дж).
При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.
2. Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество теплоты требуется ему для нагревания. То же самое и с охлаждением: тело большей массы при охлаждении отдаёт большее количество теплоты. Эти тела сделаны из одного и того же вещества и нагреваются они или охлаждаются на одно и то же число градусов.
3. Если теперь нагревать 100 г воды от 30 до 60 °С, т.е. на 30 °С, а затем до 100 °С, т.е. на 70 °С, то в первом случае на нагревание уйдёт меньше времени, чем во втором, и, соответственно, на нагревание воды на 30 °С, будет затрачено меньшее количество теплоты, чем на нагревание воды на 70 °С. Таким образом, количество теплоты прямо пропорционально разности конечной \( (t_2\,^\circ C) \) и начальной \( (t_1\,^\circ C) \) температур: \( Q\sim(t_2-t_1) \) .
4. Если теперь в один сосуд налить 100 г воды, а в другой такой же сосуд налить немного воды и положить в неё такое металлическое тело, чтобы его масса и масса воды составляли 100 г, и нагревать сосуды на одинаковых плитках, то можно заметить, что в сосуде, в котором находится только вода, температура будет ниже, чем в том, в котором находятся вода и металлическое тело. Следовательно, чтобы температура содержимого в обоих сосудах была одинаковой нужно воде передать большее количество теплоты, чем воде и металлическому телу. Таким образом, количество теплоты, необходимое для нагревания тела зависит от рода вещества, из которого это тело сделано.
5. Зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.
Физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К), называется удельной теплоёмкостью вещества.
Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.
Удельная теплоёмкость обозначается буквой \( c \) . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг К.
Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.
Удельная теплоёмкость свинца 140 Дж/кг °С. Это значит, что для нагревания 1 кг свинца на 1 °С необходимо затратить количество теплоты 140 Дж. Такое же количество теплоты выделится при остывании 1 кг воды на 1 °С.
Поскольку количество теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.
По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.
6. Пример решения задачи. В стакан, содержащий 200 г воды при температуре 80 °С, налили 100 г воды при температуре 20 °С. После чего в сосуде установилась температура 60 °С. Какое количество теплоты получила холодная вода и отдала горячая вода?
При решении задачи необходимо выполнять следующую последовательность действий:
1. Условие задачи.
Дано:
\( m_1 \) = 200 г
\( m_2 \) = 100 г
\( t_1 \) = 80 °С
\( t_2 \) = 20 °С
\( t \) = 60 °С
______________
2. СИ: \( m_1 \) = 0,2 кг; \( m_2 \) = 0,1 кг.
3. Анализ задачи. В задаче описан процесс теплообмена между горячей и холодной водой. Горячая вода отдаёт количество теплоты \( Q_1 \) и охлаждается от температуры \( t_1 \) до температуры \( t \) . Холодная вода получает количество теплоты \( Q_2 \) и нагревается от температуры \( t_2 \) до температуры \( t \) .
4. Решение задачи в общем виде. Количество теплоты, отданное горячей водой, вычисляется по формуле: \( Q_1=c_1m_1(t_1-t) \) .
5. Вычисления.
\( Q_1 \) = 4200 Дж/кг · °С · 0,2 кг · 20 °С = 16800 Дж
\( Q_2 \) = 4200 Дж/кг · °С · 0,1 кг · 40 °С = 16800 Дж
6. В ответе получено, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному холодной водой. При этом рассматривалась идеализированная ситуация и не учитывалось, что некоторое количество теплоты пошло на нагревание стакана, в котором находилась вода, и окружающего воздуха. В действительности же количество теплоты, отданное горячей водой, больше, чем количество теплоты, полученное холодной водой.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Удельная теплоёмкость серебра 250 Дж/(кг · °С). Что это означает?
1) при остывании 1 кг серебра на 250 °С выделяется количество теплоты 1 Дж
2) при остывании 250 кг серебра на 1 °С выделяется количество теплоты 1 Дж
3) при остывании 250 кг серебра на 1 °С поглощается количество теплоты 1 Дж
4) при остывании 1 кг серебра на 1 °С выделяется количество теплоты 250 Дж
2. Удельная теплоёмкость цинка 400 Дж/(кг · °С). Это означает, что
1) при нагревании 1 кг цинка на 400 °С его внутренняя энергия увеличивается на 1 Дж
2) при нагревании 400 кг цинка на 1 °С его внутренняя энергия увеличивается на 1 Дж
3) для нагревания 400 кг цинка на 1 °С его необходимо затратить 1 Дж энергии
4) при нагревании 1 кг цинка на 1 °С его внутренняя энергия увеличивается на 400 Дж
3. При передаче твёрдому телу массой \( m \) количества теплоты \( Q \) температура тела повысилась на \( \Delta t^\circ \) . Какое из приведённых ниже выражений определяет удельную теплоёмкость вещества этого тела?
4. На рисунке приведён график зависимости количества теплоты, необходимого для нагревания двух тел (1 и 2) одинаковой массы, от температуры. Сравните значения удельной теплоёмкости ( \( c_1 \) и \( c_2 \) ) веществ, из которых сделаны эти тела.
1) \( c_1=c_2 \)
2) \( c_1>c_2 \)
3) \( c_1
4) ответ зависит от значения массы тел
5. На диаграмме представлены значения количества теплоты, переданного двум телам равной массы при изменении их температуры на одно и то же число градусов. Какое соотношение для удельных теплоёмкостей веществ, из которых изготовлены тела, является верным?
1) \( c_1=c_2 \)
2) \( c_1=3c_2 \)
3) \( c_2=3c_1 \)
4) \( c_2=2c_1 \)
6. На рисунке представлен график зависимости температуры твёрдого тела от отданного им количества теплоты. Масса тела 4 кг. Чему равна удельная теплоёмкость вещества этого тела?
1) 500 Дж/(кг · °С)
2) 250 Дж/(кг · °С)
3) 125 Дж/(кг · °С)
4) 100 Дж/(кг · °С)
7. При нагревании кристаллического вещества массой 100 г измеряли температуру вещества и количество теплоты, сообщённое веществу. Данные измерений представили в виде таблицы. Считая, что потерями энергии можно пренебречь, определите удельную теплоёмкость вещества в твёрдом состоянии.
1) 192 Дж/(кг · °С)
2) 240 Дж/(кг · °С)
3) 576 Дж/(кг · °С)
4) 480 Дж/(кг · °С)
8. Чтобы нагреть 192 г молибдена на 1 К, нужно передать ему количество теплоты 48 Дж. Чему равна удельная теплоёмкость этого вещества?
9. Какое количество теплоты необходимо для нагревания 100 г свинца от 27 до 47 °С?
1) 390 Дж
2) 26 кДж
3) 260 Дж
4) 390 кДж
10. На нагревание кирпича от 20 до 85 °С затрачено такое же количество теплоты, как для нагревания воды такой же массы на 13 °С. Удельная теплоёмкость кирпича равна
1) 840 Дж/(кг · К)
2) 21000 Дж/(кг · К)
3) 2100 Дж/(кг · К)
4) 1680 Дж/(кг · К)
11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.
1) Количество теплоты, которое тело получает при повышении его температуры на некоторое число градусов, равно количеству теплоты, которое это тело отдаёт при понижении его температуры на такое же число градусов.
2) При охлаждении вещества его внутренняя энергия увеличивается.
3) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение кинетической энергии его молекул.
4) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение потенциальной энергии взаимодействия его молекул
5) Внутреннюю энергию тела можно изменить, только сообщив ему некоторое количество теплоты
12. В таблице представлены результаты измерений массы \( m \) , изменения температуры \( \Delta t \) и количества теплоты \( Q \) , выделяющегося при охлаждении цилиндров, изготовленных из меди или алюминия.
Какие утверждения соответствуют результатам проведённого эксперимента? Из предложенного перечня выберите два правильных. Укажите их номера. На основании проведенных измерений можно утверждать, что количество теплоты, выделяющееся при охлаждении,
1) зависит от вещества, из которого изготовлен цилиндр.
2) не зависит от вещества, из которого изготовлен цилиндр.
3) увеличивается при увеличении массы цилиндра.
4) увеличивается при увеличении разности температур.
5) удельная теплоёмкость алюминия в 4 раза больше, чем удельная теплоёмкость олова.
Часть 2
C1.Твёрдое тело массой 2 кг помещают в печь мощностью 2 кВт и начинают нагревать. На рисунке изображена зависимость температуры \( t \) этого тела от времени нагревания \( \tau \) . Чему равна удельная теплоёмкость вещества?
1) 400 Дж/(кг · °С)
2) 200 Дж/(кг · °С)
3) 40 Дж/(кг · °С)
4) 20 Дж/(кг · °С)
Какова удельная теплоемкость цинка
Удельная теплоемкость цинка имеет огромное значение для материаловедения и металлургии. Значения этой величины в целом для простых и сложных веществ, а также для различных материалов очень часто используются в жизни, промышленности и науке. Без ее учета невозможно рассчитать энергетические затраты для любого вида производства.
Цинк — это металл, влияние которого на все сферы жизни человека трудно переоценить. Без цинка не существует латунь, которую (хотя это и сплав) называют вечным металлом за ее превосходную износостойкость. Латунь находит применение от авиа— и судостроения до полиграфии и ювелирного дела.
При борьбе с коррозией металлов и сплавов цинк занимает первое место. Оцинковка — это дешевый и надежный способ придания материалам антикоррозионных свойств. Различные элементы питания, без которых не обходится жизнь современного человека, делают на основе цинка. Даже организм человека без цинка существовать не может. Это самый распространенный биологически активный микроэлемент после железа. Его нехватка ведет к негативным последствиям для здоровья.
Что такое удельная теплоемкость?
Тепловые явления изучаются двумя науками — термодинамикой и молекулярной физикой. У этих наук разные предметы изучения, подходы и методы, но именно накопленные знания этих дисциплин позволяют составить истинное представление о тепловых явлениях.
Теплоемкость в случае обеих наук выступает как ключевое понятие. Величина обозначается латинской буквой C. В широком смысле теплоемкость рассматривают как физическое свойство вещества или материала поглощать строго определенное количество теплоты при нагревании и выделять его при обратном процессе охлаждения.
Любая удельная величина определяется как отношение, которое реализуется к другим абсолютно разным величинам, взятым за единицу. Например, к энергии, массе или объему.
Удельная теплоемкость цинка
Поскольку сама теплоемкость находится в прямой зависимости от температуры, то и удельная теплоёмкость веществ будет меняться от значений данного параметра. В температурном диапазоне от 0 до 300°C удельная теплоемкость цинка приблизительно равна 400 Дж/кг.°C.
В процессе нагревания воды нужно затратить большое количество энергии, поэтому вода — самый распространенный промышленный охладитель. Соответственно, при своем остывании вода отдает в окружающую среду значительное количество тепловой энергии. Это универсальный теплоноситель для различных нужд.
Удельная теплоемкость цинка примерно в 10 раз меньше, чем у воды. Металл быстро нагревается и для этого требуется в разы меньшее количество теплоты.
Зависимость удельной теплоемкости цинка от температуры является типичной для простых металлов. В процессе нагревания значение величины возрастает. Такое увеличение незначительно и носит нелинейный характер. При достижении металлом температуры плавления, когда он переходит в жидкое состояние, его удельная теплоемкость достигает максимума и остается практически неизменной.
Удельная теплоемкость вещества
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Нагревание и охлаждение
Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.
Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.
Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при нагревании — отдает.
В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.
А вот теперь поговорим о видах теплопередачи.
Виды теплопередачи
Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Удельная теплоемкость: понятие и формула для расчета
Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.
С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:
Удельная теплоемкость вещества
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Также ее можно рассчитать через теплоемкость вещества:
Удельная теплоемкость вещества
c — удельная теплоемкость вещества [Дж/кг*˚C]
C — теплоемкость вещества [Дж/˚C]
Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:
Количество теплоты, необходимое для нагревания тела
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
Таблица удельных теплоемкостей
Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.
8 класс
§ 8. Удельная теплоёмкость
Мы узнали, от каких величин зависит количество теплоты и каковы единицы его измерения. Нам известно, что для нагревания тел одинаковой массы, взятых при одинаковой температуре, на одну и ту же величину требуется разное количество теплоты. Так, для нагревания 1 кг воды на 1 °C требуется количество теплоты, равное 4200 Дж. Если нагревать 1 кг серебра на 1 °С, то потребуется 250 Дж.
Физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 °С, называется удельной теплоёмкостью вещества.
Удельная теплоёмкость обозначается буквой с и измеряется в (далее будет записано как: Дж / кг • °С).
Так, например, удельная теплоёмкость цинка равна 400 Дж / кг • °С. Это означает, что для нагревания цинка массой 1 кг на 1 °С необходимо количество теплоты, равное 400 Дж. При охлаждении цинка массой 1 кг на 1 °С выделится количество теплоты, равное 400 Дж. Это означает, что если меняется температура цинка массой 1 кг на 1 °С, то он или поглощает, или выделяет количество теплоты, равное 400 Дж.
Таблица 1. Удельная теплоёмкость некоторых веществ
Вещество | с, Дж/кг • °С |
Золото | 130 |
Ртуть | 140 |
Свинец | 140 |
Олово | 230 |
Серебро | 250 |
Медь | 400 |
Цинк | 400 |
Латунь | 400 |
Железо | 460 |
Сталь | 500 |
Чугун | 540 |
Графит | 750 |
Стекло лабораторное | 840 |
Кирпич | 880 |
Алюминий | 920 |
Масло подсолнечное | 1700 |
Лёд | 2100 |
Керосин | 2100 |
Эфир | 2350 |
Дерево (дуб) | 2400 |
Спирт | 2500 |
Вода | 4200 |
Следует помнить, что удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.
Удельная теплоёмкость воды самая большая — 4200 Дж/кг • °С. В связи с этим вода в морях и океанах, нагреваясь летом, поглощает большое количество теплоты. Поэтому в районах, расположенных вблизи водоёмов, летом не бывает очень жарко, а зимой очень холодно. Это связано с тем, что зимой вода остывает и отдаёт большое количество теплоты. Из-за высокой удельной теплоёмкости воду широко используют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, в медицине (в грелках)и др.
Вопросы:
1. Что называется удельной теплоёмкостью вещества?
2. Что является единицей удельной теплоёмкости вещества?
3. Почему близость водоёмов влияет на температуру воздуха?
4. Почему чаще всего вода используется в системе отопления, для охлаждения двигателей?
Упражнения:
Упражнение № 7
1. Удельная теплоёмкость свинца равна 140 Дж/кг • °С. Что это означает?
2. Для нагревания 1 кг золота на 1 °С требуется 130 Дж. Какова удельная теплоёмкость золота?
Задания:
В таблице 1 найдите жидкости. Какая из жидкостей при одинаковых условиях будет нагреваться быстрее?